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In recent years, fine-grained image search has been an area of interest within the computer vision 
community. Many current works follow deep feature learning paradigms, which generally exploit 
the pre-trained convolutional layer’s activations as representations and learn a low-dimensional 
embedding. This embedding is usually learned by defining loss functions based on local structure like 
triplet loss. However, triplet loss requires an expensive sampling strategy. In addition, softmax-based 
loss (when the problem is treated as a classification task) performs faster than triplet loss but suffers 
from early saturation. To this end, a novel approach is proposed to enhance fine-grained representation 
learning by incorporating noise injection in both input and features. At the input, input image is made 
noised and the goal is set to reduce the distance between the L2 normalized features of input image 
and its noisy version in the embedding space, relative to other instances. Concurrently, noise injection 
in the features acts as regularization, facilitating the acquisition of generalized features and mitigating 
model overfitting. The proposed approach is tested on three public datasets: Oxford flower-17, Cub-
200-2011 and Cars-196, and achieves better retrieval results than other existing methods. In addition, 
we also tested our approach in the Zero-Shot setting and got favorable results compared to the prior 
methods on Cars-196 and Cub-200-2011.

Keywords  Fine-grained image retrieval, Image representation, Feature learning, Noise injection, Zero-shot 
learning

Image retrieval has been studied for decades, yielded significant results, and is still a challenging topic. A 
challenge is to obtaining visually related images to the query sample by analyzing its visual characteristics either 
by low-level semantics (like shape, texture, color) or by higher semantics (like bag of visual words, neural codes)1. 
Prior (Content based image retrieval) CBIR’s methods work well for databases of large inter-class variance as 
compared to databases of less inter-class variance (see Fig. 1). However, real-life scenarios require fine-grained 
search, that is, to locate images that correspond to the exact query’s sub-category. For instance, when a user 
queries an image (say bike or flower image), the user needs to access/retrieve images in the same fine-level 
category as a query (i.e., images correspond to the same model of bike or same flower species)2. In such a 
setting, retrieval becomes a complex and challenging task because it is arduous to distinguish between various 
models of cars or bikes, or various species of flowers, or different breeds of dogs. The reason for this is that they 
share visual appearances at the global level, which can only be distinguished by focusing on the critical parts 
of the object, such as the bird’s feature texture, the dog’s body color, and the shape of the bike’s headlight, etc. 
Therefore, the major challenge of this problem is to produce strong representations that can capture these subtle 
details and reduce differences between nearly identical categories. Fine-grained search can be used for various 
purposes, including but not limited to surveillance, evaluation of climate change, intelligent retail, monitoring of 
biodiversity and ecosystems, intelligent transportation, etc.

Learning effective descriptors plays an important role in the fine-grained image retrieval (FGIR) domain. 
When good features are exploited, a retrieval algorithm allows similar images to be placed in beginning of a 
ranked list and dissimilar ones at the end. Since2, FGIR has drawn a growing research focus in computer vision 
society. Despite recent progress, FGIR is still an open problem for commercial and cataloging applications. 
With the recent developments in deep learning3–5, the deep learning methods built upon (convolutional neural 
network) CNN features have become the mainstream of fine-grained search. However, these features are learned 
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from the coarse domain; direct exploitation is not feasible since they cannot capture the fine details of the object. 
Instead, low dimensional features are learned on top of CNN features using the so-called deep metric learning 
(DML) approach, which aims to learn the low dimensional metric space (or embedding space) of embeddings 
where similar things are close and dissimilar are distant. Lots of work has been done in this area using contrastive 
loss6, triplet loss7,8, and quadruplet loss9,10. Most of them follow triplet loss. However, triplet loss is based on 
mining strategies7,8,11–13 to make it fast convergence, which requires extra computations. On the other hand, 
softmax is generally faster to converge compared to triplet loss but suffers in early saturation, which converges 
to some worse local minima. Furthermore, learning embeddings from larger networks poses overfitting to 
small datasets. In this paper, we tend to overcome these issues by proposing a noise-invariant feature learning 
approach. In this approach, the model is trained using auxiliary induced noise injected at two positions: at 
input layer and final layer of the deep network. By introducing noise at the input layer, the model learns noise-
invariant features by maximizing the similarity between an image instance and its corresponding noisy version. 
Meanwhile, the noise added at the final layer, in conjunction with the softmax cross-entropy loss function, serves 
as a form of regularization by generating augmented features within the embedding space. In the former case, we 
employ a contrastive learning approach, where positives are formed by injecting noise into images, while other 
samples serve as negatives. In the latter case, the induced noise prevents softmax from suffering early saturation 
and allows for the continued propagation of gradients computed on noise-augmented features, thereby helping 
to reduce overfitting on small datasets.

The following are our key contributions:

	1)	 We propose a Noise-invariant feature embedding learning method by optimizing it using softmax. This 
minimizes the costly sampling process in training DML, which is the main limitation of triplet loss. This also 
alleviates the problem of early saturation of softmax-based learning.

	2)	 This is done by adding noise into both the input layer and the last layer of the deep network during the 
training process. The primary objective, grounded in contrastive learning, aims to maximize the similarity 
between an image instance and its corresponding noisy version. The secondary objective, relying on softmax 
cross-entropy, addresses augmented features generated within the embedding space, serving as a form of 
regularization.

	3)	 Analysis on three fine-grained datasets illustrates that our approach achieves better results than state-of-the-
art.

The rest of the paper is structured as follows: existing related works are explored in Section “Related Work”. The 
proposed approach is detailed in Section “Methodology”. Section “Experiments” discusses the experimental 
settings and analyzes the outcome results. Section “Conclusion” concludes the paper.

Related Work
Following the success of CNN3, deep learning techniques also led to research in image retrieval1. For instance, 
Babenko et al.16 employed a pretrained CNN, fine-tuned it on the target images, and used its responses for image 
representation and retrieval. In17, a feature aggregation method was presented that exploits sum pooling on deep 
features to generate compact descriptors. Further, Mohedano et al.18 exploit bag-of-Word model with CNN 
features, whereas in19, CNN features with VLAD are exploited for image search. Reference20 employed sum 
pooling in their aggregated method over weighted convolutional features across channels and spatial locations. 
In addition, Yang et al.21 presented an image retrieval technique based on Cross Batch Reference based feature 
learning strategy. Tolias et al.22 presented an approach that generates compact features by encoding multiple 
locations with convolutional layer’s activations. Shakarami et al.23 present a fusion-based descriptor for image 
retrieval, which includes LBP, HOG, and CNN features. Although these methods work well for coarse levels, 
fine-grained localization is required as an initial step for fine-grained images. Using the deep learning paradigm 
some efforts have also been made for fine-grained image tasks. For instance, reference24 utilized convolutional 
kernels for both object’s parts selection and representation. Watkins et al.25 suggested a two-stage learning scheme 
(localization learning followed by classification using detected location) for fine-grain classification by exploring 
resnet architectures. Zhou et al.26 explore label hierarchy using rich relationships through bipartite-graph with 

Fig. 1.  Comparison of image database. {Dataset Source: corel_images [​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​e​l​k​​
a​m​e​l​/​c​​o​r​e​l​-​i​​m​a​g​e​s], Oxford Flowers-1714; ​h​t​t​p​s​:​​/​/​w​w​w​.​​r​o​b​o​t​s​​.​o​x​.​a​c​​.​u​k​/​~​v​g​g​/​d​a​t​a​/​f​l​o​w​e​r​s​/​1​7​/​i​n​d​e​x​.​h​t​m​l and 
Cars-19615; ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​j​e​s​​s​i​c​a​l​i​​9​5​3​0​/​s​​t​a​n​f​o​​r​d​-​c​a​r​​s​-​d​a​t​a​​s​e​t​?​d​a​​t​a​s​e​t​​I​d​=​3​0​0​​8​4​&​s​o​r​​t​B​y​=​d​a​​t​
e​C​r​e​a​t​e​d​&​s​e​l​e​c​t​=​c​a​r​s​_​t​e​s​t}.

 

Scientific Reports |        (2025) 15:15560 2| https://doi.org/10.1038/s41598-025-97528-9

www.nature.com/scientificreports/

https://www.kaggle.com/datasets/elkamel/corel-images
https://www.kaggle.com/datasets/elkamel/corel-images
https://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html
https://www.kaggle.com/datasets/jessicali9530/stanford-cars-dataset?datasetId=30084&sortBy=dateCreated&select=cars_test
https://www.kaggle.com/datasets/jessicali9530/stanford-cars-dataset?datasetId=30084&sortBy=dateCreated&select=cars_test
http://www.nature.com/scientificreports


VGG-net4 for fine-grained classification. In27, authors deployed pre-trained VGG-164 for object localization and 
selected its deep descriptors by removing noise or background. Zheng et al.28 suggested the centralized ranking 
loss and trained the CNN with weakly supervised object localization. Then they employed a CNN response 
map with the contours to precisely extract the features. Kumar et al.29 explored ResNet185 for the FGIR task, 
where they fine-tuned it on the target dataset and used its activations for retrieval. Yingying et al.30 proposed 
relation based convolutional descriptor that encodes local subtle features for FGIR. Further, some efforts are 
made in the direction of learning embedding. For instance,6 used the pair-wise loss and7 used the triplet loss 
for learning image embedding with CNN as a backbone. Subsequently, Song et al.31 exploited every pair in 
the minibatch to obtain hard negatives. Sohn et al.32 extends the triplet loss7,8 into N-pairs loss, which uses 
softmax cross-entropy loss on pair-wise similarity values within the batch. Song et al.33 presented the clustering 
loss for embedding learning by considering the embedding space’s global structure. Huang et al.10 exploited 
quadruplet and mines hard examples in end-to-end network with PDDM block for similarity evaluation. Zheng 
et al.34 proposed softmax Loss for FGIR with normalize-scale layer. The Ranked List loss35 accounts for both 
positive and negative data within a batch, aiming to clearly differentiate between the positive and negative sets. 
Reinforcement learning based sampling was proposed in36. Koth et al.13 also explored policy-adapted sampling 
via reinforcement learning for triplet losses. Further, Zheng et al.37 explore hard negative mining via generative 
approach. Duan et al.38 proposed multilevel similarity based metric loss which explore global, local and channel 
level similarity. Sanakoyeu et al.39 explored divide and conquer approach in which they iteratively divide the 
embedding to learn different features.

However, most of these methods rely on sampling strategies that make model training more computationally 
expensive. In contrast to the above analysis, we implemented a simple strategy for learning fine-grained features 
via a noise-assisted learning approach which strengthens the feature representation potential of the base network 
without requiring any sampling strategies.

Methodology
The outline of proposed method is depicted in Fig. 2. First a minibatch of images is randomly sampled and noised. 
Then pairs of noisy images and natural images are fed to Siamese network and a minibatch of natural images is 
fed to two standalone networks. The Siamese network is responsible for making features noise-invariant, while 
other two networks are responsible for learning class discriminating features. All networks are jointly trained 
with common goal of feature representation learning for fine grained image retrieval.

Consider the training images {x1, x2, . . . , xm} ∈ X  with associated labels yi ∈ Y  in the minibatch. Let fp 
and fn be the L2 normalized feature embedding of positive instance xp and negative instance xn to instance 
xi such that yi = yp; yi ̸= yn. These positives and negatives are selected from the minibatch during training. 
Assume (·, ⊙, ·) the cosine similarity function with ⊙ as dot product. To enforce the compactness among same 
class instances and separateness among different class instances in the embedded space, the class discrimination 
loss inspired by40 could be given as:

Fig. 2.  Proposed Noise-invariant feature learning method.
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LD =
∑

i

1
|P (i)|

∑
p∈P(i)

log


1 +

∑
n∈N(i)

exp (fi ⊙ fn/τ − fi ⊙ fp/τ)


� (1)

where, P(i) is set of positive indices to ith instance and N(i) is set of negative indices to ith instance.

Noise-invariant feature learning for FGIR
To improve the feature representation capability for a network, the noise can helps the deep CNN to learn better 
representations for fine-grained images. The noisy labels used in prior publications41,42 for feature learning need 
a large dataset with noisy labels network’s training. Instead of using noisy labels, the network is optimized by 
injecting noise at the input layer and CNN’s higher layer. Specifically, for each training iteration, a noise is 
sampled from zero mean Gaussian distribution, which is injected to the input images as well as in the activations 
of last layer (output of average pooling layer in our case) of the deep CNN (refer Fig. 2).

Let ξI
i ∈ N

(
0, δ2

i

)
 be the noise sampled from the zero mean Gaussian distribution. The noise is injected to 

each sample selected for minibatch as x̃i = xi + ξI
i . Let fi and ̃fi be the L2 normalized feature embedding of xi 

and x̃i. For all instances xi ∈ X , the objective is to maximize 
(
fi ⊙ f̃i

)
.

Given a Siamese network, we compute the probability of noisy sample x̃i being classified as ith image as:

	
P

(
i|x̃i

)
=

exp
(
fi ⊙ f̃i/τ

)

exp
(
fi ⊙ f̃i/τ

)
+

∑
j=1:m, j̸=i exp

(
fj ⊙ f̃i/τ

) � (2)

The loss40 associated with (2) is given as:

	
LN = −

∑
i

log
exp

(
fi ⊙ f̃i/τ

)

exp
(
fi ⊙ f̃i/τ

)
+

∑
j=1:m, j̸=i exp

(
fj ⊙ f̃i/τ

) � (3)

The Siamese network in this approach excels at learning embeddings for fine-grained representation by 
comparing and distinguishing pairs of inputs. In our approach, it is utilized to create a meaningful embedding 
space that brings similar images closer together. Here, the loss LN will take care for compacting the distance 

between 
(
fi, f̃i

)
 pairs which means making features noise invariant. It also minimizes exp

(
fj ⊙ f̃i

)
 for all 

other instances, making separateness among other instances relative to its clean instance.
We also adopt multi-classification task to further optimize the network, however softmax suffers early 

saturation due to overfitting to smaller datasets. To overcome this, we inject the gaussian noise to the output of 
final layer of network (avg. pool in our case), so that each time loss will penalize the noisy feature for predicting 
low score.

Let ξF
i ∈ N

(
0, δ2

i

)
 be a noise, Zi represents the deep CNN’s last layer normalized43 activations for input 

image i, the noisy response can be deduced as Z̃i = Zi + ξF
i . Now, with K-way softmax through fully connected 

layer F Z = wzZ̃i + bz , the probability distribution of a model parameterized by ϕ over m classes is given as:

	
P (yi |i , ϕ) = exp(F Zi)∑

K
exp(F Zj) � (4)

With the goal to maximize this probability (4), the loss is to minimize is:

	
LS = − 1

|m|

|m|∑
n=1

log P (yi |in, ϕ )� (5)

The total loss is given as:

	 L = LD + λ1LN + λ2LS � (6)

Minimizing L means minimizing all three losses LD, LN and LS. first Eq. (1) can be reformulated as

	
LD = −

∑
i

1
|P (i)|

∑
p∈P(i)

log exp (fi ⊙ fp/τ)
exp (fi ⊙ fp/τ) +

∑
n∈N(i) exp (fi ⊙ fn/τ) � (7)

Now, examining L, minimizing Eq. (7) necessitates maximizing exp (fi ⊙ fp/τ) and minimizing exp (fi ⊙ fn/τ)
. Given that features are L2 normalized, maximizing exp (fi ⊙ fp/τ) involves maximizing the cosine similarity 
between fi and fp, forcibly aligning the features of the original sample and its positive counterpart. Similarly, 
minimizing exp (fi ⊙ fn/τ) involves decreasing the cosine similarity between fi and fn, forcibly separating the 
features of the original sample from its negative counterparts. This results in compactness of similar samples 
and separateness of dissimilar samples in embedding space. Now looking into LN, minimizing it necessitates 
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maximizing exp
(
fi ⊙ f̃i/τ

)
 and minimizing exp

(
fj ⊙ f̃i/τ

)
. Maximizing exp

(
fi ⊙ f̃i/τ

)
 compels forcibly 

aligning the features of the original sample fi and its noisy counterpart ̃ fi. The outcome is a noise-invariant 

feature embedding. Similarly, minimizing exp
(
fj ⊙ f̃i/τ

)
 forcibly separating f̃i from the features of other 

instances fj. This further ensures separateness of dissimilar samples in embedding space. Last minimizing LS will 
further enhance the noise invariant property and class separability.

Overall steps of our approach is summarized in Algorithm 1.

Algorithm 1.  Noise-invariant Feature Learning for FGIRTraining details

We used resnet18 (R18)5 as a backbone. To make a good start, we initialize the R18’s parameters with weights 
trained on imagenet48. The dense layers’ weights are initialized as in5. The size of embedding is set to 256 and 
adam with weight decay of 10e-4 is used for network training. The learning rate and mini-batch’s size is set to 
10e-4 and 64 respectively. We first sample 8 class randomly and then sample 8 instances per class. For each 
sample, noisy sample is created for siamese network. We exploit the data augmentation operations as follows: 
after randomly sampling a mini-batch of training images, first it is resized with its shorter side to 256 by 
preserving the aspect ratio, which maintains the original shape of the object. Then it is crop with size 224 × 224 
from random location within the image. Next, it is rotated with degree within the range of (-15, 15) (followed 
by a center crop to maintain same spatial size). At last, with a 0.5 probability, color augmentation takes place 
followed by horizontal flipping with 0.5 probability. For color augmentation, we employ the proposed method 
of44 that generates realistic like synthetic images. Using44, we randomly select one image out of 10 generated 
images for each image of the minibatch. For LS (Eq. 5), we utilize label smoothing for the target probabilities 
within the cross-entropy to better tackle overfitting. This entails setting the probability of the correct class to 
1 – φ with φ = 0.1, while assigning φ/(cl-1) as the probability for all other classes. Also L2 normalization is done 
to sampled noise before adding to feature. For inference, we first rescaled the image to shorter side with 224 
and samples 3 network input’s sized crops (a center crop and a crop from each of the two shorter sides) from 
the image before feeding to the network. All crops’ feature vectors are then averaged to produce the feature 
representation of image. For matching we employ cosine similarity using L2 normalized features of gallery set 
to query.

Experiments
This section first discuss the dataset setting and evaluation measures. Then report the FGIR results and analyze 
the effect of noise-injection in retrieval performance. Finally, we also test our approach in context with Zero-shot 
learning.
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Datasets and evaluation setting
The experiments are conducted on two datasets, the Oxford Flowers-1714 and the Cars-19615. Oxford Flowers-17 
consists of 17 fine-grained categories with 1360 flower images. Cars-196 consists of 196 fine-grained classes of 
cars models with 16,185 images. Since Oxford Flowers-17 is a small dataset that contains 80 images per category, 
we conduct the experiment on randomly selected five splits of the dataset, and each split consist of three sets: 
training, gallery and query as depicted in Table 1. As a result, there are 680, 425 and 255 images for training, 
gallery and query sets, respectively. In the case of Cars-196 dataset, we conduct the experiment on the standard 
training testing split i.e. 8,144/8,041 images for training/testing. Note, the retrieval process is performed in 
the testing set by treating all images as queries, and the retrieved images are then evaluated by excluding the 
query image. MATLAB and NVIDIA Tesla K40c GPU are used to perform the experiments. To assess retrieval 
performance, we use Mean Average Precision (mAP) as described in27.

Results and analysis
Results on Oxford Flowers-17 under FGIR setting
In this comparative analysis of proposed method with state-of-arts is done and results (mAPs) are reported 
in Table 2 for. It can be seen that handcrafted features perform poorly with mAPs of 0.101 (LPB59) and 0.112 
(HOG58), as they are unable to distinguish subtle differences in fine-grained images because these methods 
are not designed by keeping subtle details into consideration. However, Deep CNN descriptors shows great 
improvement over handcrafted ones. For instance, pre-trained ResNet18 descriptors shows 0.513 mAP, which 
is around + 0.4 (mAP) improvement over handcrafted features. Further, with fine tuning on target dataset, 
performance is further enhanced with mAPs of 0.877 (Yang et al.21) and 0.928 (Kumar et al.29). With 0.946 mAP, 
the suggested approach is able to achieve better results than others, which confirm the importance of noise 
insertion while training the network on small datasets. Further, mAP@K is also depicted in Fig. 3, where we can 
see that our method gradually improves over fine-tuned R1829 with the increase of K.

Moreover, Tables 3 and 4 depicts the categorical wise performance of Flowers-17 with comparative analysis 
with state-of-arts. From the results, we can observe the methods of45,46 and47 performs much better compared 
to HOG and LBP, and further29 able to improves over these methods in 13 classes. Our method is able to 
outperform29 in thirteen classes.

Results on Cars-196 under FGIR setting
Further, we compare our method with the SOTA on cars-196, which is reported in Tables 5 and 6 respectively. 
On comparing with baselines in Table 5, our method is able to achieve 80.2% mAP which is 3.7% higher than 
76.5% of Kumar et al.29 and far ahead of LBP and HOG. That mainly owes to the effectively learning of image 
representation through intensive augmentation in the form of noise. Along with LBP (0.007 mAP) and HOG 
(0.010 mAP), pretrained ResNet18’s responses performs poorly with mAP of 0.041. This implies that for a 
larger number of fine-grained classes (compared to classes of flowers-17), the pretrained ResNet18 is unable to 
distinguish them. The reason is that through imagenet dataset48 it is learned to focus on the global relationships 
of the object rather than object’s subtle description. Furthermore, in the context of top-1 and top-5 mAP, we can 
see in Table 6 that our method consistently outperforms the SPOC17, CroW20, RMAC22, Wei et al.27 and Kumar 
et al.29 with an 86.14% top1 mAP and 81.62% top5 mAP.

Ablation study
Effect of noise induced on retrieval performance
We conduct experiments on cars-196 to assess the impact of injected noise on retrieval performance. The 
findings, presented in the form of mAP at Top-k, are shown in Table 7, where our proposed work is performs 
well compared to other settings, e.g., 86.14% (with all loss) vs. 84.98 (with LN and LD) vs. 84.12% 

Method

Splits

Mean1 2 3 4 5

LBP59 0.098 0.099 0.101 0.103 0.102 0.101

HOG58 0.111 0.113 0.112 0.111 0.115 0.112

ResNet18 (Pretrained) 0.512 0.509 0.513 0.515 0.518 0.513

Yang et al.21 (Vgg-16) - - - - - 0.877

Kumar et al.29 0.901 0.923 0.946 0.931 0.940 0.928

Our Method 0.947 0.934 0.959 0.939 0.947 0.946

Table 2.  Comparisons of mAPs on Oxford Flowers-17 under FGIR. Significant values are in [bold].

 

Training Set Gallery set Query Set

Category wise 40 25 15

Total images 680 425 255

Table 1.  Five splits setting of Oxford Flowers-17.
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(with LN and LS) and 82.61% (with LD) for Top-1 mAP. This also indicates inclusion of noises at both end 
benefits to learning generalizable features. Figure 4 further visualize the performance under different settings.

Fine-grained recognition
In this ablation study, we analyze the effect of our approach on recognition accuracy. For this we use the cars-196 
dataset and the standard protocol for training and testing. We set the minibatch size to 64, learning rate to 0.0001 
and data augmentation setting as discussed in Section “Training details”. The results in the term of recognition 
accuracy are reported in Table 8, where we can see the boost in accuracy with our approach.

Zero shot learning
Next, we test the generalization of our method in the context of zero-shot setting, namely to test whether the 
proposed method helps to find discriminative features even for the unseen images. In this regard, following 
the settings in34, we conduct the experiment on the Cars-196 and Cub-200-201149 datasets, where the first half 
classes are employed to train the network and the remaining half classes for testing purpose. We conduct the 
zero shot learning experiments using pytorch with max 40 epochs. We implement our method on both base 
networks: resnet18 (R18) and resnet50 (R50). First, we analyze the effectiveness of the proposed method on 
Cub-200-2011 and Cars-196 using experimentation setting (R18, embedding size = 512, learning rate = 0.002, 
gamma = 0.1 for every 15 epochs, batch_size = 240 with 12 samples per class) and the results are reported in Table 
9, where we can see that by including LN  and LS  the retrieval performance tends to increase, which confirms 
using noise in LN  can help to incorporate intra-class variance and noise in LS  serves as a form of regularization.

Further, we analyze the effect of embedding size on retrieval performance (recall@k) which is depicted in 
Fig. 5, and effect of noise in LS on Cub-200-2011 with our approach is shown in Fig. 6. In Figs. 7 and 8, we 
additionally depict the retrieval results for a randomly picked query from each dataset.

In Table 10, we can also see that our method is able to achieve better results compare to baseline methods 
such as EPSHN50 and NormSoftmax51 (where, EPSHN50 is based on contrastive learning approach and 
NormSoftmax51 is based on classification approach). For Resnet50 and Resnet101, we set the batch size to 144 
and 24 samples per class. As per Table 10, our method consistently achieves better results for Cars-196 and 
Cub-200-2011 datasets in terms of recall@k than SOTA. However, few methods performs better than proposed 
method, which can be seen our method’s limitation in context of Cub-200-2011 dataset due to small dataset. 
For SOP31 dataset our model consistently achieves better results compare to others in Table 11. We can also see 
that compared to the baseline methods50,51, the proposed method is able to improve its performance for all three 
datasets. This study confirms that our approach is able to generalize over unseen classes. We also show, with 
resnet101 model the proposed method is able to improve even more.

Conclusion
In this paper, a noise-assisted feature learning approach for FGIR is proposed which alleviates the expensive 
sampling process in triplet learning, and early saturation problem in softmax based learning. The deep CNN 
is jointly trained with multi loss objective dealing with class discriminative learning as well as noise invariant 
learning. Oxford flower 17 and cars-196 datasets are consider to validate our approach, where it achieves 
significant gains over existing schemes. Under the zero-shot setting, we achieved competitive results on cars-

Fig. 3.  Top k mAP comparison between29 and our approach.
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196, Cub-200-2011 and SOP datasets. The proposed approach exhibits great potential and can be explored in 
various industrial applications such as clothing retrieval, face retrieval, biomedical image retrieval, landmark 
retrieval, etc. The main limitation of this task may be the training time compared to normal CNN training 
which needs to be explore in larger networks. A second limitation might be that the loss of the proposed method 
primarily emphasizes a global perspective. This could be addressed by incorporating local attention mechanisms 
to capture subtle features more effectively. In subsequent work, we plan to leverage various deep variations of 
CNN and vision transformers to expand our approach to larger datasets. The applicability of these techniques 
can be evaluated in the medical field, utilizing both supervised and unsupervised learning techniques for 
potential advancements.

Method

Flower Category

Bluebell Buttercup ColtsFoot Cowslip Crocus Daffodil Daisy Dandelion Fritillary

LBP59
Split

1 0.07 0.089 0.098 0.093 0.094 0.089 0.104 0.114 0.105

2 0.073 0.094 0.094 0.088 0.137 0.091 0.085 0.12 0.096

3 0.069 0.088 0.099 0.089 0.096 0.096 0.092 0.145 0.095

4 0.067 0.124 0.093 0.09 0.113 0.074 0.089 0.138 0.103

5 0.076 0.095 0.086 0.088 0.107 0.111 0.091 0.148 0.099

Mean 0.071 0.098 0.094 0.0896 0.1094 0.0922 0.0922 0.133 0.0996

HOG58
Split

1 0.071 0.059 0.095 0.18 0.088 0.059 0.096 0.227 0.054

2 0.091 0.077 0.087 0.182 0.093 0.056 0.093 0.144 0.076

3 0.094 0.093 0.093 0.126 0.121 0.065 0.101 0.203 0.071

4 0.081 0.085 0.15 0.196 0.139 0.057 0.09 0.189 0.063

5 0.077 0.068 0.121 0.137 0.138 0.069 0.11 0.213 0.074

Mean 0.0828 0.0764 0.1092 0.1642 0.1158 0.0612 0.098 0.1952 0.0676

Yang et al.45 0.58 0.43 0.5 0.7 0.7 0.53 0.58 0.38 0.63

Gao et al.46 0.46 0.71 0.68 0.5 0.68 0.73 0.83 0.8 0.73

Ahmed et al.47 0.89 0.92 0.92 0.89 0.94 0.95 0.95 0.99 0.9

Resnet18
(Pretrained)

Split

1 0.441 0.552 0.581 0.391 0.333 0.491 0.76 0.488 0.761

2 0.391 0.398 0.55 0.414 0.401 0.49 0.798 0.475 0.833

3 0.39 0.58 0.57 0.37 0.354 0.431 0.716 0.561 0.845

4 0.331 0.584 0.502 0.331 0.288 0.421 0.726 0.562 0.814

5 0.36 0.492 0.472 0.305 0.292 0.442 0.755 0.667 0.619

Mean 0.3826 0.5212 0.535 0.3622 0.3336 0.455 0.751 0.5506 0.7744

Kumar et al.29
Split

1 0.922 0.976 0.936 0.839 0.782 0.911 0.977 0.917 0.899

2 0.984 0.977 0.92 0.879 0.914 0.921 0.946 0.941 0.919

3 0.969 0.99 0.944 0.897 0.925 0.937 0.979 0.935 0.953

4 0.937 0.949 0.942 0.837 0.872 0.957 0.998 0.949 0.926

5 0.966 0.976 0.934 0.848 0.828 0.965 1 0.955 0.854

Mean 0.9556 0.9736 0.9352 0.86 0.8642 0.9382 0.98 0.9394 0.9102

Our Method
Split

1 0.95 0.945 0.936 0.933 0.906 0.924 1 0.938 0.937

2 0.946 0.987 0.889 0.934 0.909 0.868 0.983 0.96 0.967

3 0.908 0.994 0.92 0.958 0.927 0.958 0.945 0.989 0.988

4 0.968 0.957 0.971 0.84 0.882 0.92 0.84 0.927 0.955

5 0.921 0.989 0.969 0.912 0.814 0.885 0.999 0.944 0.915

Mean 0.9386 0.9744 0.937 0.9154 0.8876 0.911 0.9534 0.9516 0.9524

Table 3.  Comparison of mAPs of categories 1–9 on Oxford Flowers-17 under FGIR.
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Method SPOC17 CroW20 R-MAC22 Wei et al.27 Kumar et al.29 Our method

Top1 mAP 29.86% 44.92% 46.54% 53.30% 84.11% 86.14%

Top5 mAP 36.23% 51.18% 52.98% 59.11% 80.09% 81.62%

Table 6.  Performance (mAP) Comparison on Cars-196 under FGIR. Significant values are in [bold].

 

Method LBP HOG ResNet18 (Pretrained) Kumar et al.29 Our method

mAP 0.011 0.013 0.045 0.765 0.802

Table 5.  Comparison of mAPs on Cars-196 under FGIR. Significant values are in [bold].

 

Method

Flower Category

Iris LilyValley Pansy Snowdrop SunFlower TigerLily Tulip WindFlower

LBP59
Split

1 0.255 0.091 0.094 0.073 0.189 0.066 0.084 0.108

2 0.141 0.073 0.096 0.076 0.154 0.074 0.073 0.116

3 0.155 0.082 0.089 0.084 0.155 0.075 0.082 0.099

4 0.189 0.089 0.12 0.063 0.113 0.086 0.063 0.115

5 0.187 0.083 0.093 0.073 0.154 0.063 0.085 0.119

Mean 0.1854 0.0836 0.0984 0.0738 0.153 0.0728 0.0774 0.1114

HOG58
Split

1 0.467 0.053 0.059 0.061 0.095 0.083 0.131 0.051

2 0.384 0.055 0.061 0.05 0.108 0.088 0.126 0.044

3 0.399 0.051 0.078 0.051 0.11 0.096 0.094 0.049

4 0.417 0.05 0.065 0.048 0.05 0.111 0.063 0.055

5 0.34 0.049 0.05 0.052 0.101 0.118 0.117 0.049

Mean 0.4014 0.0516 0.0626 0.0524 0.0928 0.0992 0.1062 0.0496

Yang et al.45 0.18 0.68 0.58 0.65 0.58 0.45 0.51 0.20

Gao et al.46 0.90 0.75 0.83 0.75 0.88 0.80 0.40 0.88

Ahmed et al.47 1.00 0.70 0.93 0.70 0.95 0.85 0.91 0.95

Resnet18 (Pretrained)
Split

1 0.533 0.541 0.687 0.354 0.833 0.572 0.294 0.672

2 0.441 0.428 0.645 0.398 0.692 0.581 0.277 0.643

3 0.484 0.388 0.684 0.348 0.701 0.593 0.295 0.558

4 0.591 0.438 0.677 0.338 0.748 0.672 0.275 0.739

5 0.634 0.439 0.568 0.401 0.719 0.643 0.264 0.668

Mean 0.5366 0.4468 0.6522 0.3678 0.7386 0.6122 0.281 0.656

Kumar et al.29
Split

1 0.858 0.898 0.990 0.852 0.998 0.933 0.756 0.957

2 0.799 0.922 0.999 0.904 0.978 0.959 0.814 0.928

3 0.960 0.940 0.988 0.886 0.981 0.979 0.846 0.976

4 0.881 0.976 0.994 0.904 0.999 0.967 0.814 0.926

5 0.995 0.962 0.999 0.935 1.000 0.973 0.830 0.976

Mean 0.899 0.940 0.994 0.897 0.991 0.962 0.812 0.953

Our Method
Split

1 0.904 0.946 1.000 0.965 0.996 0.998 0.831 0.991

2 0.792 0.970 0.997 0.903 0.950 0.960 0.869 0.990

3 0.997 0.941 0.988 0.965 0.961 0.998 0.884 0.974

4 0.995 0.990 1.000 0.982 0.987 0.951 0.887 0.905

5 0.999 0.967 1.000 0.993 1.000 0.988 0.806 0.991

Mean 0.938 0.963 0.997 0.962 0.979 0.979 0.856 0.970

Table 4.  Comparison of mAPs of categories 10–17 on Oxford Flowers-17 under FGIR.
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Cub-200-2011 Cars-196

Recall@1 Recall@2 Recall@4 Recall@8 Recall@1 Recall@2 Recall@4 Recall@8

LD 62.09 73.80 82.51 89.13 83.97 89.76 93.80 96.20

LD   + LN 62.39 73.89 82.63 89.46 84.13 90.11 94.13 96.64

LD  + LS 63.28 73.87 82.78 89.72 85.24 91.12 94.81 96.78

LD  + LS  + LN 63.37 74.14 83.24 90.51 85.75 91.64 94.91 96.88

Table 9.  Analysis of proposed method on Cub-200-2011 and Cars-196 using R18.

 

Base network Loss Cars-196

Resnet18

Standard cross entropy 85.23%

LS 86.66%

LS  + LN 86.75%

LS  + LD 86.97%

LN  + LD 85.43%

LS  + LD  + LN 87.38%

Table 8.  Recognition performance (accuracy) analysis on Cars-196.

 

Fig. 4.  Top k mAP when different settings on Cars-196.

 

Approach
LN -  +  -  +   + 

LD  +  -  +   +   + 

LS -  +   +  -  + 

mAP

Top1 0.8261 0.8412 0.8487 0.8498 0.8614

Top2 0.8051 0.8229 0.8285 0.8301 0.8348

Top3 0.7987 0.8127 0.8111 0.8192 0.8285

Top4 0.7853 0.8058 0.8023 0.8046 0.8212

Top5 0.7735 0.8009 0.8011 0.8003 0.8162

Table 7.  Top k mAP when different settings on Cars-196 under FGIR. ‘+’ indicates inclusion of objective ‘−’ 
otherwise. Significant values are in [bold].
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Fig. 6.  Effect of noise in LS on Cub-200-2011 with our approach (R18).

 

Fig. 5.  Effect of embedding size on Cars-196 (Left) and Cub-200-2011 (right) with our approach (R50).
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Fig. 7.  Findings on Cars-196 dataset. The retrieved instance is indicated correctly by a green boundary box, 
and incorrectly by a red boundary box. Dataset Source: ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​j​e​s​​s​i​c​a​l​i​​9​5​3​0​/​s​​t​a​n​f​o​​r​
d​-​c​a​r​​s​-​d​a​t​a​​s​e​t​?​d​a​​t​a​s​e​t​​I​d​=​3​0​0​​8​4​&​s​o​r​​t​B​y​=​d​a​​t​e​C​r​e​a​t​e​d​&​s​e​l​e​c​t​=​c​a​r​s​_​t​e​s​t.
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Fig. 8.  Findings on Cub-200-2011 dataset. The retrieved instance is indicated correctly by a green boundary 
box, and incorrectly by a red boundary box. Dataset Source: ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​v​i​s​i​o​​n​.​c​a​l​t​​e​​c​h​.​e​​​d​u​/​d​a​​t​a​s​​e​t​s​​/​​c​u​b​​​_​2​0​0​
_​2​0​1​1​/.
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Data availability
All images used in Figures 1, 7, and 8 are sourced from publicly available datasets intended for research pur-
poses. Therefore, permission for their use is not required. The data that support the findings of this study and 
publicly available datasets are available at ​h​t​t​p​s​:​​/​/​w​w​w​.​​r​o​b​o​t​s​​.​o​x​.​a​c​​.​u​k​/​~​v​g​g​/​d​a​t​a​/​f​l​o​w​e​r​s​/​1​7​/​i​n​d​e​x​.​h​t​m​l; ​h​t​t​p​s​:​​

Method

SOP

k = 1 k = 10 k = 100

EPSHN50 78.3 90.7 96.3

Zheng et al.37 70.7 85.0 93.7

D & C39 79.77 90.39 95.20

Adaptive hierarchical53 73.6 86.9 94.8

McSAP52 79.9 91.5 96.5

SGSL57512 81.4 91.8 96.2

SGSL572048 83.19 93.0 97.0

HSE54 80.0 91.4 96.3

Multi-Proxy55 80.1 91.3 96.6

Anti-Collapse56 81.2 92.0 -

NormSoftmax51251 78.2 90.6 96.2

NormSoftmax204851 79.5 91.5 96.7

Our Method (R50)512 80.2 91.2 95.8

Our Method (R50)2048 81.8 92.1 96.2

Our Method (R101)2048 83.21 93.2 97.08

Table 11.  Performance (Recall@k) Comparison under Zero-shot setting for SOP31 dataset. Significant values 
are in [bold].

 

Method

CARS-196 Cub-200-2011

k = 1 k = 2 k = 4 k = 8 k = 16 k = 1 k = 2 k = 4 k = 8 k = 16

Triplet7 39.1 50.4 63.3 74.5 84.1 36.1 48.6 59.3 70.0 80.2

LiftedStruct31 49.0 60.3 72.1 81.5 89.2 47.2 58.9 70.2 80.2 89.3

N-pairs32 53.9 66.8 77.7 86.3 - 45.4 58.4 69.5 79.4 -

SCDA27 58.5 69.8 79.1 86.2 91.8 62.2 74.2 83.2 90.1 94.3

CRL-WSL28 63.9 73.7 82.1 89.2 93.7 65.9 76.5 85.3 90.3 94.4

DGCRL34 75.9 83.9 89.7 94.0 96.6 67.9 79.1 86.2 91.8 94.8

EPSHN50 82.7 89.3 93.0 - - 64.9 75.3 83.5 - -

Zheng et al.37 81.1 88.8 93.7 96.7 - 55.2 68.7 79.0 89.5 -

Duan et al.38 78.2 86.2 92.0 95.5 - 61.2 73.7 83.3 90.3 -

Yingying et al. (VGG16-based)30 73.2 82.1 88.6 93.2 95.4 67.5 78.2 86.7 92.0 95.1

D & C39 87.76 70.67 65.97 - - 68.16 69.49 55.35 - -

Yingying et al. res101-based)30 85.4 91.2 94.4 96.5 97.7 73.1 81.5 86.6 92.7 95.4

McSAP52 84.6 91.5 95.1 97.4 - 63.5 75.6 84.8 91.3 -

Adaptive hierarchical53 82.4 89.5 93.8 95.9 - 65.3 76.1 84.7 90.7 -

HSE-EPSHN54 85.4 91.2 96.9 - - 66.9 77.4 85.5 - -

HSE-PA54 89.6 93.8 96.0 - - 70.6 80.1 87.1 - -

Multi-Proxy55 90.3 93.7 96.3 - - 69.6 79.9 87.0 - -

Anti-Collapse56 90.5 94.6 - - - 71.7 81.2 - - -

NormSoftmax51251 84.2 90.4 94.4 96.9 - 61.3 73.9 83.5 90.0 -

NormSoftmax204851 89.3 94.1 96.4 98.0 - 65.3 76.7 85.4 91.8 -

Our Method (R18)512 85.75 91.64 94.91 96.88 98.70 63.37 74.14 83.24 90.51 94.25

Our Method (R50)512 87.27 92.74 95.87 97.70 98.83 66.81 77.14 85.01 91.24 94.55

Our Method (R50)1024 88.17 93.36 96.27 97.82 99.03 67.34 77.57 85.57 91.27 95.59

Our Method (R50)2048 89.78 94.43 96.70 98.22 98.94 68.60 78.95 86.83 91.90 95.0

Our Method (R101)512 90.22 94.34 96.65 98.16 98.94 69.04 79.29 86.66 92.10 95.44

Our Method (R101)2048 91.33 95.20 97.34 98.55 99.13 71.59 81.62 88.18 92.91 95.90

Table 10.  Performance (Recall@k) Comparison under Zero-shot setting. Significant values are in [bold].
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s​-​d​a​t​a​​s​e​t​?​d​a​​t​a​s​e​t​​I​d​=​3​0​0​​8​4​&​s​o​r​​t​B​y​=​d​a​​t​e​C​r​e​a​t​e​d​&​s​e​l​e​c​t​=​c​a​r​s​_​t​e​s​t.
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