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Acute ischemic stroke (AIS) is characterized by the abrupt onset of neurological dysfunction 
stemming from focal brain ischemia, confirmed through imaging evidence of infarction. In contrast, 
transient ischemic attack (TIA) manifests with neurological deficits in the absence of infarction, 
with imaging serving as the definitive diagnostic criterion. This study aims to assess the diagnostic 
value of combining non-high-density lipoprotein cholesterol (non-HDL-C) and blood pressure (BP) in 
differentiating AIS from TIA. We recruited 207 untreated AIS patients diagnosed within 72 h and 99 
age- and gender-matched TIA patients. Upon admission, serum non-HDL-C levels, other lipid profiles, 
and BP measurements were obtained. Binary logistic regression was employed to identify risk factors, 
while receiver operator characteristic (ROC) curves were used to evaluate diagnostic performance. 
Furthermore, least absolute shrinkage and selection operator (LASSO) regression coupled with 
multivariate logistic regression was utilized to develop a nomogram model. The AIS group exhibited 
higher prevalence rates of hypertension, diabetes, family history of diabetes, and smoking (P < 0.05). 
Notably, non-HDL-C, systolic BP, diastolic BP, and other lipid markers were significantly elevated in 
the AIS group (P < 0.05). Multivariate analysis pinpointed non-HDL-C (OR [odds ratio] = 1.663, 95% 
CI [confidence interval]: 1.239–2.234, P < 0.01) and systolic BP (OR = 1.035, 95% CI: 1.012–1.057, P < 
0.01) as independent risk factors. ROC analysis revealed that systolic BP alone achieved an AUC of 
0.686 (sensitivity: 78.7%, specificity: 51.5%), whereas the combination of systolic BP and non-HDL-C 
enhanced diagnostic accuracy (AUC [area under the ROC curve] = 0.736, sensitivity: 75.4%, specificity: 
64.6%). A nomogram incorporating low-density lipoprotein cholesterol (LDL-C), glucose (GLU), 
homocysteine, and smoking demonstrated high predictive accuracy, with training and validation 
AUCs of 0.769 and 0.704, respectively. Non-HDL-C and systolic BP emerge as independent risk 
factors for AIS, and their combined use augments diagnostic precision in differentiating AIS from 
TIA. A nomogram model presents a practical differentiation tool, particularly in settings with limited 
resources.
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Acute Ischemic Stroke (AIS), also termed acute cerebral infarction, represents the most prevalent type of 
stroke, comprising more than 80% of strokes worldwide1. It is characterized by high morbidity, disability, 
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mortality, recurrence rates, and significant economic impact2. A transient ischemic attack (TIA), often referred 
to as a “mini-stroke,” originates similarly to AIS and displays comparable symptoms3,4. However, it typically 
resolves within 24 h5. In clinical practice, even when advanced imaging modalities are unavailable, an effective 
distinction between AIS and TIA can frequently be accomplished through meticulous observation of the patient’s 
neurological symptoms6. The key distinguishing factor resides in the duration and persistence of neurological 
deficits, necessitating a thorough clinical assessment focused on the temporal evolution of symptoms6. However, 
this assessment hinges entirely on the clinician’s individual experience, and not all clinicians can accurately 
discern during diagnosis. Currently, the primary method for diagnosing AIS and TIA still relies on neuroimaging 
technologies7,8. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are considered the 
gold standard, however, they are costly and require extensive equipment and expert operation9. Moreover, in 
settings lacking CT or MRI capabilities, or when patients cannot be transported, these methods face significant 
limitations in the continuous monitoring of critically ill patients, making it challenging to differentiate early 
AIS from TIA and other related conditions9,10. Effective management of AIS aims to alleviate initial symptoms, 
prevent further brain damage, improve functional outcomes, and reduce the risk of recurrence11. In this context, 
peripheral blood tests offer a non-invasive diagnostic alternative for early differentiation between AIS and TIA.

Non-HDL-C encompasses all blood cholesterol excluding high-density lipoprotein cholesterol (HDL-C), 
including low-density lipoprotein cholesterol (LDL-C), very LDL-C (VLDL-C), intermediate-density lipoprotein 
cholesterol (IDL-C), and chylomicron remnant cholesterol (CMR-C)12,13. Leading guidelines internationally 
recommend non-HDL-C as the primary indicator for managing blood lipids14. Unlike triglyceride (TG), total 
cholesterol (TC), and LDL-C, non-HDL-C levels provide a more accurate prediction of cardiovascular and 
cerebrovascular events, serving as a novel clinical marker13,15.

Blood pressure (BP) significantly influences vascular function and organ perfusion16, and its dysregulation 
can critically impact cerebral circulation, which is particularly vulnerable to such disturbances17. Ischemic stroke 
often stems from an array of pathologies, commonly associated with systemic cardiovascular (CV) conditions 
or direct cerebrovascular abnormalities18, many of which are related to or directly caused by hypertension19,20. 
Thus, chronic hypertension is frequently a precursor to AIS21,22. During the acute phase of AIS, characterized as 
an acute hypertensive response (AHR), elevated BP levels are recorded in roughly 75% of patients6,23. This AHR 
typically peaks within the initial hours post-stroke, subsequently diminishing and generally normalizing within 
the first 7 to 10 days following the onset6,23. Therefore, the critical examination of BP’s clinical significance in the 
context of ischemic stroke, particularly concerning AIS and TIA, warrants thorough investigation.

AIS and TIA both originate from cerebral blood flow interruption and exhibit similar pathophysiological 
mechanisms, like atherosclerosis and thrombosis, leading to potential overlaps in serological markers and blood 
pressure changes4,6. Consequently, there are currently no specific serological markers exclusively for AIS and 
TIA. Existing indicators are largely general markers reflecting systemic inflammation, coagulation function, or 
neuronal damage, posing a challenge in accurately differentiating AIS and TIA. Consequently, clinical indicators 
related to AIS exhibit relatively low accuracy, sensitivity, and specificity, and lack robust predictive capability24,25. 
Furthermore, comparisons are typically made between AIS and healthy groups, with limited analysis between 
AIS and TIA4. Clinical tools, such as the ABCD² score, which evaluates factors such as age, blood pressure, 
clinical features, duration of symptoms, and diabetes, can assist in assessing the risk of stroke following a TIA26. 
However, the ABCD² score primarily serves to predict the risk of AIS occurring shortly after a TIA (e.g., within 
2 or 7 days), rather than directly differentiating between AIS and TIA27. Furthermore, the ABCD² score relies 
solely on clinical features and excludes neuroimaging results (like CT or MRI), which constitute the gold standard 
for distinguishing AIS from TIA (AIS patients typically exhibit infarct lesions on imaging, whereas TIA patients 
do not show structural changes)28–30. Additionally, the ABCD² score is primarily intended for early assessment 
following a TIA episode and has limited diagnostic value for patients who have already progressed to AIS31,32.

This study assessed serum levels of TG, TC, HDL-C, LDL-C,  glucose (GLU), ischemia modified albumin 
(IMA), and Hcy in both AIS and TIA groups, calculated non-HDL-C levels, and measured systolic and diastolic 
pressures at admission to evaluate their diagnostic utility in differentiating AIS from TIA. Significantly, a 
nomogram diagnostic scoring model was developed using LASSO regression analysis. Additionally, a training 
set and a validation set were established to further evaluate the diagnostic effectiveness of the nomogram in 
distinguishing between AIS and TIA. This study aims to address the challenges faced by primary healthcare 
units, particularly in cases involving inexperienced clinicians, atypical patients, or the absence of CT/MRI 
facilities. The primary objective of this study is to develop a streamlined and efficient diagnostic model utilizing 
readily available serum biomarkers and clinical parameters. This model aims to enhance the rapid and accurate 
diagnosis and management of TIA and AIS in primary care settings. By identifying straightforward and practical 
indicators, we seek to provide robust medical evidence that can help toy improve clinical decision-making and 
patient outcomes in primary care settings.

Materials and methods
Clinical data, inclusion, and exclusion criteria
A total of 207 patients diagnosed with AIS were recruited from Henan Provincial People’s Hospital between 
January 1, 2023, and May 31, 2024. The inclusion criteria for the AIS group included: (1) complete clinical 
records; (2) age over 18 years; (3) admission within 72 h of symptom onset, as per the “Chinese Acute Ischemic 
Stroke Diagnosis Guidelines 2018”; (4) first-time diagnosis of AIS without prior treatment; (5) diagnosis 
confirmed via cranial CT or MRI. The exclusion criteria encompassed: patients with (1) malignant tumors or 
those undergoing postoperative chemotherapy; (2) hematologic disorders; (3) other ischemic conditions; (4) 
severe hepatic or renal impairment; (5) autoimmune disorders; (6) a history of stroke; (7) prior targeted stroke 
treatments; (8) pregnancy or lactation; and (9) cranial trauma.
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The control group (TIA group) included 99 patients diagnosed with TIA and posterior circulation ischemia, 
non-related to stroke. Patients were selected based on the diagnostic criteria set forth by the AHA/ASA. Exclusion 
criteria for the TIA group included: (1) patients with infarction lesions or intracranial hemorrhage as confirmed 
by CT or MRI; (2) presence of malignant tumors, hematologic, or systemic immune diseases; (3) severe hepatic 
or renal dysfunction; and (4) other ischemic conditions. All AIS and TIA diagnoses adhered to the “Chinese 
guidelines for diagnosis and treatment of acute ischemic stroke 2018”14. All participants in this study provided 
written informed consent and the study was approved by the Ethics Committee of Henan Provincial People’s 
Hospital (approval number: 2024LRC-16).

Instruments, reagents, and methods
Venous blood (3–5 mL) was collected on an empty stomach either on the second day post-hospitalization or 
on the morning of the physical examination. It was centrifuged using a Zhongjia vertical KD- 1044 centrifuge 
at 1728 × g for 5 min. On the same day, serum levels of TG, TC, HDL-C, LDL-C, GLU, IMA, and Hcy were 
measured using an Abbott C1600 biochemical analyzer, and non-HDL-C was calculated according to the 
instructions provided by the kit (Ningbo Meikang Biotechnology Co., Ltd.). All test items had undergone inter-
laboratory quality assessment under the clinical inspection center of the Ministry of Health to ensure accuracy 
and comparability with other laboratories. According to the inpatient medical records, systolic and diastolic 
pressures measured at admission were documented. Ten baseline data points including hypertension, family 
history of hypertension, diabetes, family history of diabetes, heart disease, dyslipidemia, hyperhomocysteinemia, 
smoking history, alcohol consumption history, and family history of cerebrovascular disease were collected. 
Diagnoses of all conditions were made based on clinical guidelines, and family history was determined if the 
patient, the patient’s parents, siblings, or children had two or more of these conditions. Reference intervals were 
as follows: TG: (0 ~ 1.7) mmol/L, TC: (2.33 ~ 5.17) mmol/L, HDL-C: (1.04 ~ 1.74) mmol/L, LDL-C: (1.9 ~ 3.12) 
mmol/L, GLU: (3.88 ~ 6.11) mmol/L, IMA: (0 ~ 85) U/mL, Hcy: (5 ~ 15) µmol/L, systolic pressure: < 120 mmHg, 
diastolic pressure: < 90 mmHg. All experiments were conducted in accordance with the relevant guidelines and 
regulations, and was approved by the Ethics Committee of Henan Provincial People’s Hospital.

Construction and validation of a diagnostic model
A nomogram diagnostic scoring model was developed using clinical data, with optimal parameters identified 
through least absolute shrinkage and selection operator (LASSO) regression models. LASSO regression 
(R-package glmnet) screened model parameters, employing a 10-fold orthogonal method to minimize coefficient 
Lambda based on the principle of minimum standard deviation. Clinical indicators without coefficients were 
excluded, and those remaining were included in a multivariate logistic regression to construct the predictive 
nomogram model. The model’s performance was assessed using a receiver operating characteristic (ROC) curve, 
a calibration curve, and the Hosmer-Lemeshow goodness of fit test. Clinical decision curve analysis (DCA) was 
performed to evaluate the model’s clinical utility.

Statistical analysis
Statistical analyses were conducted using SPSS 27.0, and graphical representations were created with GraphPad 
Prism 9.4.1. The Shapiro-Wilk normality test determined the distribution of measurement data, which, if normal 
or approximately normal, was expressed as mean ± standard deviation (SD). Frequency matching was employed 
to align the distributions of gender and age, thereby minimizing information bias. Univariate and multivariate 
logistic regression analyses were subsequently conducted for adjustment. The F test compared multiple groups, 
while the t-test was used for comparisons between two groups; non-normally distributed data were expressed as 
median and interquartile range [M (25%, 75%)], with the Kruskal-Wallis rank sum test and Mann-Whitney test 
used for multiple and two-group comparisons, respectively; categorical data were expressed as percentages and 
analyzed using the χ2 test. Univariate and multivariate binary logistic regressions analyzed correlations between 
indices and AIS and evaluated risk factors for AIS, respectively. The diagnostic efficacy of each index, alone and 
in combination, was evaluated by the area under the ROC curve (AUC), sensitivity, and specificity to assist in 
distinguishing between AIS and TIA. P < 0.05 was considered statistically significant.

Results
Demographic characteristics
A total of 207 AIS patients were diagnosed and treated at Henan Provincial People’s Hospital between January 
1, 2023, and May 31, 2024. The cohort comprised 140 males (67.7%) and 67 females (32.4%), ranging in age 
from 27 to 92 years, with an average age of 58.82 ± 11.578 years. These patients were categorized into three 
groups based on the time of onset: 73 in the ≤ 12-hour group, 87 in the ≤ 24-hour group, and 47 in the > 24-
hour group. The control group (TIA group) included 99 cases of TIA, posterior circulation ischemia, and non-
stroke conditions, consisting of 66 males (66.7%) and 33 females (33.3%), aged between 27 and 93 years, with 
an average age of 57.56 ± 13.224 years. No significant differences were observed in gender distribution or age 
composition between the AIS and TIA groups (Table 1).

Comparison of basal parameters
Initial comparisons of basal parameters between the AIS and TIA groups revealed significant differences in 
hypertension, diabetes, family history of diabetes, and smoking history (all with P < 0.05). No significant 
differences were observed in family history of hypertension, heart disease, dyslipidemia, hyperhomocysteinemia, 
alcohol consumption history, and family history of cerebrovascular disease (all with P > 0.05; Table 1). Statistical 
analysis also confirmed no significant differences in age and gender between the groups (t = 0.854, P = 0.394; χ2 
= 0.028, P = 0.866), ensuring comparability.
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Subsequent analyses of 10 indicators, including TG, TC, HDL-C, LDL-C, GLU, IMA, Hcy, non-HDL-C, 
systolic pressure, and diastolic pressure, showed that values for TG, TC, LDL-C, Hcy, non-HDL-C, systolic 
pressure, and diastolic pressure were significantly higher in the AIS group compared to the TIA group (all 
P < 0.05). There were no significant differences in HDL-C, GLU, and IMA between the two groups (P > 0.05). 
Additionally, no significant differences were found among the ≤ 12-hour, ≤ 24-hour, and > 24-hour onset groups 
regarding these 10 indicators (all P > 0.05, Tables 2 and 3; Figs. 1 and 2).

Indicators
≤ 12 hour group
(n = 73)

≤ 24 hour group
(n = 87)

> 24 hour group
(n = 47)

Rank sum test

H value P  

TG (mmol/L) 1.55 (1.08, 2.00) 1.56 (1.22, 2.24) 1.78 (1.28, 2.08) 1.756 0.416

TC (mmol/L) 4.61 (3.94, 5.26) 4.56 (3.83, 5.46) 4.50 (3.60, 5.108) 0.411 0.814

HDL-C (mmol/L) 0.94 (0.82, 1.08) 0.99 (0.82, 1.13) 0.94 (0.83, 1.12) 0.717 0.699

LDL-C (mmol/L) 2.71 (2.175, 3.10) 2.66 (1.99, 3.14) 2.62 (2.04, 3.16) 0.571 0.752

GLU (mmol/L) 5.21 (4.625, 6.955) 5.23 (4.60, 6.39) 5.12 (4.61, 6.48) 0.433 0.805

IMA (U/mL) 71.53 (68.97, 73.4) 70.20(68.40, 73.50) 70.37 (68.20, 72.50) 1.330 0.514

Hcy (mmol/L) 13.06 (10.90, 17.62) 13.00 (10.90, 16.30) 12.20 (10.00, 14.07) 2.560 0.278

Non-HDL-C (mmol/L) 3.70 (2.88, 4.27) 3.57 (2.72, 4.49) 3.58 (2.79, 4.14) 0.348 0.840

Systolic pressure (mmHg) 140 (130, 152) 136 (127, 154) 138 (130, 150) 0.776 0.678

Diastolic pressure (mmHg) 82 (78, 94.5) 86 (78, 94) 88 (80, 95) 1.739 0.419

Table 3.  Comparison of various indices across different onset time groups of AIS [M (P25, P75)].

 

Indicators
TIA group
(n = 99)

AIS group
(n = 207)

Rank sum test

Z vaule P value

TG (mmol/L) 1.28 (1.02, 1.77) 1.60 (1.16, 2.08) − 3.144 0.002

TC (mmol/L) 4.100 (3.543, 4.830) 4.57 (3.83, 5.28) − 3.406 < 0.001

HDL-C (mmol/L) 0.98 (0.84, 1.21) 0.95 (0.82, 1.10) − 1.652 0.099

LDL-C (mmol/L) 2.22 (1.67, 2.72) 2.66 (2.08, 3.12) − 4.348 < 0.001

GLU (mmol/L) 5.01 (4.64, 5.76) 5.17 (4.61, 6.56) − 1.606 0.108

IMA (U/mL) 69.80 (67.86, 71.89) 70.6 (68.4, 72.95) − 1.808 0.071

Hcy (mmol/L) 12.20 (9.76, 14.60) 12.65 (10.80, 15.92) − 2.159 0.031

Non-HDL-C (mmol/L) 3.04 (2.42, 3.77) 3.58 (2.81, 4.29) − 4.256 < 0.001

Systolic pressure (mmHg) 126 (117, 139) 138 (129, 152) − 5.271 < 0.001

Diastolic pressure (mmHg) 81 (75, 88) 86 (78, 94) − 2.953 0.003

Table 2.  Comparison of various indices in AIS and TIA groups [M (P25, P75)].

 

Baseline indicators
TIA group
(n = 99)

AIS group
(n = 207)

χ2 test

χ2 value P value

Gender male n (%) 66 (66.7%) 140 (67.6%)
0.028 0.866

Gender female n (%) 33 (33.3%) 67 (32.4%)

Hypertension n (%) 51 (51.5%) 138 (66.7%) 6.510 0.011

Family history of hypertension n (%) 9 (9.1%) 15 (7.2%) 0.315 0.574

Diabetes n (%) 21 (21.2%) 67 (32.4%) 4.068 0.044

Family history of diabetes n (%) 2 (2.0%) 16 (7.7%) 3.943 0.047

Cardiac disorders n (%) 25 (25.3%) 39 (18.8%) 1.665 0.197

Dyslipidemia n (%) 27 (27.3%) 75 (36.2%) 2.419 0.120

Hyperhomocysteinemia n (%) 14 (14.1%) 41 (19.8%) 1.458 0.227

History of smoking n (%) 17 (17.2%) 61 (29.5%) 5.332 0.021

History of alcohol consumption n (%) 23 (23.2%) 65 (31.4%) 2.181 0.140

Family history of cerebrovascular disease n (%) 16 (16.2%) 40 (19.3%) 0.448 0.503

Table 1.  Comparison of general baseline data.
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Logistic regression analysis of risk factors for AIS
Univariate logistic regression analysis was performed to assess the correlation between various indices and the 
occurrence of AIS. The TIA group was assigned a value of 0, and the AIS group was assigned a value of 1. A 
binary logistic regression model was constructed using the single variables from 10 items: TG, TC, HDL-C, 
LDL-C, GLU, IMA, Hcy, non-HDL-C, systolic pressure, and diastolic pressure. Results indicated that TG, TC, 
LDL-C, GLU, Hcy, non-HDL-C, systolic pressure, and diastolic pressure were significantly associated with the 
occurrence of AIS (all with OR > 1, and P < 0.05; Table 4).

Multivariate logistic regression analysis was also conducted, with the TIA group assigned a value of 0 and the 
AIS group a value of 1. Indicators related to non-HDL-C such as TG, TC, HDL-C, and LDL-C were excluded. 
The model was adjusted for biases in hypertension, diabetes, family history of diabetes, and smoking history, 
considering differences in gender, age, and baseline data. GLU, Hcy, non-HDL-C, systolic pressure, and diastolic 
pressure, which had shown a significant impact on AIS in the univariate analysis, were included to construct the 
multivariate logistic regression. It was determined that non-HDL-C and systolic pressure were independent risk 
factors for AIS (OR = 1.663, 95% CI 1.239–2.234, P < 0.01; OR = 1.035, 95% CI 1.012–1.057, P < 0.01; Table 5).

Fig. 2.  Comparison of indices involved (A) TG, (B) TC, (C) HDL-C, (D) LDL-C, (E) GLU, (F) IMA, (G) Hcy, 
(H) non-HDL-C, (I) systolic pressure, and (J) diastolic pressure between two groups based on different onset 
time of AIS. ns: not significant.

 

Fig. 1.  Comparison of 10 indicators including (A) TG, (B) TC, (C) HDL-C, (D) LDL-C, (E) GLU, (F) IMA, 
(G) Hcy, (H) non-HDL-C, (I) systolic pressure, and (J) diastolic pressure between AIS and TIA groups. ns: not 
significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Diagnostic performance of separate and combined detection of 10 indicators to aid in 
distinguishing AIS from TIA
The ROC curve analysis revealed that the single-item test for systolic pressure offered the best auxiliary 
differentiation, with a diagnostic AUC of 0.686, a sensitivity of 78.7%, and a specificity of 51.5%; when combined, 
systolic pressure and non-HDL-C achieved a diagnostic AUC of 0.736, with sensitivity and specificity of 75.4% 
and 64.6%, respectively. When all 10 items were combined, the sensitivity was 82.6%, and the specificity 59.6%, 
corresponding to an AUC of 0.770 (Table 6; Fig. 3).

Indicators AUC Sensitivity (%) Specificity (%) Youden index P value

95% CI

Lower limit Upper limit

TG 0.611 63.8 57.6 0.214 0.002 0.545 0.677

TC 0.620 56.5 62.6 0.191 0.001 0.555 0.685

HDL-C 0.558 92.3 23.2 0.155 0.099 0.486 0.630

LDL-C 0.654 53.6 70.7 0.243 < 0.001 0.589 0.718

GLU 0.557 26.6 89.9 0.165 0.108 0.491 0.623

IMA 0.564 46.9 67.7 0.146 0.071 0.495 0.633

Hcy 0.576 40.1 71.7 0.118 0.031 0.508 0.645

Non-HDL-C 0.650 67.6 58.6 0.262 < 0.001 0.586 0.714

Systolic pressure 0.686 78.7 51.5 0.302 < 0.001 0.622 0.750

Diastolic pressure 0.604 43.0 76.8 0.198 0.003 0.538 0.670

Systolic pressure + LDL-C 0.736 79.7 59.6 0.393 < 0.001 0.677 0.796

Systolic pressure + Non-HDL-C 0.736 75.4 64.6 0.400 < 0.001 0.675 0.796

Non-HDL-C + LDL-C 0.653 54.1 70.7 0.248 < 0.001 0.589 0.718

Systolic pressure + LDL-C + Non-HDL-C 0.737 79.7 59.6 0.393 < 0.001 0.677 0.796

10 indexes combined 0.770 82.6 59.6 0.422 < 0.001 0.715 0.824

Table 6.  Performance of 10 indicators alone and combined tests to aid in distinguishing AIS from TIA.

 

Indicators β SE Wald χ2 P value OR

95% CI

Upper limit Lower limit

GLU 0.106 0.104 1.040 0.308 1.112 0.907 1.363

Hcy 0.037 0.020 3.586 0.058 1.038 0.999 1.078

Non-HDL-C 0.509 0.150 11.439 < 0.001 1.663 1.239 2.234

Systolic pressure 0.034 0.011 9.334 0.002 1.035 1.012 1.057

Diastolic pressure − 0.001 0.015 0.001 0.971 0.999 0.970 1.030

Table 5.  Independent risk factors for AIS by multivariate logistic regression analysis. Note: In the analysis, 
the TIA group was coded as 0, while the AIS group was assigned a value of 1. Adjusted for gender, age, 
hypertension, diabetes mellitus, family history of diabetes mellitus, smoking history bias.

 

Indicators β SE Wald χ2 P value OR

95% CI

Upper limit Lower limit

TG 0.350 0.154 5.151 0.023 1.419 1.049 1.919

TC 0.469 0.129 13.177 < 0.001 1.599 1.241 2.060

HDL-C − 1.206 0.492 6.008 0.014 0.300 0.114 0.785

LDL-C 0.767 0.177 18.788 < 0.001 2.154 1.522 3.047

GLU 0.168 0.076 4.861 0.027 1.183 1.019 1.374

IMA 0.044 0.029 2.196 0.138 1.045 0.986 1.106

Hcy 0.038 0.018 4.511 0.034 1.039 1.003 1.077

Non-HDL-C 0.582 0.137 17.968 < 0.001 1.790 1.367 2.343

Systolic pressure 0.041 0.008 25.154 < 0.001 1.042 1.025 1.059

Diastolic pressure 0.032 0.011 9.233 0.002 1.033 1.012 1.055

Table 4.  Correlation between different indicators and AIS occurrence by univariate logistic regression analysis.
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Construction of a nomogram diagnostic scoring model and its diagnostic efficacy in 
distinguishing AIS from TIA
The LASSO regression method was employed to filter model parameters for constructing a nomogram diagnostic 
scoring model. Univariate and multivariate logistic regression analyses were conducted on predictors with non-
zero coefficients identified by LASSO regression to develop the diagnostic model. The analysis indicated that 
smoking habit (OR = 1.096, P = 0.176), systolic pressure (OR = 1.006, P < 0.001), LDL (OR = 1.132, P < 0.001), 
GLU (OR = 1.035, P = 0.033), and Hcy (OR = 1.005, P = 0.071) were independent risk factors for AIS (Fig. 4A 
and B). The selection process of variables is shown in Fig. 4C and D. In the nomogram of the diagnostic model 
training set, systolic pressure had the longest line segment, indicating the greatest contribution to the diagnosis, 
followed by LDL, GLU, Hcy, and smoking habit (Fig. 4E). The ROC curve for the training set of the nomogram 
diagnostic model showed an AUC of 0.769, while the AUC reached 0.704 in the validation set, confirming the 
model’s high efficacy in distinguishing AIS from TIA (Fig. 4F). The Hosmer-Lemeshow goodness-of-fit test and 
a calibration curvue (Bootstrap method, n = 1 000) were utilized to assess the model’s calibration, with results 
in both the internal and external validation sets yielding P > 0.05, indicating consistent model performance 
(Fig. 4G). The calibration curve for the training set demonstrated good agreement between the predicted and 
actual probabilities (Fig. 4G). Additionally, the DAC curve of the model based on the five parameters revealed 
that the curve was significantly distant from the two extreme lines, suggesting practical application value 
(Fig. 4H).

Discussion
Ischemic stroke and TIA represent the predominant forms of cerebrovascular disease11,22,23,25. Globally, the 
incidence of stroke ranges between 150 and 200 cases per 100,000 individuals annually, with AIS constituting 
more than 80% of these instances1. TIA is characterized by temporary or mild clinical symptoms stemming from 

Fig. 3.  The diagnostic efficacy of various indices, either single or in combination, in differentiating AIS from 
TIA.
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localized brain dysfunction due to diminished regional blood flow, or ischemia. Early recognition of ischemic 
events is crucial, given that 20% of ischemic stroke cases are preceded by a TIA within the preceding hours to 
days3,4,6,7. Furthermore, up to 80% of subsequent strokes post-TIA are preventable, highlighting the importance 
of prompt diagnosis and intervention for both AIS and TIA4,6. However, limited clinical methods exist to 
distinguish between AIS and TIA. In this study, the level of non-HDL-C was calculated based on serological 
indicators such as TG, TC, LDL-C, GLU, IMA, Hcy, non-HDL-C, and combined with systolic and diastolic BP. 
The diagnostic efficiency of these indicators for distinguishing AIS from TIA and their correlation with AIS 
were analyzed. A diagnostic model for distinguishing AIS from TIA was constructed using LASSO regression 
analysis.

Research indicates that dyslipidemia often complicates AIS33, with patients typically exhibiting elevated 
levels of TG, TC, LDL-C, and reduced HDL, often accompanied by hyperhomocysteinemia15,34,35. Some studies 
have identified HDL as a protective factor against stroke, and the TC/HDL ratio has been used to assess the 
relationship between dyslipidemia and ischemic stroke36–38. Additionally, hypertension is prevalent among AIS 
patients19,20. A meta-analysis indicated that ischemic stroke was the most prevalent hypertension-mediated organ 
damage among all patients presenting in emergency department with hypertensive crisis, with a proportion of 

Fig. 4.  Predictive model distinguishing AIS from TIA based on the LASSO algorithm. (A, B) Variable 
Selection. (C, D) Outcome of LASSO regression for vital parameter. Using a tenfold cross-validation approach, 
the coefficient lambda is minimized based on the criterion of the smallest standard deviation, ultimately 
selecting clinical indicators with non-zero coefficients. In the cross-validation process, the function of the 
binomial deviance values is represented by log(lambda), with the Y-axis depicting binomial deviance values. 
The lower X-axis represents log (lambda), while the upper X-axis shows the average number of parameters. 
(E) Columnar graph of the predictive model. (F) Diagnostic AUCs for the training and validation sets. (G) 
Calibration Curves for the training and validation Sets. (H) Clinical Decision Curves for the training and 
validation sets.
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28.1%39. This study focused on evaluating the performance of non-HDL-C and BP in confirming AIS and TIA. 
Calculations revealed that non-HDL-C, TG, TC, LDL-C, Hcy, systolic BP, and diastolic BP levels in the AIS 
group were significantly higher than those in the TIA group, with TC, TG, LDL, and TC/HDL associated with the 
occurrence of AIS. Furthermore, non-HDL-C was significantly linked to adverse outcomes in AIS patients. Jiao 
et al. also noted that high serum non-HDL-C levels might significantly increase the risk of cognitive dysfunction 
post-AIS40. Similarly, a study by Lu et al. identified high serum non-HDL-C levels, age, education, Hcy levels, 
and HAMD scores as independent risk factors for cognitive impairment in AIS patients41. Consistent with these 
findings, our study identified non-HDL-C and systolic BP as independent risk factors for AIS.

We evaluated the diagnostic performance of the included parameters for distinguishing AIS from TIA and 
found that the single systolic BP test had the highest AUC of 0.686 among all single tests. For parallel detection, 
the combination of systolic BP, LDH-C, and non-HDL-C reached an AUC of 0.737, while the AUC for 10 
combined tests reached 0.770. These results suggest that the diagnostic performance of these parameters is still 
limited. Moreover, the specificity of blood pressure alone is reported to be 51.5%, implying that nearly half of 
individuals without AIS may be misidentified as having the condition (false positives). Although the specificity 
of measuring systolic pressure in isolation is confined, raising awareness among primary care physicians and 
promoting the combined use of this indicator—especially when CT or MRI is not an option—can diminish the 
risk of overlooking diagnoses of AIS42. This holds greater significance than preventing false-positives, given that 
the hazards and repercussions of an undiagnosed AIS are substantially elevated43. Furthermore, considering 
that the majority of patients first approach community healthcare settings when suspecting AIS or TIA, the 
integration of straightforward and readily accessible measures like systolic pressure monitoring and non-HDL-C 
testing becomes specially crucial.

We further explored methods to enhance the accuracy of differential diagnosis between AIS and TIA. 
The LASSO logistic model, a machine learning tool for classification, selects optimal variables to establish 
a regression model using the LASSO algorithm, determining variable selection based on the contraction of 
variable coefficients to achieve the optimal combination44. This approach helps simplify models and enhance 
prediction accuracy45. In this study, smoking habit, systolic BP, LDL, GLU, and Hcy were identified as risk 
factors for AIS using LASSO regression, and a nomogram model based on these five items was established. This 
model demonstrated good predictive value and clinical utility, with AUCs of 0.769 and 0.704 in the training 
and internal validation sets, respectively. Compared to single tests, this approach markedly improved diagnostic 
efficiency. Alireza Baratloo et al. conducted a cross-sectional diagnostic accuracy study and developed a 
nomogram-based clinical tool for diagnosing AIS at the prehospital stage, achieving an AUC of 0.893 with an 
8-item-based nomogram model46. In our study, the LASSO regression algorithm was employed to automatically 
select important variables through regularization, thereby reducing model complexity and avoiding overfitting. 
The nomogram model developed in our study, based on five routinely used clinical indicators for AIS and TIA, 
demonstrated superior diagnostic performance compared to any individual parameter alone, and decision curve 
analysis also showed the nomogram’s promising diagnostic utility in aiding the differentiation of AIS. Thus, 
the generated nomogram may provide an intuitive scoring system, facilitating rapid assessment of disease risk 
and enhancing clinical decision-making efficiency. The combination of LASSO regression and nomogram in 
this study offers advantages such as variable selection, strong interpretability, and personalized prediction in 
the differential diagnosis of AIS and TIA. However, the LASSO regression algorithm is limited by its linearity 
assumption in constructing predictive models, and it exhibits drawbacks such as data dependency, uncertainty 
in variable selection, potential neglect of variable interactions, and insufficient external validation. In practical 
applications, integrating other methods and clinical expertise remains crucial for enhancing diagnostic accuracy. 
For the LASSO regression model, the development of software tools—including mobile or desktop applications—
that may promptly generate predictive outcomes upon inputting pertinent clinical diagnostic information from 
patients is vital. These tools would aid clinicians in incorporating patient history, thereby facilitating diagnosis 
and clinical assessment.

Our study has several limitations. First, it is a retrospective analysis with a relatively small patient cohort, 
leading to inevitable biases in the results. Second, both the training and validation sets of the diagnostic model 
included limited samples, resulting in relatively low AUCs. Third, the predictive effectiveness of the nomogram 
depends significantly on the selection of variables, and its predictive capability varies widely across different 
datasets and groups. Lastly, the evaluation of hypertension is integral to understanding a patient’s overall 
cerebrovascular risk profile, and its primary utility lies in guiding secondary prevention strategies, rather than 
acute diagnostic differentiation. Therefore, more stringent exclusion criteria and larger external validation 
cohorts are required to substantiate the findings of this study in the future.

In summary, we investigated the diagnostic value of non-HDL-C and BP in AIS and TIA. Additionally, 
we introduced a new nomogram-based diagnostic tool for differentiating between AIS and TIA, which 
demonstrated acceptable specificity, sensitivity, and AUC. Given that the indicators examined in this study 
demonstrate potential auxiliary diagnostic value, although the current sample size is limited, they have clarified 
the trends in these metrics. Building on this foundation, the next step will involve expanding the sample size and 
incorporating additional clinical data. By leveraging modern AI technology for big data analysis and modeling, 
it is promising to develop an artificial intelligence (AI)-based model capable of low-cost, high-efficiency 
differentiation of AIS and TIA in primary care settings, and this approach seeks to address the limitations posed 
by the lack of imaging resources, optimize clinical decision-making processes, and ultimately enhance diagnostic 
and treatment standards.

Data availability
The data that support the results of this study are available from the corresponding author upon reasonable 
request.
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