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In the domain of medical image segmentation, while convolutional neural networks (CNNs) and 
Transformer-based architectures have attained notable success, they continue to face substantial 
challenges. CNNs are often limited in their ability to capture long-range dependencies, while 
Transformer models are frequently constrained by significant computational overhead. Recently, 
the Vision Mamba model, combined with KAN linear attention, has emerged as a highly promising 
alternative. In this study, we propose a novel model for medical image segmentation, termed 
VMKLA-UNet. The encoder of this architecture harnesses the VMamba framework, which employs a 
bidirectional state-space model for global visual context modeling and positional embedding, thus 
enabling efficient feature extraction and representation learning. For the decoder, we introduce the 
MKCSA architecture, which incorporates KAN linear attention—rooted in the Mamba framework—
alongside a channel-spatial attention mechanism. KAN linear attention substantially mitigates 
computational complexity while enhancing the model’s capacity to focus on salient regions of interest, 
thereby facilitating efficient global context comprehension. The channel attention mechanism 
dynamically modulates the importance of each feature channel, accentuating critical features 
and bolstering the model’s ability to differentiate between various tissue types or lesion areas. 
Concurrently, the spatial attention mechanism refines the model’s focus on key regions within the 
image, enhancing segmentation boundary accuracy and detail resolution. This synergistic integration 
of channel and spatial attention mechanisms augments the model’s adaptability, leading to superior 
segmentation performance across diverse lesion types. Extensive experiments on public datasets, 
including Polyp, ISIC 2017, ISIC 2018, PH2, and Synapse, demonstrate that VMKLA-UNet consistently 
achieves high segmentation accuracy and robustness, establishing it as a highly effective solution for 
medical image segmentation tasks.
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Medical image segmentation is a pivotal technology in medical image processing and computer vision, widely 
applied in areas such as diagnosis, surgical planning, and treatment evaluation. Its primary goal is to delineate 
structures or regions of interest—e.g., organs, tumors, and blood vessels—from complex medical images. With 
the rapid advancement of imaging technologies, the volume of medical data has grown exponentially, increasing 
the demands on segmentation techniques. In recent years, the advent of deep learning has revolutionized the 
field, driving significant progress in medical image segmentation.

In medical image segmentation using deep learning, the encoder-decoder architecture is a prevalent 
framework. In this design, the encoder extracts feature from the input image, progressively compressing high-
dimensional data into low-dimensional representations to capture global context. The decoder then recovers 
these representations, gradually restoring them to the original input size to produce refined segmentation results. 
Numerous studies have demonstrated that this architecture significantly enhances segmentation performance by 
effectively integrating global information and enriching multiscale feature representation.

U-Net1 is one of the most widely used frameworks, known for its balanced and symmetrical encoder-decoder 
design and the integration of skip connections. The hierarchical structure of the encoder and decoder allows 
the model to extract and process features at varying depths, enabling it to capture the multi-scale details of the 
image. Additionally, skip connections facilitate the effective transfer of feature information. Numerous studies 
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on U-Net focus on several key areas: the encoder, by replacing the backbone networks to obtain feature maps 
at different levels; the skip connections, by incorporating various channel attention mechanisms and adjusting 
them at different points in the network; and the decoder, by exploring different sampling methods and feature 
fusion strategies.

Models based on convolutional neural networks (CNNs) have difficulty capturing long-distance information 
due to the limitations of their local receptive field. This limitation may lead to poor feature extraction and thus 
affect the quality of segmentation results. Models based on Transformer2 perform well in global modeling, but 
the quadratic complexity of their self-attention mechanism leads to high computational costs, especially in 
tasks that require dense predictions, such as medical image segmentation. These limitations have prompted 
us to develop a new architecture for medical image segmentation that can not only effectively capture long-
distance information but also maintain linear computational complexity. Recently, advances in state-space 
models (SSMs), especially structured space models S4, have provided an effective solution because they perform 
well in processing long sequences, e.g., the Mamba model3. The Mamba model enhances S4 through selection 
mechanisms and hardware optimizations, and performs well in dense data areas. By using the visual state-space 
model (VMamba)4.The addition of the Cross Scan Module (CSM) further improves the applicability of Mamba 
in computer vision tasks. The three frame structures are shown in Fig. 1, which fully demonstrates the process of 
three mainstream models processing image data. CNN focuses on local context information, while transformer 
and SSM focus on global context information.

Inspired by the great success of VMamba4 in image classification tasks and VM-UNet5 in medical 
segmentation tasks, this paper introduces a new medical segme ntation model Vision Mamba with KAN Linear 
Attention UNet (VMKLA-UNet). The model is based on the U-Shape structure, and the encoder adopts the 
VMamba structure, which enables the encoding stage of the model to selectively focus on the key features of 
the input data, and this selective mechanism allows the model to more effectively extract and represent the key 
information of the image in the encoding stage, especially when dealing with complex medical images, it can 
better capture subtle structural differences. In the decoder, in order to improve its efficiency and robustness, 
we first replaced SSM with KAN’s linear attention. Although SSM performs well in selective feature extraction 
in the encoder, it has high computational complexity in the decoding stage and because of its special selective 
mechanism, it usually ignores some important features, resulting in information loss and affecting the final 

Fig. 1.  Three different deep model architectures.
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segmentation results. At this time, the advantages of SSM in the encoder become the disadvantages of the 
decoder. However, by integrating KAN linear attention, the decoder not only reduces the computational 
overhead, but also improves global feature integration and enhances generalization between different datasets. 
The linear attention mechanism not only speeds up the decoding process, but also ensures more comprehensive 
utilization of the encoded features, thereby achieving excellent segmentation accuracy. These improvements 
make the KAN-based linear attention module a more suitable choice for the decoder. Specially, the combination 
of Vision Mamba (SS2D), KAN, and Linear Attention is driven by the strengths each component contributes to 
medical image segmentation. The core of the VSS Block in Vision Mamba, SS2D, excels at capturing global and 
local image structures through multi-directional scanning. This technique is particularly effective for extracting 
features in medical images with complex geometries and multi-scale information. By selectively focusing on 
relevant regions, SS2D dynamically adapts to intricate edge patterns, textures, and specific regions of interest 
like tumors or organ boundaries. Additionally, its design for 2D medical images, such as CT or MRI slices, 
ensures efficient processing without unnecessary computational overhead. As an encoder, SS2D generates rich 
multi-scale representations that form a robust foundation for downstream tasks. However, SS2D has limitations 
when used in the decoder, where global information integration is paramount. Its reliance on multi-directional 
scanning primarily models local features and struggles with capturing nonlinear relationships or integrating 
complex global context. This limitation becomes evident in scenarios with blurred boundaries or diverse feature 
distributions, making SS2D suboptimal for decoding tasks. To address this, we integrate KAN Linear Attention 
into the decoder. While traditional linear attention is computationally efficient, it often fails to model complex 
high-dimensional interactions adequately. KAN compensates for this by decomposing high-dimensional features 
into low-dimensional representations, capturing deeper relationships through mathematical decomposition6. 
This allows KAN Linear Attention to enhance interaction modeling while retaining the efficiency of linear 
attention. Furthermore, KAN enriches feature diversity during dimensional mapping6, enabling the attention 
mechanism to better represent both global and local structures. This is particularly important in medical image 
segmentation, where accurate modeling of discontinuities, regional boundaries, and subtle features is critical. 
By combining KAN with Linear Attention, we achieve a balance of computational efficiency, expressiveness, and 
robustness, ensuring superior performance in extracting meaningful features from complex high-dimensional 
data. This thoughtful integration ensures the model remains lightweight and efficient, making it ideal for real-
world medical applications that demand high accuracy and resource-conscious solutions. Besides this, we also 
added channel attention blocks and spatial attention blocks to the decoder to further enhance the model’s ability 
to segment objects in complex areas.

We conducted extensive experiments on multiple segmentation-related tasks to demonstrate the capabilities 
of the SSM combined with linear attention model in the field of medical image segmentation. In particular, we 
conducted extensive tests on ISIC17, ISIC18, PH2, Polyp, Synapse, and other public datasets. The results show 
that VMKLA-UNet can provide competitive results.

The main contributions of this paper can be summarized as follows:

•	 We proposed VMKLA-UNet, which is the first to introduce SSM combined with KAN linear attention into 
the field of medical image segmentation. KAN is a neural network architecture different from the traditional 
multi-layer perceptron, namely MLP.

•	 We designed the MKCSA module, which is based on Mamba-Shape and first proposed the KAN linear at-
tention block. We also added channel attention and spatial attention to the structure to extract global context 
information to improve the semantic segmentation ability.

•	 We conducted a large number of experiments on three skin lesion datasets ISIC17, ISIC18, PH2, a colon polyp 
dataset Polyp, and a multi-organ segmentation task dataset Synapse, verifying the effectiveness of MKCSA on 
multiple different modality medical image segmentation datasets, which not only improved the segmentation 
accuracy but also reduced the model calculation complexity.

Related work
With the significant advancements in computational power, the field of computer vision has emerged as 
one of the most critical areas in modern computer science. The development of deep learning has led fully 
convolutional models (FCN)7 to achieve remarkable performance in image segmentation. Soon after, another 
fully convolutional model, U-Net, gained widespread attention1. The skip connections in U-Net al.low for 
effective integration of high-level and low-level features, which is particularly crucial for image segmentation 
tasks, especially in cases requiring fine-grained segmentation, such as in medical imaging. In this section, we 
provide a concise overview of prevalent medical image segmentation methods, focusing on their strategies 
for effectively modeling contextual information. These methods can be broadly categorized into three groups: 
convolutional neural network (CNN)-based approaches, Transformer-based approaches, and state-space model 
(SSM)-based approaches.

CNN-based models
Since the introduction of U-Net, algorithms for medical image segmentation—represented by skin lesion 
segmentation—have seen rapid development. The MHorUNet model8 proposed a high-order spatial interaction 
U-Net for skin lesion segmentation. Although the high-order spatial interaction module is introduced to 
enhance context modeling, its manually designed interaction rules have bottlenecks in generalization. In Wu 
et al.‘s study, an adaptive high-order U-Net model was introduced for sequential interactions in skin lesion 
segmentation, which optimized the interaction efficiency to a certain extent, but sacrificed the computational 
efficiency. Attention-UNet9 leverages attention gates to dynamically modulate the importance of features, 
enabling the model to focus more precisely on target areas. However, this added mechanism also increases 
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computational overhead and model complexity, which can lead to longer training and inference times, greater 
sensitivity to hyperparameter tuning, and a heightened risk of overfitting, especially when training data is scarce. 
For medical image segmentation tasks, modeling global context is an important test for the model, but it is 
obvious that CNN-based models cannot capture long-distance features.

Transformer-based models
Inspired by the breakthrough success of Vision Transformers (ViTs)10 in vision tasks, Chen et al. introduced 
TransUNet11, marking the first use of a Transformer-based architecture in the encoding phase instead of 
convolutional networks in U-Net. Aghdam et al. proposed a cascaded attention suppression mechanism for 
skin lesion segmentation based on Swin U-Net12. Additionally, Xu et al.13 introduced a segmentation algorithm 
combining Transformers with CNNs, which demonstrated strong performance on skin lesion datasets. Other 
U-Net-based improvements for skin lesion segmentation include models such as Attn-Swin UNet14 which 
integrates cross-attention in the decoder, further enhancing Swin U-Net’s segmentation capabilities. Although 
Transformers excel at capturing long-range dependencies, the quadratic complexity of their self-attention 
mechanism with respect to input size presents challenges, particularly in pixel-level inferences required for 
medical image segmentation. This computational burden limits the practical applicability of Transformer-based 
methods.

SSM-based models
Recent advances in state-space models (SSMs), particularly the Mamba model, have shown the ability to model 
long-range dependencies with linear complexity, while also demonstrating superior performance across various 
vision tasks. U-Mamba15 introduced a novel hybrid model combining CNN with SSM, effectively capturing 
both fine-grained local features and long-range contextual information. In this architecture, features extracted 
from CNNs are flattened into 1D sequences and processed by Mamba to extract global features. Unlike natural 
language data, images lack a fixed causal relationship. Thus, Hao et al. proposed T-Mamba16, which improved 
image modeling by introducing both forward and backward feature scanning, achieving state-of-the-art 
results in tooth segmentation. Currently, the most successful SSM-based vision model is VMamba4. Its most 
significant contribution is the introduction of a cross-scanning module called SS2D4, which employs a four-
directional scanning strategy. Although as an encoder, SS2D can generate rich multi-scale representations and 
lay a solid foundation for downstream tasks, it has difficulty capturing nonlinear relationships or integrating 
complex global contexts. This limitation becomes apparent in scenarios with fuzzy boundaries or diverse feature 
distributions, making SS2D less suitable for decoding tasks. To address the limitations of SS2D as a decoder, we 
proposed an effective method called VMKLA-UNet. This method is based on the structure of VMamba4, but 
replaces the core functional module SS2D in the decoder with the KAN linear attention mechanism we first 
proposed, and combines channel and spatial attention mechanisms, which performs well in local and long-
distance dependency modeling and computational efficiency.

Methods
Overall framework
The model VMKLA-UNet proposed in our paper is shown in Fig. 2.a.

Encoder structure
State space model (SSM)
In modern state-space (SSM) based models, namely structured state-space sequence models (S4) and Mamba3, 
both rely on a traditional continuous system that maps a one-dimensional input function or sequence x (t) ∈ R
to an output y (t) ∈ R through an intermediate hidden state h (t) ∈ RN . This process can be described as a 
linear ordinary differential equation (ODE):

	

h′
t = Ah (t) + Bx (t)

y (t) = Ch (t)
� (1)

where A is the state matrix, B and C are the input matrix and output matrix respectively. S4 and Mamba extended 
this continuous time dynamic modeling to discrete time series data by introducing a time scale parameter Δ and 
converting A and B into discrete parameters Â and using a fixed discretization rule B̂, as shown in Eq. (2):

	

Â = exp (∆A)

B̂ = (∆A)−1 (exp (∆A) − I) · B
� (2)

After discretization, the SSM-based model can be calculated in two ways: (1) linear recursion, (2) global 
convolution, as shown in Eqs. (3) and (4).

	

h′ (t) = Âh (t) + B̂x (t)
y (t) = Ch (t)

� (3)

	

K̂ =
(

CB̂, CÂB, . . . , CÂ
L−1

B̂
)

y = x ∗ K̂

� (4)
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where K̂ represents a structured convolution kernel and L represents the length of the input sequence x.

VSS block
The VSS module proposed in VMamba4 serves as the backbone of the VMKLA-UNet encoder, and its structure 
is shown in Fig. 2.c. The input first passes through an initial linear embedding layer and is then split into two 
independent information streams. One stream flows through a 3 × 3 depth-wise convolution layer, followed by 
a SiLU activation function, before entering the main 2D-Selective Scan Module (SS2D). The output of SS2D is 
then processed by a layer normalization layer and combined with the output from the other stream, which has 
also been activated by SiLU. The combined output forms the final result of the VSS module.

	

E = Linear (x)
E1 = SiLU (Conv3×3 (E))
S1 = LayerNorm (SS2D (E1))
S2 = SiLU (E)
Y = S1 ⊙ S2

� (5)

where E is the output of the initial linear embedding, S1 is the first information stream after processing by the 
SS2D module, and S2 is the output of the second information stream. The final VSS module output Y is the 
combined result of the two information streams.

2D selective scan (SS2D)
The 2D-Selective-Scan (SS2D)4 is the core component of the VSS block, designed to efficiently extract features 
from two-dimensional images. The main idea behind SS2D is to capture long-range dependencies and complex 
spatial structures through a multi-directional scanning strategy. Specifically, it employs a selective scanning 
approach to traverse the image from various directions (e.g., horizontal, vertical, diagonal), extracting features 
along these paths. This strategy selectively focuses on specific scanning directions, i.e., those that are most 
relevant for capturing key image patterns. As a result, it enables more effective modeling of both global and local 
image structures.

SS2D includes three operations: (1) a scan expanding operation, (2) S6 operation, which adds a selectable 
mechanism based on S4 to achieve linear time variability of the model, and (3) a scan merging operation. The 
visualization process of the SS2D algorithm is shown in Fig.  3, which tells us that the process of the SS2D 
algorithm is to scan from four different directions and finally merge them.

Fig. 2.  Overall framework of the model. (a) VMKLA-UNet. Both the encoder and decoder consist of 4 stages, 
where each stage of the encoder contains a down-sampling operation and a VSS block, and each stage of the 
decoder contains an up-sampling operation and an MKLA-CA block. (b) the specific architecture of MKCSA. 
(c) the VSS Block.
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Specifically, the input data is flattened into 1D vectors along four different directions (e.g., upper left, lower 
right, lower left, and upper right) using a Scan Expanding operation. These 1D vectors are then processed by the 
S6 operation within the S6 Block. Finally, the vectors are fused into a 2D feature map via Scan Merging. SS2D 
ensures that the VSS block achieves a global receptive field, i.e., it captures information across the entire image, 
while maintaining linear computational complexity.

Decoder structure
The decoder is structured differently from the encoder. To enhance its feature representation capability, we 
designed a unique MKCSA structure, as illustrated in Fig.  2.b. In this work, we first proposed KAN linear 
attention in the decoder design, combining it with a channel-space attention mechanism. This novel approach 
significantly improves medical image segmentation performance while also reducing the model’s computational 
complexity.

Kolmogorov–Arnold networks (KAN)
Kolmogorov-Arnold Networks (KAN)6 is a neural network architecture based on the Kolmogorov-Arnold 
theorem, which is specifically designed to approximate arbitrary multi-dimensional continuous functions. The 
theorem was proposed by Andrey Kolmogorov and Vladimir Arnold and describes that any n-dimensional 
continuous function can be represented as a combination of a series of single-variable functions, as shown in 
Eq. (6):

	 f (x1, x2, . . . , xn) =
∑ 2n+1

i=1 φ i

(∑
n
j=1ψ ij (xj)

)
� (6)

where φ i and ψ ij are some single variable continuous functions. This formula means that any n-dimensional 
continuous function can be approximated by linear combination and nonlinear transformation of a finite 
number of one-dimensional functions.

Based on the Kolmogorov-Arnold theorem, KAN designs a three-layer neural network architecture 
to approximate complex functions in high-dimensional input space, including input layer, mapping layer, 
combination layer, nonlinear activation layer and output layer, as shown in Eq. (7).

	

X = [x1, x2, . . . , xn]
zij = ψij (xj)

hi =
n∑

j=1

zij

f (x) =
2n+1∑
i=1

φi (hi)

� (7)

where X is the multidimensional vector of input, zij is the one-dimensional features after mapping, ψ ij is 
the mapping function, hi is the new feature representation obtained by linearly combining the output of the 
mapping layer, φ i (hi) is the nonlinear activation function applied to the output of the combination layer, 
and f (x) is the final output after superposition of all nonlinearly activated features.

The design of KAN is rooted in well-established mathematical theorems, providing a strong theoretical 
foundation for its expressive power. This architecture allows the model to handle highly complex, high-
dimensional input data without significantly increasing computational complexity. Furthermore, its network 
structure offers a distinct advantage in interpretability, as the computations at each layer have precise mathematical 
meanings—i.e., they correspond to specific single-variable functions. This makes KAN particularly well-suited 
for applications where clarity and theoretical rigor are essential.

Fig. 3.  SS2D operation process.
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KAN with linear attention
Linear attention17 is an approach designed to optimize traditional self-attention mechanisms (e.g., the attention 
mechanism in Transformers) by reducing computational complexity. The complexity of traditional self-attention 
is O(N²), where N represents the length of the input sequence. This quadratic complexity results in a significant 
increase in computational resource consumption when processing long sequences. Linear attention addresses 
this by reducing the complexity to O(N) through specific optimizations, making it more suitable for modeling 
long sequences. It achieves this by first projecting queries and keys into a lower-dimensional feature space, 
followed by computing the weighted sum.

	

CustomAttention (Q, K, V ) = softmax

(
QKT

√
d

)
V

LinearAttention (Q, K, V ) =
φ (Q)

(
φ (K)T V

)

φ (Q)
(
φ (K)T 1

)
� (8)

where Q = XWQ, K = XWK , V = XWV , φ(·)is a point-to-point nonlinear mapping function, and 1 
represents a vector whose elements are all ones.

Medical images often contain intricate patterns and structures, e.g., the boundaries of lesions or subtle 
anatomical variations, which are high-dimensional in nature. Linear attention mechanisms, while efficient, may 
struggle to represent such complex patterns effectively. However, KAN can model these complex relationships 
more effectively by decomposing high-dimensional functions into a combination of simpler one-dimensional 
functions. The KAN paper points out the application of the Kolmogorov-Arnold theorem, which mathematically 
proves that any continuous multivariable function can be decomposed into a finite combination of univariate 
functions. This formula has been mentioned in the previous introduction of KAN. We can explain how KAN 
captures deeper relationships from two aspects. The first aspect is the hierarchical nature of mathematical 
decomposition. The paper6 mentions that each layer of KAN performs two steps. The first step is local feature 
extraction, that is, the univariate function F independently processes each input feature to extract low-
dimensional local patterns; the second step is global interaction combination, that is, the outer function S
sums and combines the low-dimensional representation, gradually constructing high-order interactions, and 
hierarchical stacking can model nonlinearities of arbitrary depth (Theorem 2.1 in the paper6). The second aspect 
is the dynamic depth adjustment of KAN. KAN automatically expands the network depth through the “pruning-
growth” mechanism (Sect. 2.5.1 of the paper6), prioritizes modeling low-order interactions, and then gradually 
introduces high-order terms to avoid falling into complex noise too early. In practice, this decomposition 
allows the model to capture intricate dependencies between input features while maintaining computational 
efficiency. As for the capture mechanism of complex dependencies, the paper6 has mentioned that KAN uses 
L1 regularization to sparse single-variable functions and automatically identifies key feature interactions. E.g., 
in the real world, there is a high-dimensional function f (x1, . . . , x100) = x1x2 + sin (x3). KAN can remove 
irrelevant terms x4, . . . , x100 through pruning. In addition, the spline curve of the single-variable function 
can also intuitively display the feature contribution. E.g., φ 1,3x3 presents a sinusoidal state, indicating that x3
participates in the interaction through sin (x3). As for the guarantee of computational efficiency, Sect.  4.1 
of the paper6 also mentioned that for n-dimensional input, the number of parameters of a single KAN layer 
is n × k × (2n + 1), where k is the number of B-spline basis functions, which is much smaller than O

(
n2)

of MLP.
By integrating KAN into linear attention, we achieve the following improvements:

Feature decomposition and nonlinear mapping  KAN decomposes the input feature space into simpler com-
ponents, the simple components here refer to the decomposition of multivariable functions into combinations 
of univariate functions φ q,p (xp) by KAN. Each φ q,p only processes a single input feature, and the complex-
ity is much lower than the multidimensional weight matrix. The B-spline function Bi (x) has local support 
(non-zero only in the interval [ti, ti+1], so that each univariate function can be interpreted as a piecewise local 
response to the input feature, and the symbolic regression and physical law discovery mentioned in the paper 
also demonstrate the ability of KAN to recover real components6, and applies nonlinear mappings to each. E.g., if 
the input features X consist of multiple channels or modalities (e.g., grayscale, texture, or gradient information), 
KAN transforms X into a representation that highlights relationships between channels as shown in Eq. (9).

	
x̂i = φi

(
di∑

j=1

ψij (xij)

)
� (9)

where φ i ​and ψ ij are nonlinear functions designed to capture local and global dependencies. This ensures that 
even subtle interactions between features are preserved.

Capturing global context  In medical images, the relationship between local regions (e.g., tumor boundaries) 
and global structures (e.g., organ shapes) is crucial. KAN enhances linear attention by embedding these rela-
tionships into the attention mechanism. For instance, after KAN processes the features, the attention scores 
calculated in linear attention better reflect the interplay between different regions.
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Improved boundary and detail recognition  Boundary regions in medical images are often challenging to mod-
el due to their fine-grained details. By leveraging KAN’s ability to capture high-dimensional interactions, the 
attention mechanism can focus more accurately on these critical regions, improving segmentation precision.

Therefore, we consider combining KAN with linear attention to make up for the shortcomings of linear 
attention in expressing high-dimensional features, increase the expressiveness of the attention mechanism, and 
thus improve the performance of the overall model.

MKCSA block
As illustrated in Fig. 2.b, the MKCSA architecture is primarily comprised of two key components: KAN linear 
attention and a channel-spatial attention mechanism. The KAN linear attention is designed to capture the intricate 
relationships within high-dimensional inputs, enabling the network to effectively discern subtle features in 
medical images. The channel attention mechanism selectively emphasizes the most salient feature channels, such 
as the distinct tissue distributions present in medical images, while the spatial attention mechanism enhances 
the spatial representation of the image, ensuring precise segmentation of complex anatomical structures. By 
integrating both channel and spatial attention, the model is able to more comprehensively capture and represent 
the multidimensional information embedded within the image, leading to improved performance in fine-
grained segmentation tasks.

In medical images, it is crucial to accurately identify lesion areas, subtle tissues, or organ boundaries. After 
deep convolution filtering of local pixels, the response to details is enhanced, while KAN linear attention captures 
the contextual information of local areas to ensure that subtle features are not missed when processing complex 
structures. This is especially important when processing high-resolution medical images and helps improve the 
accuracy of lesion identification.

	

yi,j,c =
M−1∑
m=0

N−1∑
n=0

xi+m,j+n,c · wm,n,c

Q, K = KANLinear (yi,j,c)
KANLinearAttention (Q, K, V ) = V · σ

(
Q · KT

)
� (10)

where xi,j,c is the value of channel c at position (i, j) on the input feature map, and wm,n,c is the weight of 
the corresponding filter. In this way, deep convolution can capture local features while maintaining channel 
independence, and can capture subtle structures and edges more accurately, especially in high-resolution medical 
images. Q, K and V represent query, key, and value matrices, respectively, where Q and K are generated by 
KAN and σ are activation functions. This linear attention mechanism can effectively integrate global context 
information through matrix multiplication and reduce the computational complexity of traditional self-attention 
while maintaining sensitivity to local information.

Tissue structures in medical images often exhibit complex global relationships. The KAN linear attention 
mechanism establishes long-range dependencies between features on a global scale, ensuring the model retains 
critical details when interpreting the overall structure. This integration of global information is essential for 
accurately segmenting intricate anatomical structures and lesion regions, thereby enhancing both the precision 
and consistency of segmentation. Furthermore, the channel attention mechanism dynamically adjusts the 
weights of each feature channel, allowing the model to emphasize critical information and improve its ability 
to distinguish between different tissues or lesion areas. The spatial attention mechanism further refines this 
process by directing the model’s focus to key regions within the image, optimizing boundary delineation and 
enhancing detail accuracy. By combining channel and spatial attention, the model achieves greater adaptability 
and improved segmentation performance across various lesion types.

	 F ′ = ChannelAttention (X) = σ (W2 · ReLU (W1 · GAP (X))) � (11)

	 SpatialAttention (F ′) = σ (W · [GAP (F ′ ) ; GMP (F ′)]) � (12)

when GAP (X) is the global average pooling, W1 and W2 is the weight matrix of the fully connected layer, σ
is the activation function, W is the weight of the convolutional layer, F ′ is the output of channel attention. The 
channel-spatial attention mechanism18 is shown in Fig. 4.

Compared with traditional SSM models, e.g., SS2D4, the incorporation of KAN linear attention significantly 
reduces computational complexity. This reduction is particularly advantageous for datasets that require 
processing large-scale 3D medical images, i.e., MRI and CT scans. The use of KAN linear attention accelerates 
the model’s inference process, while also reducing training time and resource consumption. As can be seen from 
Table 1, the model complexity of the KAN linear attention module is much smaller than that of the SS2D model. 
Therefore, using the KAN linear attention module can significantly improve the lightweight of the model.

The specific process of this MKCSA module. First input features X ∈ RC× H× W , where C represents 
the number of channels, H and W represent the height and width respectively. For the main branch, it first 
undergoes a linear transformation:

	 Y1 = Linear (norm (X )) � (13)

Then Y1 it goes through a 3 × 3 depth-wise separable convolution and an activation function:
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	 Y2 = SiLU (DW Conv3× 3 (Y1)) � (14)

The final result of the main branch is obtained by feeding Y2 it into the KAN linear attention module:

	 Y3 = KANLinearAttention (Y2) � (15)

For the secondary branch, first go through the channel attention module:

	 Y ′
1 = ChannelAttention (norm (X )) � (16)

Then Y ′
1 the final result of the sub-branch is obtained through the spatial attention module:

	 Y ′
2 = SpatialAttention (Y ′

1 ) � (17)

Finally, the results of the two branches are multiplied element by element and then subjected to a linear 
transformation:

	 Y = Linear
(
Y3 ⊙ Y ′

2
)

� (18)

Skip connections
In order to effectively fuse the features of the encoder and decoder, we introduced skip connections between 
the corresponding encoder and decoder stages. This connection strategy enables the decoder to utilize feature 
information at different levels in the encoder, thereby improving the accuracy and robustness of segmentation. 

Model Parameters FLOPs

Segmentation performance

Dataset mIoU (%) DSC (%)

SS2D 0.06M 161.219 M
ISIC17 80.23 89.03

ISIC18 81.35 89.71

KAN linear attention 0.19 M 3.539M
ISIC17 81.12 89.16

ISIC18 82.45 90.32

Table 1.  Comparison of computational complexity and segmentation performance between SS2D and KAN 
linear attention. Significant values are in bold.

 

Fig. 4.  Channel attention mechanism and spatial attention mechanism.
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In each skip connection, features are fused by element-by-element addition to ensure full integration of local 
and global information.

Loss function
The proposed VMKLA-UNet is designed to tackle medical image segmentation tasks. For binary classification, 
we employ the binary cross-entropy (BCE) function combined with the Dice function as the loss functions. In 
the case of multi-class classification, we use the cross-entropy (CE) function along with the Dice function, as  . 

	 LBceDice = λ 1LBce + λ 2LDice � (19)

	 LCeDice = λ 1LCe + λ 2LDice � (20)

	





LBce = − 1
N

N∑
i=1

[yilog (ŷi) + (1 − yi) log (1 − ŷi)]

LCe = − 1
N

N∑
i=1

C∑
c=1

yi,clog
(
ŷi,c

)

LDice = 1 − 2|X∩Y |
|X|+|Y |

� (21)

where N represents the total number of samples, and C represents the sample category. yi and ŷi represent the 
true label and predicted value, respectively. When yi,c is equal to 1, it means that sample i belongs to class c, 
otherwise, it is equal to 0. ŷi,c is the probability that the model predicts that sample i belongs to class c. |X| and 
|Y| represent the true label and predicted value respectively. λ 1, λ 2 represent the weight of the loss function, 
and the default value is 1.

Experiments
Dataset
We utilized five datasets across three categories to validate the effectiveness of the proposed model. The first 
category comprises open-source skin disease datasets, including ISIC201719,20, ISIC201820, and PH2 21, which 
were used to evaluate the model’s performance on 2D image segmentation. The ISIC 2017 dataset, part of the ISIC 
Challenge, aims to advance melanoma diagnosis using dermoscopic images, with a focus on lesion segmentation, 
i.e., accurately delineating skin lesion boundaries in dermoscopic images. The training set contains 2,000 images 
with corresponding segmentation labels, while the test set includes 600 images for model evaluation. ISIC2018 
features a training set of 2,594 images and a test set of 1,000 images. The PH2 dataset, focused on skin cancer 
(primarily melanoma) detection, consists of 200 dermoscopic images depicting both benign lesions (e.g., moles) 
and malignant ones (melanomas). It serves as a benchmark for skin lesion classification, segmentation, and 
diagnosis tasks. Following previous successful models5, we split the ISIC skin lesion dataset into training and 
test sets at a 7:3 ratio and the PH2 dataset into a 1:1 ratio. The second category includes open-source polyp 
segmentation datasets, primarily used for polyp segmentation tasks. This category comprises subsets such as 
Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, EndoScene, and ETIS. We utilized four of these datasets: Kvasir-
SEG22, ClinicDB23, ColonDB24, and ETIS25. The third category consists of the 3D medical image dataset Synapse, 
a multi-organ CT dataset for medical image segmentation. It contains 30 abdominal CT scans, totaling 3,779 
axial enhanced abdominal CT images, with annotations for eight abdominal organs: the aorta, gallbladder, 
spleen, left kidney, right kidney, liver, pancreas, and stomach. This dataset is widely used to assess medical image 
segmentation algorithms, with evaluation metrics such as the Dice similarity coefficient (DSC) and Hausdorff 
distance (HD). For training, we applied the BceDice loss function on the ISIC, PH2, and Polyp datasets, and the 
CeDice loss function on the Synapse dataset.

Experimental environment
We resized the image resolution of all datasets to 256 × 256 and customized data augmentation methods, such as 
random flipping, random rotation, and center cropping. In the hyperparameter setting, we set the batch size to 
32, used the AdamW optimizer, and the initial learning rate was 0.0001. The learning scheduling strategy used 
the classic CosineAnnealingLR, whose operation spanned a maximum of 50 iterations and the learning rate was 
as low as 1e-5. The epoch of the entire training process was set to 300. The implementation environment and 
hyperparameter settings for this experiment is presented in Table 2.

Analysis of experimental results
We compared VMKLA-UNet with some SOTA models, and the specific results are shown in Tables 3, 4, 5 and 
6. For ISIC, Polyp and PH2 datasets, we compared mean intersection over union(mIoU), Dice coefficient(DSC), 
Accuracy(Acc), Specificity(Spe) and Sensitivity(Sen). Among them, mIoU is used to measure the overlap between 
the predicted area and the true area, Dsc is used to measure the overlap between the predicted segmentation 
results and the true segmentation results, Acc is used to measure the classification accuracy of the model on all 
pixels, Spe is used to measure the model’s ability to identify negative classes (background) and Sen is used to 
measure the model’s ability to identify the positive class (target area). And for the Synapse dataset, we mainly 
compared the DSC and HD95 indices as well as the DSC on each individual class.

In addition to computing the standard evaluation metrics, we also calculated the standard deviation of certain 
metrics on the ISIC, Polyp, and PH2 datasets. The standard deviation measures the variability or dispersion of 
a set of values. In the context of evaluation metrics, it quantifies the variation in performance indicators (e.g., 
mIoU, DSC) across different samples, providing deeper insights into the model’s stability and robustness. A 
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smaller standard deviation indicates more consistent performance, while a larger standard deviation suggests 
greater variability.

By comparing VMKLA-UNet with other state-of-the-art (SOTA) models, we observe that our proposed 
model exhibits notable advantages across multiple datasets, including ISIC17, ISIC18, PH2, Polyp, and Synapse, 
as illustrated in Figs. 5, 6, 7, 8 and 9. These advantages are particularly evident in terms of edge completeness 
and lesion area detection accuracy. While many existing models either fail to fully perceive the lesion boundary 
or primarily focus on its most prominent regions, our model effectively captures the entire lesion area with 

Model

Kvasir-SEG ClinicDB ColonDB ETIS

mIoU DSC mIoU DSC mIoU DSC mIoU DSC

UNet1 74.61 82.03 75.51 82.33 42.41 59.56 33.57 39.82

UNet++30 74.35 82.15 72.92 79.40 44.62 64.71 34.46 40.12

Att-UNet9 76.05 86.39 79.46 88.55 47.86 64.73 58.82 59.88

UTNet39 77.15 87.10 80.78 89.37 50.48 67.09 60.12 57.43

UNetV229 86.29 92.76 89.82 94.27 73.12 78.57 71.90 83.65

Att-Swin UNet14 75.63 86.16 71.59 83.44 52.35 68.51 57.25 60.77

TranFuse27 68.82 81.53 79.66 88.68 46.08 63.09 55.14 56.47

SliceMamba40 82.47 90.39 89.20 94.29 61.80 76.39 - -

VMUNet5 80.32 89.09 81.95 90.08 55.28 71.20 66.41 79.81

Ours 86.43 ± 0.061 92.72 ± 0.054 90.64 ± 0.041 95.09 ± 0.053 64.90 ± 0.103 78.72 ± 0.064 73.53 ± 0.066 84.74 ± 0.053

Table 4.  Comparison of experimental results on the polyp dataset. Significant values are in bold.

 

Dataset Model mIoU (%) DSC (%) Spe (%) Sen (%)

ISIC17

UNet1 76.98 86.99 97.43 86.82

UNet++30 75.44 86.00 97.34 85.40

UTNetV25 77.35 87.23 98.05 84.85

TransFuse27 79.21 88.40 97.98 87.14

MALUNet28 78.78 88.13 98.47 84.78

UNetV229 82.18 90.22 98.40 88.71

VM-UNet5 80.23 89.03 97.58 89.90

Ours 84.51 ± 0.132 91.60 ± 0.092 98.13 ± 0.039 93.24 ± 0.114

ISIC18

UNet1 77.86 87.55 96.69 85.86

UNet++30 78.31 87.83 95.75 88.65

Attn-UNet9 78.43 87.91 96.23 87.60

UTNetV25 78.97 88.25 96.48 87.60

SANet31 79.52 88.59 95.97 89.46

TransFuse27 80.63 89.27 95.74 91.28

MALUNet28 80.25 89.04 96.19 89.74

UNetV229 80.71 89.32 96.94 88.34

VM-UNet5 81.35 89.71 96.13 91.12

Ours 84.16 ± 0.121 91.40 ± 0.072 97.56 ± 0.027 91.26 ± 0.113

Table 3.  Comparison of experimental results on ISIC17 and ISIC18 datasets. Significant values are in bold.

 

Operating system Linux Ubuntu 22.04

Python Version 3.8

Framework and CUDA version Torch 2.1.0 CUDA 12.1

Graphics NVIDIA V100 Tensor Core 32G * 1

Epoch 300

Batch size 32

Learning rate 1e − 4

Learning strategy Cosine Annealing

Optimizer AdamW

Table 2.  Experimental environment settings.
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high precision. Specifically, on the ISIC17 and ISIC18 datasets, our model achieves mIoU scores of 84.51% 
and 84.16%, Dice scores of 91.60% and 91.40%, and accuracy (Acc) values of 97.39% and 96.14%, respectively. 
Additionally, specificity (Spe) and sensitivity (Sen) are significantly improved, reaching 98.13% and 93.24% for 
ISIC17, and 97.56% and 91.26% for ISIC18. Compared to the SOTA models, our method increases mIoU, Dice, 
Acc, and Sen by 2.33%, 1.38%, 0.61%, and 3.34% on ISIC17, while on ISIC18, it improves mIoU, Dice, Acc, and 
Spe by 2.81%, 1.69%, 1.23%, and 0.62%, respectively. Similarly, on the PH2 dataset, our model improves Dice, 
Acc, and Spe by 0.15%, 0.25%, and 0.34%, respectively, over SOTA methods.

Additionally, we evaluate our model on the Polyp dataset, specifically on the Kvasir-SEG, ClinicDB, ColonDB, 
and ETIS benchmarks, where it consistently achieves strong performance. The experimental results demonstrate 
that our model is particularly effective in detecting polyp regions with high completeness and precision, even 
in cases where the polyps have indistinct or irregular boundaries. The improved segmentation quality in these 
datasets further highlights the robustness of our model in medical image analysis. Moreover, on the Synapse 
dataset, our model achieves a significant increase in total mDice and demonstrates superior segmentation 
accuracy for six out of eight organs. These improvements can be attributed to the unique combination of KAN 
linear attention and channel-spatial attention mechanisms within our model, which are built upon the Mamba 
architecture. This design enhances the model’s capability to capture both global and local spatial dependencies, 
leading to more complete segmentation contours and better differentiation between lesion areas and background 
regions. These results underscore the effectiveness of our model’s attention mechanism in refining segmentation 
quality and highlight its robustness across diverse medical imaging tasks.

To further prove that our designed KAN Linear Attention is superior to SS2D in the decoder, we compare 
and analyze the heat maps generated by SS2D and KAN Linear Attention from the perspective of interpretability, 
as shown in Fig.  10, and find that there is a significant difference in performance between the two. For the 
overall lesion area, SS2D mainly focuses on the “directly visible part” of the lesion in the original image, and has 
limited perception of the potential lesion area. In contrast, KAN Linear Attention has a more comprehensive 
understanding of the lesion area, and the edge depiction is clearer and more complete, which can be seen from 
the clear boundaries in its heat map. In addition, in terms of heat distribution, the hot spots generated by KAN 
Linear Attention are more concentrated and comprehensive, closely fitting the actual target area, while the hot 
spots of SS2D are more scattered or irrelevant. Importantly, for medical image segmentation tasks, accurate 

Model DSC HD95 Aor. Gal. Kid. (L) Kid. (R) Liv Pan. Spl. Sto.

V-Net32 68.81 – 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98

DARR33 69.77 – 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96

R50 U-Net11 74.68 36.87 87.47 66.36 80.60 78.19 93.74 56.90 85.87 74.16

UNet1 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58

R50 Att-UNet11 75.57 36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95

Att-UNet9 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75

R50 ViT11 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95

TransUnet11 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

TransNorm34 78.40 30.25 86.23 65.10 82.18 78.63 94.22 55.34 89.50 76.01

Swin U-Net12 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

TransDeepLab35 80.16 21.25 86.04 69.16 84.08 79.88 93.53 61.19 89.00 78.40

UCTransNet36 78.23 26.75 – – – – – – – –

MT-UNet37 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

MEW-UNet38 78.92 16.44 86.68 65.32 82.87 80.02 93.63 58.36 90.19 74.26

VM- UNet5 81.08 19.21 85.95 68 0.49 87.98 83.58 94.05 59.23 89.13 79.45​​

Ours 83.31 26.87 87.07 72.35 90.01 88.12 94.73 64.00 87.75 82.42

Table 6.  Comparison of experimental results on the synapse dataset. Significant values are in bold.

 

Dataset Model DSC (%) Spe (%) Sen (%)

PH2

UNet1 90.60 94.40 92.55

Att-UNet9 93.55 96.93 94.12

SCR-Net41 89.89 94.46 91.14

TransNorm34 94.11 98.12 94.22

Att-Swin UNet14 90.96 96.81 88.18

VMUNet5 90.33 94.83 91.31

UltraLight VM-UNet42 92.95 96.06 93.45

Ours 94.26 ± 0.052 98.46 ± 0.045 91.59 ± 0.059

Table 5.  Comparison of experimental results on PH2 dataset. Significant values are in bold.
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and complete coverage of the lesion area is crucial. The heatmaps generated by KAN Linear Attention not only 
better reflect the actual shape of the target region in terms of color and intensity, but also demonstrate excellent 
detection ability and consistency with the ground truth.

Fig. 6.  Comparison of segmentation results of the proposed model with other SOTA methods on the ISIC18 
dataset.

 

Fig. 5.  Comparison of segmentation results of the proposed model with other SOTA methods on the ISIC17 
dataset (The green represents correct predictions, the red represents false positives, and the blue represents 
false negatives, and the same applies below.).
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Ablation study
To demonstrate the effectiveness of MKCSA, we conducted relevant ablation experiments on ISIC17, ISIC18 and 
Polyp. In the ablation experiments, the encoder remained unchanged and all changes were made to the decoder.

The baseline model was VM-UNet5. We called the model in which the SS2D block was changed to KAN 
linear attention MKLA; the model in which only spatial and channel attention was added was called Only-CSA; 
the model in which SS2D was replaced with a normal linear attention module was called MLLA26; the model 
in which channel and spatial attention were added to the decoder of MLLA was called MLCSA. The results are 
shown in Tables 9 and 10.

In addition, we also conducted comparative experiments on the ISIC dataset and Polyp with encoders of 
different depths. As shown in Tables 7 and 8, as the encoder depth increases, the model is able to extract richer 
hierarchical features, thereby better capturing the edges and details of the target area, leading to a gradual 
improvement in performance.

In Table 9 show that after adding the new components, the mIoU of ISIC17 increased from 80.23 to 84.51%, 
and the Dice coefficient increased from 89.03 to 91.60%; the mIoU of ISIC18 increased from 81.35 to 84.16%, and 
the Dice coefficient increased from 89.71 to 91.40%. And in Table 10, by adding new components, the mIoU of 
the Kvair-SEG dataset increased from 80.32 to 86.43%, and the Dice coefficient increased from 89.09 to 92.72%; 
the mIoU of the ClinicDB dataset increased from 81.95 to 90.64%, and the Dice coefficient increased from 90.08 
to 95.09%; the mIoU of the ColonDB dataset increased from 55.28 to 64.90%, and the Dice coefficient increased 

Fig. 8.  Comparison of the proposed method with other SOTA methods on PH2.

 

Fig. 7.  Comparison of the results of the proposed method with other SOTA methods on four Polyp datasets.
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from 71.20 to 78.72%; the mIoU of the ETIS dataset increased from 66.41 to 73.53%, and the Dice coefficient 
increased from 79.81 to 84.74%. It is not difficult to see from the table that each component contributes to the 
improvement of model performance.

Through ablation experiments, we not only confirmed the key role of the new components in improving 
model performance and the effectiveness of model design, but also proved that the model encoder can learn 
more abstract and high-level features in a deeper network structure, which is consistent with the performance 
increase phenomenon observed in our experiments.

Fig. 10.  Visual analysis of the feature maps produced by SS2D and KAN Linear Attention.

 

Fig. 9.  Performance comparison of the proposed model with other SOTA methods on the Synapse dataset.
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Conclusion
In this paper, we present a medical image segmentation model, VMKLA-UNet, which integrates KAN linear 
attention with channel-spatial attention and the Vision Mamba architecture. To the best of our knowledge, this is 
the first work to explore the combination of KAN-based linear attention with Vision Mamba and channel-spatial 
attention. To validate the model’s effectiveness in segmentation tasks, we conducted extensive experiments on 
the ISIC17, ISIC18, PH2, Polyp, and Synapse datasets. The results demonstrate that VMKLA-UNet offers notable 
advantages in medical image segmentation and shows promise for future exploration. However, there is still 
room for improvement, such as reducing the number of model parameters, incorporating a dedicated edge 
feature processing module, and further optimizing the encoder.

Model SS2D Linear KAN linear CSA

Kvair ClinicDB ColonDB ETIS

mIou Dsc mIou Dsc mIou Dsc mIou Dsc

Baseline √ 80.32 89.09 81.95 90.08 55.28 71.20 66.41 79.81

Only-CSA √ 79.44 88.95 80.55 88.76 59.13 73.76 55.36 66.52

MLLA √ 82.12 90.12 83.36 90.14 58.74 70.34 58.21 68.33

MKLA √ 83.54 90.11 83.58 92.31 59.44 75.14 68.71 78.37

MLCSA √ √ 84.96 90.88 88.78 94.15 64.14 76.55 68.14 79.21

Ours √ √ 86.43 92.72 90.64 95.09 64.90 78.72 73.53 84.74

Table 10.  Performance of each component (only decoder) on the polyp dataset. Significant values are in bold.

 

Model SS2D Linear KAN Linear CSA mIoU (%) DSC (%) Acc (%)

Baseline √ 80.23 89.03 96.29

Only-CSA √ 81.88 90.12 96.68

MLLA √ 78.87 88.40 96.17

MKLA √ 81.12 89.16 95.87

MLCSA √ √ 83.37 90.23 96.83

Ours √ √ 84.51 91.60 97.39

Baseline √ 81.35 89.71 94.91

Only-CSA √ 82.76 89.91 95.56

MLLA √ 81.33 90.23 94.99

MKLA √ 82.45 90.32 95.46

MLCSA √ √ 83.19 91.23 96.03

Ours √ √ 84.16 91.40 96.14

Table 9.  Performance of each component (only decoder) on the ISIC dataset (ISIC17 on the top, and ISIC18 
on the bottom). Significant values are in bold.

 

Model Depth

Kvasir-SEG ClinicDB ColonDB ETIS

mIoU DSC mIoU DSC mIoU DSC mIoU DSC

VMKLA-T [2, 2, 2, 2] 80.65 89.29 86.96 93.02 55.73 71.57 67.22 80.40

VMKLA-S [2, 2, 9, 2] 85.26 92.04 84.17 91.40 58.41 73.74 67.76 80.78

VMKLA-B [2, 2, 27, 2] 86.43 92.72 90.64 95.09 64.90 78.72 73.53 84.74

Table 8.  Performance of encoders with different depths on the polyp dataset. Significant values are in bold.

 

Model Depth Dataset mIoU (%) DSC (%) Acc (%)

VMKLA-T [2, 2, 2, 2]
ISIC17 83.34 90.91 97.21

ISIC18 82.98 90.70 95.75

VMKLA-S [2, 2, 9, 2]
ISIC17 84.37 91.52 97.39

ISIC18 85.10 91.95 96.37

VMKLA-B [2, 2, 27, 2]
ISIC17 84.51 91.60 97.39

ISIC18 84.16 91.40 96.14

Table 7.  Performance of encoders with different depths on the ISIC dataset. Significant values are in bold.
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For future work, we plan to: (1) continue refining the model architecture, particularly by exploring more 
suitable SSM-based structures (e.g., encoder, decoder, and skip connections) for medical image segmentation; 
(2) further investigate the intersection of Mamba and KAN to develop a more lightweight model that reduces 
overall complexity; and (3) leverage the strengths of the Mamba structure to explore other downstream tasks in 
medical imaging, aiming to create a scalable, shareable, and unified multi-task model.

Data availability
The datasets we used in our experiments are all public datasets. The ISIC series datasets can be accessed at 
https://challenge.isic-archive.com/data/, the PH2 dataset is available at ​h​t​t​p​s​:​/​/​w​w​w​.​f​c​.​u​p​.​p​t​/​a​d​d​i​/​p​h​2​%​2​0​d​a​t​a​
b​a​s​e​.​h​t​m​l​, and the Polyp dataset originates from https://github.com/yaoppeng/U-Net_v2. Lastly, the Synapse 
dataset can be found at https://github.com/HuCaoFighting/Swin-Unet.
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