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This study aims to explore the feasibility and accuracy of deep learning-based pediatric behavioral 
audiometry. The research provides a dedicated pediatric posture detection dataset, which contains 
a large number of video clips from children’s behavioral hearing tests, encompassing various typical 
hearing test actions. A detection platform based on this dataset is also constructed, named intelligent 
diagnostic model of pediatric hearing based on optimized transformer (DoT); further, an estimation 
model of patient skeletal keypoints based on optimized transformer (POTR) was proposed to estimate 
human skeleton points. Based on this, the DoT approach was handled to perform posture recognition 
on videos of children undergoing behavioral hearing tests, thus enabling an automated hearing testing 
process. Through this platform, children’s movements can be monitored and analyzed in real-time, 
allowing for the assessment of their hearing levels. Moreover, the study establishes decision rules 
based on specific actions, combining professional knowledge and experience in audiology to evaluate 
children’s hearing levels based on their movement status. Firstly, we gathered image and video data 
related to posture in the process of conditioned play audiometry to test the hearing of 120 children 
aged 2.5 to 6 years old. Next, we built and optimized a deep learning model suitable for pediatric 
posture recognition. Finally, in the deployment and application phase, we deployed the trained 
pediatric posture recognition model into real-world application environments. We found that for 
children aged 2.5 - 4 years, the sensitivity of artificial behavior audiometry (0.900) was not as high as 
that of AI behavior audiometry (0.929), but the specificity of artificial behavior audiometry (0.824) and 
Area Under Curve (AUC) (0.901) was higher than that of AI behavior audiometry. For children aged 4–6 
years, the sensitivity (0.943), specificity (0.947), and AUC (0.924) of artificial behavioral audiometry 
were higher than those of AI behavioral audiometry. The application of these rules facilitates objective 
assessment and diagnosis of children’s hearing, providing essential foundations for early screening and 
treatment of children with hearing disorders.

Trial Registration: Chinese Clinical Trial Registry: Registration number ChiCTR2100050416.
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Pediatric hearing loss is a common sensory deficit, with a incidence of 0.44% among children worldwide1. In 
China, the number of children under the age of 7 who suffer from hearing loss and speech disabilities has reached 
800,000, with an increase of 30,000 annually2. The harm of hearing loss in children is more serious comparing to 
adults. For young children, hearing impairment not only affects their interpersonal communication, academic 
performance, and mental health, but also can cause language development delay3. Therefore, early detection 
and appropriate interventions are crucial for young children with hearing loss. In view of this, many countries, 
including China, have launched early hearing detection and intervention programs4,5.

The pediatric hearing tests strategies include objective and subjective auditory tests. The objective tests are 
used to estimate the subjects’ cochlear function and hearing threshold by testing their cochlear electrical activity 
and brainwave response during acoustic stimulation. However, objective hearing tests are not the real hearing 
tests no matter how reliable they are, but rather a physiologic process that occurs in a part of the auditory 
pathway after specific acoustic stimulations6. Compared with objective hearing tests, subjective hearing tests can 
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truly reflect the children’s hearing condition and examine the sense of hearing as a whole, because it can not only 
evaluate the children’s hearing threshold, but also evaluate the entire auditory pathway function, as well as the 
cognitive and social development by observing their response to sound in the process of testing5,7. Therefore, 
subjective hearing test method remains important for quantitative detection of hearing in infants and children8. 
However, many times, it is difficult to measure the children’s hearing threshold solely through subjective hearing 
tests. Therefore, in order to improve the accuracy of pediatric hearing test results the cross-checking principle 
(combined with objective and subjective hearing tests) is often used in pediatric hearing tests.

The main subjective hearing test method used in infant and children is behavioral audiometry. It includes 
behavioral observative audiometry (BOA), conditioned orientation reflex (COR), visual reinforcement 
audiometry (VRA) and conditioned play audiometry (CPA). BOA is commonly used in infants within 6 months; 
VRA and COR are suitable for children aged 6 months to 2.5 years old. CPA is mainly applicable to children aged 
2.5 to 6 years old9. The principle of BOA is testing the hearing of infants and young children by observing their 
natural responses to sound stimulus. For older children, COR and VRA are used by establishing a controlled 
conditioned reflex of stimuli through combining auditory sound stimulus with shiny moving toy signals to 
obtain their hearing threshold. The method of CPA is as follows: testers have children participate in a simple and 
fun game, teaching them to respond clearly and reliably to given sound stimulus, and testing their hearing based 
on their reactions in the game.

Although subject hearing test is the essential hearing assessment for infants and young children, it is often 
challenging. Firstly, it requires the testers to have extensive experience in testing, as training young infants to 
respond to sounds and judging whether they have response to sound stimuli is a challenging task. Secondly, it 
requires the children to have a certain level of cognitive and cooperative ability. Infants and young children, or 
children with autism or attention deficit hyperactivity disorder, are difficult to cooperate in the test. Thirdly, the 
subjective hearing tests are time consuming. In our hospital, the estimated time to complete each set of pediatric 
behavioral audiometry is at least 40 to 60 min.

To compensate for these shortcomings of pediatric behavioral audiometry, we plan to introduce artificial 
intelligence (AI) to assist in the testing10. Machine Learning algorithms can provide efficient and effective data 
analysis models to reveal the patterns of children’ response in behavioral audiometry. Deep Neural Networks 
(DNN) is a multi-step feature learning technique where data is filtered through multiple cascades11–13.

As far as we know, there is currently limited studies on the direct application of pose recognition technology 
in the field of pediatric behavioral audiology. For the first time, we have conducted interdisciplinary cooperation 
to apply human posture recognition technology to pediatric behavioral audiometry14. The true value data 
was captured from professional audiologist. The specific method of behavioral audiometry is that the expert 
audiologist to judge which behaviors of the subject responded to sound and which behaviors did not. Artificial 
intelligence techniques, such as transformer, diffusion, etc., have grown rapidly in recent years, which can be 
used to identify human behaviors15–17. Simultaneously, using high-definition cameras to capture participants’ 
reactions during the test. Computers trained (deep learning) based on these classifications and collected video 
data combined with test results to generate algorithm models, which can then be applied in real-time in specific 
detection18–20.

The aim of this study is to estimate the specificity and sensitivity of AI CPA in children between 2.5 and 6 
years old. As the first part of a series of studies and due to the higher degree of cooperation in older children, 
we first attempted to include older children aged 2.5 to 6 years who underwent CPA. In addition, due to the 
uncertainty of the accuracy of AI application in pediatric hearing detection, we attempted to s to investigate the 
application value of AI in CPA, as subjects have clearer reactions during the CPA process, and are more easily 
defined and trained by AI technology. We realize that compared with older children, AI is more valuable for 
hearing test in infants and younger children, as their response to sound is more ambiguous and cannot be clearly 
defined. Our next research plan is to investigate the accuracy of AI behavioral audiometry in children under 2.5 
years old.

The main contributions of this paper are shown as follows.
(1) Pediatric Posture Dataset: A dedicated dataset for pediatric pose detection in hearing diagnosis which 

contains 20,000 video clips with annotations from behavioral hearing tests in children.
(2) Intelligent diagnostic model of pediatric hearing based on optimized transformer (DoT): A detection 

platform that utilizes deep learning algorithms to perform pose recognition on videos of children undergoing 
behavioral hearing tests.

(3) Estimation model of patient skeletal keypoints based on optimized transformer (POTR): A part of DoT 
model that mainly accomplishes the extraction of skeletal joint points.

The structure of this paper includes the following sections: Sect. 1 presents a research framework for a deep 
learning-based algorithm for child pose recognition. Section 2 displays how we included the subjects, conducted 
hearing tests, and collected data. Section 3 primarily focuses on analyzing detection data and comparing 
experimental results. Section 4 mainly discusses the experimental results and provides prospects for future 
research directions. Section 5 provides a summary and statement.

Methods
Overview of approach application
This paper presents a research framework for a deep learning-based pediatric posture recognition algorithm 
focused on auditory diagnosis. The framework consists of several key steps. The overall diagram is shown in the 
Figs. 1 and 2.

Firstly, in the data collection phase, we gathered image or video data related to pediatric posture. To ensure 
dataset diversity, we included pediatric samples of different ages, genders, and poses. Secondly, in the data 
annotation phase, we annotated the collected dataset by labeling the pediatric posture information in each 
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Fig. 2.  Flow gram of the study.

 

Fig. 1.  Schematic of DoT approach application (DoT: Intelligent diagnostic model of pediatric hearing based 
on optimized transformer). This dataset is based on behavioral audiometry video data of 120 children included 
in this study.
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sample. Annotations included information such as joint positions and posture angles, which were necessary 
for training and inference of the network model. We used professional annotation tools or manual annotation 
methods for this task.

Next, in the network model training phase, we designed and built a deep learning model suitable for pediatric 
posture recognition. We prepared a training set and a validation set by dividing the dataset into two parts for 
model training and validation. Using the annotated dataset, we trained the network model and optimized its 
parameters by using the backpropagation algorithm.

Subsequently, in the inference phase, we used the trained model to predict and infer new input data. For 
pediatric posture images or video data to be identified, we employed the trained model for inference. By applying 
the forward propagation algorithm, we input the data into the network model and obtained posture prediction 
results.

During the evaluation and optimization phase, we evaluated the model using a test set and calculated metrics 
such as recognition accuracy and recall rate. Based on the evaluation results, we adjusted and optimized the 
model parameters to improve its performance and generalization ability. Cross-validation and other methods 
were used to verify the stability and reliability of the model.

Finally, in the deployment and application phase, we deployed the trained pediatric posture recognition 
model into real-world application environments. We used the hearing test results tested by the audiologist as 
the ‘gold standard”, and compared the results of AI behavioral audiometry and artificial behavioral audiometry 
(behavioral audiometry conducted by audiologist). Depending on specific requirements, we integrated the 
model into an auditory diagnosis system to monitor pediatric posture in real-time.

Medical preparation
Patients
In this study we enrolled children aged 2.5 to 6 years who undergone CPA from January 2020 to June 2022. The 
study was performed in accordance with the ethical principles and approved by the Second Affiliated Hospital 
of Nanchang University Institutional Review Board. (reference number IIT-O-2021 - 002). Written, informed 
consent was obtained from all children’s guardians to participate in this study and to publish their processed 
images online.

Inclusion and exclusion criteria
Inclusion criteria  Inclusion criteria were as follows: (1) Infants and young children aged 2.5 to 6 years. (2) Chil-
dren who could successfully cooperate to complete CPA. (3) Children whose objective and subjective hearing 
test results were highly consistent (The hearing thresholds gap of objective and subjective hearing tests at each 
frequency was less than 10 dB).

Exclusion criteria  Exclusion criteria comprised of: (1) Infants and young children who could not cooperate 
with subjective and objective hearing tests. (2) Subjects had unreliable hearing test results, such as inconsist-
ent result between objective and subjective hearing tests, excessive noise during auditory steady-state response 
(ASSR) testing (the noise of reaction wave is greater than 30 nV), or poor ABR waveform repeatability.

After screening, 120 children (79 males and 41 females) were ultimately included for the AI model generation.

Test procedure
All children were assessed by the neuropsychological development scale for children aged 2.5 to 6 years old. All 
children underwent a detailed clinical interview. Clinical data, demographic information, past medical history 
and personal history were obtained. Routine physical examination and otorhinolaryngological examination 
were conducted in all subjects. All children underwent auditory brainstem responses (ABR), ASSR and CPA.

CPA procedure
Measurements of CPA were performed by an expert audiologist in a sound treated room. The subject was seated 
in a child chair facing the audiologist, with one of the parents sit behind their child. Then, the audiologist taught 
the child to respond to sound by stacking rings on a stick. After four or five demonstrations, conditioning could 
be established. Reinforcing conditioning by praising the child. By using this technique, frequency specific and 
ear specific air and bone hearing threshold could be obtained. The hearing test was performed using a diagnostic 
audiometer (Madsen Astera 2, Type 1066 Otometrics©, Taastrup, Denmark). The air conduction hearing 
threshold was tested using standard circumaural earphone, while the bone conduction hearing threshold was 
measured using bone vibrator. The given hearing stimulus were pure tone. Air conduction hearing thresholds 
were measured at 1k Hz, 2k Hz, 4k Hz, 8k Hz, 500 Hz, and 250 Hz; bone conduction hearing thresholds were 
assessed at 250 Hz to 8k Hz in sequence. Pure tone audiogram (PTA) was calculated by averaging air conduction 
thresholds at 0.5, 1, 2, and 4 kHz. The hearing loss levels were categorized into four grades: mild (26–40 dB 
HL), moderate (41–55 dB HL), moderate to severe (56–70 dB HL), severe (71–90 dB HL), and profound (> 90 
dB HL)21. Audiogram patterns were classified into 5 types: ascending (the average threshold of 0.25–0.50 kHz 
was 20 dB higher than that of 4–8 kHz), descending (the average threshold of 4–8 kHz was 20 dB higher than 
that of 0.25–0.50 kHz), flat (all frequencies presented similar thresholds and hearing threshold was below 80 
dB HL), profound (all frequencies showed similar threshold and hearing threshold was over 80 dB HL), and 
concave or convex type (average hearing degree of the mid-tone frequency was 20 dB higher than low and high 
frequencies)22.

The air conduction test started at a frequency of 1k Hz, and the initial test sound level was lowered by 10 
dB compared to the hearing level that the child just had response to. If the child responded to the sound, it 
was further lowered by 10 dB until the child had no response, then it was increased by 5 dB, and the test was 
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repeated 5 times. Among them, the same hearing level which child had responses to was considered as the 
hearing threshold of pure tones at that frequency.

One small lamp, emitting yellow light, was placed on the wall behind the child, and the light was not too 
bright. During the test, kept the child focused and avoided turning their head to notice the lights on or off. Each 
time a sound was made, the audiologist observed the child’s response. If the audiologist considered the child had 
no response to the sound, the tester would press the light button once to make the yellow light on once, and if 
the audiologist considered the child was responsive to sound, the audiologist would press the light button twice 
to make the yellow light on twice. s.

AI method of DoT
Pediatric posture dataset
During the detection process, a high-definition camera was placed behind the audiologist, capturing the facial 
expressions, head and neck, and body movements of the subjects. As shown in Fig. 3, it is the key points of 
human skeleton detected by POTR, showing a total of 18 points, arranged in numerical order as nose, neck, 
right shoulder, right elbow, right wrist, left shoulder, left elbow, left wrist, right hip, right knee, right ankle, 
left hip, left knee, left ankle, right eye, left eye, right ear, and left ear. Each skeleton key point of the subjects is 
represented by x, y, and z, where x and y represent the coordinates of key points of the bone, z represents the 
confidence value. So, when the subject appeared in the perspective of the visual sensor, the corresponding points 
were captured. That is to say, through the POTR method, the corresponding points of the main parts of the 
subject’s face and body were be captured. The algorithm of this project set images with a set confidence value 
greater than 0.5 to be saved and those with a value less than 0.5 to be discarded. The retained images could be 
identified for corresponding behaviors through the algorithm designed in this project. Because according to the 
AI visual recognition technology, at least 64 samples with positive reactions were required to achieve statistically 
significant. Therefore, if too many children could not cooperate with behavioral audiometry, resulting in the 
positive samples size less than 64, additional cases would be added until the sample size needs were met.

DoT
This project collected a large number of children’s behavior videos and classified them through audiologist’s 
subjective evaluation to complete label calibration. In the process of the project, at least 120 samples were 
collected, with a cumulative video volume of 120 people * 20 min/person * 60 * 30 frames/second = 4,320,000 
frames of images, and we classified the video frame images using raise and release labels.

We developed an intelligent diagnostic model for pediatric hearing based on DoT. The workflow of the Dot 
construction of this study is shown in Fig. 4. We used a video clip as input and applied the DoT model to detect 
whether the child’s hearing was normal or not. First, we built an estimation model of patient skeletal keypoints 
based on POTR, which detected the skeletal keypoints of the child in each frame of the video.

Next, we calculated the relative distances and angles between the skeletal keypoints in each frame to determine 
whether the child is lifting or putting down their hands. If the child was classified as being in the same state for 
five consecutive frames, we recorded it as either “hands up” or “hands down.” The alternating process of hands 
up and hands down was considered one response to sound. Finally, by comparing the number of responses to a 
set threshold, we determined whether the child’s hearing was normal or not.

The structure of our POTR model is shown in Fig.  5. POTR took each frame of the video as input and 
first extracted multi-scale image features using a backbone network, which adapted to objects of different sizes. 
Then, position codes were concatenated with the multi-scale features. Through the interaction of features in the 
Transformer blocks, we obtained more robust representations. Finally, two prediction heads were used to predict 
the skeletal keypoints and their corresponding confidence scores.

To determine the child’s movement status, we calculated the Euclidean distances between skeletal keypoints, 
including the distance between shoulders and elbows (2–3, 5–6), wrists and elbows (3–4, 6–7), and wrists and 
neck (1–4, 1–7). Additionally, we computed the angles between keypoints, specifically the elbow angle (2–3- 

Fig. 3.  Pediatric skeleton keypoints. (This image is generated using software PowerPoint version 2013, URL 
link: https://zenodo.org/records/15016815.).
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4, 5–6- 7) and shoulder angle (1–2- 3, 1–5- 6). To facilitate subsequent state assessment, these angles were 
converted to cosine values. Since both distances and angles between skeletal keypoints were calculated, any set 
of keypoints with a confidence score below 0.5 was discarded.

We evaluated the child’s state based on 10 sets of data. If more than 50% of the data indicated a lifting motion, 
we classified it as “hands up”; if more than 50% indicated a lowering motion, we classified it as “hands down.” 
We defined a continuous sequence of five frames which were classified as the same action state (either hands up 
or hands down) as one complete hands-up or hands-down event. Alternating hands-up and hands-down events 
were counted as one response to sound.

After processing all video clips, we tallied the number of responses the child made to the sound. If this 
number exceeded the set threshold M, the DoT model concluded that the child had a normal response to 
sound; otherwise, there might be a risk of hearing issues, and further expert evaluation was recommended. The 
threshold M could be personalized based on the child’s age and the duration of the video. In this study, M was 
set to 20.

Code availability
The codes are available at the website: ​h​t​t​p​s​:​​/​/​z​e​n​o​​d​o​.​o​r​g​​/​u​p​l​o​a​​d​s​/​1​4​​9​1​3​7​8​4​​?​t​o​k​e​n​​=​e​y​J​h​b​​G​c​i​O​i​​J​I​U​z​U​x​​M​i​J​9​.​e​​
y​J​p​Z​C​I​​6​I​j​B​m​​M​j​h​m​M​D​​d​j​L​T​B​j​​Y​j​E​t​N​D​​B​j​M​C​1​​i​N​j​B​l​L​​T​g​w​Y​m​U​​z​Z​j​c​x​N​​D​k​w​M​S​​I​s​I​m​R​h​​d​G​E​i​O​n​​t​9​L​C​J​y​​Y​W​5​k​b​​2​0​i​
O​i​J​​l​M​z​Q​3​Z​​D​Q​z​M​j​Q​​x​N​z​V​j​​O​W​V​k​O​G​​Q​4​M​T​Y​5​​Z​W​Q​x​Y​m​​Y​y​N​j​F​​k​N​i​J​9​.​​P​S​G​Z​v​I​​Y​Q​7​o​y​L​​2​w​R​_​h​​m​i​u​o​4​F​​9​v​S​b​7​2​​B​
k​6​F​N​I​​Z​A​c​J​V​​Q​g​E​u​M​p​​C​I​W​P​r​B​​p​t​5​0​s​c​​b​J​-​M​c​J​R​3​l​p​Y​2​X​3​i​_​8​B​D​3​f​h​ h​G​p​c​v​A.

Validation and performance evaluation strategy
A total of 100 subjects were included in the objective hearing test, with ages ranging from 2.5 to 6 years old. The 
inclusion and exclusion criteria were the same as in the previous screening stage of the subjects. After undergoing 
routine physical examination, otorhinolaryngological examination and intellectual and psychological assessment, 
they underwent artificial behavior audiometry and AI behavior audiometry. Compared each response result 
of subjects to sound stimulation in AI audiometry and artificial audiometry. The sensitivity and specificity of 
AI audiometry were calculated and compared with the sensitivity and specificity of artificial audiometry in 
subjects. The model output was a classification of the videos as one possible label: (1) responsive to sound, (2) 
unresponsive to sound.

The area under the receiver operating characteristic curves was also plotted to assess model performance. All 
analyses were conducted using SPSS version 25 for Windows. All the experiments are implemented under an 
image workstation, Windows NT OS, CPU Intel(R) Xeon(R) E5 - 2680 v4 @ 2.40 GHz, GPU NVIDIA 3080 ti. 
TensorFlow library was used for building and training models.

Fig. 4.  Dot model for pediatric behavioral audiometry (DoT: Intelligent diagnostic model of pediatric hearing 
based on optimized transformer. POTR is a part of DoT model that mainly accomplishes the extraction of 
skeletal joint points and the remaining part accomplishes the estimation of pediatric posture). This dataset is 
based on behavioral audiometry image data from 100 children who included in this study.
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Results
Clinical characteristics
A total of 100 subjects (58 males and 42 females) were invited in this study for validation, including 36 children 
with normal hearing and 64 children with hearing loss. Among the 64 children with hearing loss, 12 were 
classified as mild, 13 as moderate, 9 as moderate to severe, 20 as severe, and 10 as profound hearing loss. In 
terms of the audiogram shape, the most common one was flat (51 children), followed by profound (10 children), 
ascending (2 children) and descending type (1 child). None of them suffered from concave and convex hearing 
loss. There were 46 children aged 2.5 to 4 years old, including 16 children with normal hearing and 30 children 
with hearing loss. There were 54 children aged 4 to 6 years old, including 20 children with normal hearing and 
34 children with hearing loss.

Comparison of evaluation indicators between AI behavioral audiometry and artificial 
behavioral audiometry
Due to cognitive difference among children of different ages, we divided all subjects into group A (2.5 to 
4-year-olds group) and group B (4 to 6-year-olds group) based on their ages and) and compared the sensitivity, 
specificity, and Area Under Curve (AUC) of AI behavioral audiometry and artificial behavioral audiometry 
(behavioral audiometry done by audiologist) between group A and B. For Group A, the sensitivity of artificial 
behavior audiometry (0.900) was not as high as that of AI behavior audiometry (0.929), but the specificity of 
artificial behavior audiometry (0.824) and AUC (0.901) was higher than that of AI behavior audiometry. For 
Group B, the sensitivity (0.943), specificity (0.947), and AUC (0.924) of artificial behavioral audiometry were 
higher than those of AI behavioral audiometry. The results are shown in Tables 1 and 2, the detection results of 
this experiment are shown in the Fig. 6.

Diagnostic method Sensitivity Specificity AUC

AI behavioral audiometry 0.929 0.778 0.862

Artificial behavioral audiometry 0.900 0.824 0.901

Table 1.  Comparison between AI behavioral audiometry and artificial behavioral audiometry (Group A).

 

Fig. 5.  POTR model (POTR: Estimation model of patient skeletal keypoints based on optimized transformer).
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Discussion
To our knowledge, few studies have reported the application of deep learning-based approaches and technologies 
in pediatric behavior audiometry. Deep learning is an emerging algorithm in the biometrics field, enabling us to 
tackle the covariates and produce highly accurate results23. Previous studies have reported that a few validated 
automated procedures had been used for audiology researches. However, these studies typically only focused on 
using DNN models to judge audiogram results, including ABR, air and bone conduction audiometry results24–28. 
Currently, no specific and direct machine learning–based audiometry approaches have been developed for 
children or hard-to-test populations. In this study, we conducted interdisciplinary collaboration and applied the 
existing deep learning-based gait recognition approach in the process of pediatric behavior audiometry, in order 
to evaluate the clinical application value of this technology. It is gratifying that the accuracy of AI applied in CPA 
in our study was significantly high, with high sensitivity and specificity. This suggests that our models performed 
comparably with a human expert, or even superior, in conducting CPA. In the separate real-world testing cohort, 
robust performances were also observed in predicting subjects’ hearing level with small variability, suggesting 
that the models had good generalizability. On the other hand, our study paves the way for AI applied in more 
complex hearing test task among younger children in future. In the next step of our work, we will try to apply 
this technology in children under 2.5 years old to explore the application value of this technology in other types 
of behavioral audiometry.

As we mentioned previously, pediatric behavioral hearing test is a big challenge. It requires professionally 
trained and experienced audiologists, who are very scarce in grassroots hospitals, particularly in developing 
countries29. In addition, due to the time-consuming nature of these examinations, many hospitals are unwilling 
to conduct this test, even in tertiary hospitals. Our study could facilitate to solve these problems through 
the following aspects. Firstly, this technology contributes to improve the efficiency and accuracy of pediatric 
behavioral hearing test, making more hospitals more willing to carry out this examination, thereby enabling 
more children with hearing impairment to be diagnosed in a timely manner. In addition, our ultimate goal is to 
truly apply AI to assist audiologist in conducting this test, and ultimately achieve remote and self-administered 
hearing test by using mobile healthcare apps and online websites. This automated approach contributes to 
children undergo hearing tests by their parents, and has the potential to increase accessibility and scalability 
without the direct involvement of professionals, avoiding multiple long-distance trips to hospitals for testing. 
After testing, hearing test result dada can be analyzed preliminarily by apps or computer software, or sent to 
the doctors, who can make an accurate hear assessment. The onset of the COVID- 19 pandemic has further 
emphasized the importance of self-testing approaches30,31.

DNN models become more and more accurate when they process large scale data, which enables them to 
outperform many classical machine learning models. Therefore, in the model generation stage, we recruited 
many children for auditory tests. However, the accuracy of AI hearing test results is based on the accuracy of 
artificial hearing test results. Therefore, in order to improve the accuracy of artificial auditory test results, we 
conducted both subjective and objective hearing tests, due to the cross-check principle, which means that the 

Fig. 6.  Detection results of PORT approach proposed in this paper.

 

Diagnostic method Sensitivity Specificity AUC

AI behavioral audiometry 0.914 0.895 0.873

Artificial behavioral audiometry 0.943 0.947 0.924

Table 2.  Comparison between AI behavioral audiometry and artificial behavioral audiometry (Group B).
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results of a single test are cross checked by an independent test, and a definite diagnosis can only be made after 
mutual verification of multiple test results32. Based on the large amount of image data, we developed a novel 
algorithm designed for pediatric behavioral audiometry. We built the corresponding algorithm program through 
POTR, extracted the corresponding data and made the corresponding preprocessing rules. Finally, we verified 
the test results repeatedly until the goal of this project was achieved, thus reaching the purpose of reducing the 
cost and standardizing the detection process at this stage. Due to the novelty of this research field, deep learning 
model engineering is still a sandbox with no unified optimal path. Continuous studies on model constructs and 
hyperparameters will contribute to improve the accuracy of model performance, ultimately achieving or even 
exceeding human standards.

Our research is a successful application of deep learning approaches in audiology. However, there are still 
many challenges and urgent issues to be addressed in this field. For example, in practical applications, this 
program may experience short-term misjudgment affected by the range of coordinate axis values. One reason 
for this phenomenon is that the amplitude of the subjects’ movements is too high, making data capture difficult. 
Another reason is that the values such as threshold in the code is unable to meet the current sample tester’s needs, 
and need further improvements, with a focus on the data. In addition, only the lifting and lowering movements 
can be accurately detected, but the movements of subjects using their left or right hands for operations cannot 
be effectively identified by AI technology. Therefore, there still exists room for improvement in this field, making 
the results of children’s hearing measurements more specific and easier to be analyzed accordingly.

In summary, although this AI technology can be able to well used in CPA, there still exist some issues and a 
risk of instability. It is worth further exploration in our future research. At the same time, we can also consider 
not only identifying the two states of lifting and lowering to make A → B → A judgment. It is also possible 
to improve recognition accuracy from identifying lifting movements to left-handed or right-handed actions, 
enabling testers to better assess the degree of hearing impairment among child subjects.

Conclusion
Hearing loss is and will continue to be a significant public health issue. Reengineering the process of hearing test 
with a machine learning innovation may make the audiologist services available to a large number of children 
with hearing loss. Our results suggest that deep learning may be a transformative technology that enables 
automatic and accurate pediatric behavioral hearing test.

Data availability
Data such as the method of obtaining code is provided within the manuscript. Due to privacy or ethical restric-
tions, data including personal information and videos of subjects are not publicly available.
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