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Hepatocellular carcinoma (HCC) is known for its high invasiveness, high fatality rate. Both hypoxia 
and senescence play crucial roles in the initiation and progression of cancer, yet their prognostic 
implications in HCC are yet to be fully understood. The hypoxia-senescence co-related genes (HSCRGs) 
were screened from public databases. Transcriptome data and clinical information were obtained 
from patients with HCC using the Cancer Genome Atlas, GSE76427, and International Cancer Genome 
Consortium (ICGC). The random forest tree algorithm was used to identify the characteristic genes of 
the disease, and the genes were verified by related experiments. SVM algorithm was used to classify 
HCC patients based on HSCRGs. The prediction model based on HSCRGs was established by LASSO, 
univariate and multivariate COX regression analysis. We used the ICGC for outside validation. The risk 
score model was analyzed from subgroup analysis, immune infiltration, and functional strength. The 
expression patterns of key prognostic genes in tumor microenvironment were decoded by single cell 
analysis. A total of 184 HSCRGs were identified. The expression pattern and functional characteristics 
of MLH1 gene in HCC were verified. Two HCC subtypes were identified based on HSCRGs. Then, a 
prediction model based on HSCRGs was established, and risk score was identified as an independent 
prognostic indicator of HCC. A new nomogram is constructed and shows good prediction ability. 
We further determined that the level of infiltration of immune cells and the expression of immune 
checkpoints are significantly affected by the risk score. The immune microenvironment was different 
between the two risk groups. The high-risk group was dominated by immunosuppressed cells, and 
the prognosis was poor. Single-cell analysis revealed the expression of seven key prognostic genes 
in the tumor microenvironment. Finally, qPCR results further verified the expression levels of seven 
prognostic genes. HSCRGs are of great significance in the prognosis prediction, risk stratification and 
targeted therapy of patients with HCC.
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Hepatocellular carcinoma (HCC) accounts for nearly 80% of primary liver cancers and is the third most common 
cause of cancer-related deaths globally1,2. Owing to the early symptoms are not obvious, most patients with HCC 
are already in the advanced stage when diagnosed3. This makes the chance of surgical eradication small4. In 
recent years, with the development of immunotherapy, it plays a very important role in the treatment of tumors5, 
especially in the treatment of advanced HCC6, there is a consensus of the latest guidelines that atezolizumab 
plus bevacizumab has become the first-line preferred regimen for advanced HCC7. Despite advancements in 
therapeutic approaches for HCC, the overall 5-year survival rate for HCC patients still remains below 20%8. 
Therefore, the identification of molecular biomarkers is critically significant for the early diagnosis, survival 
prognosis, and recurrence monitoring of HCC9.

Hypoxia represents an inherent characteristic of solid tumors, arising from the imbalance between the 
proliferation rate of tumor cells and the vascular nutrient supply10. Existing research has recognized the crucial 
role of hypoxia in tumor angiogenesis, cell proliferation, cellular differentiation, and apoptosis11,12. However, 
the underlying regulatory mechanisms still remain unclear. Hypoxia-inducible factor (HIF), a key transcription 
factor expressed across nuclear cells, becomes upregulated under hypoxic conditions and serves a pivotal role 
in regulating cellular senescence13. Study also suggests that intermittent hypoxia is linked to oxidative stress and 
chronic inflammation, thus accelerating the cellular senescence process14.

Cellular senescence is defined as the gradual decline in the normal physiological functions and proliferative 
capacity of cells over time or in response to external stress, resulting in an irreversible or persistent cell cycle 
arrest process15,16. Notably, Carlos et al.17 identified 12 features of senescence, such as genomic instability 
and mitochondrial dysfunction, that are significantly associated with hypoxia, serving as either causes or 
consequences. The hypoxic microenvironment may protect tumors from natural antitumor immune responses 
by promoting immune evasion, thus modulating cellular senescence16. Furthermore, the incidence of cancer 
increases in the elderly population18. This indicates a potential connection between hypoxia, senescence, and 
cancer, where hypoxia contributes to both senescence and cancer. However, the prognostic role of hypoxia-
induced senescence in HCC remains to be elucidated.

MutL homolog 1(MLH1), the protein encoded by this gene can heterodimerize with mismatch repair 
endonuclease PMS2 to form MutL alpha, part of the DNA mismatch repair(MMR) system19. The encoded 
protein is also involved in DNA damage signaling and can heterodimerize with DNA mismatch repair protein 
MLH3 to form MutL gamma, which is involved in meiosis20.  This gene was identified as a locus frequently 
mutated in hereditary nonpolyposis colon cancer (HNPCC)19. Studies have shown that defects in the MMR 
genes, especially MLH1, can lead to genome-wide mutations and the development of cancer21–23. Most of the 
studies on MMR and MLH1 gene focus on intestinal tumors, but their studies in HCC are still very limited and 
need to be further elucidated.

The aim of this study was to explore the molecular subtypes and prognostic characteristics of hypoxia- 
senescence co-related genes (HSCRGs) in HCC through the development of molecular subtyping and prognostic 
risk models. The findings could potentially contribute to clinical risk stratification and personalized treatment 
for HCC patients, thereby improving the prognosis of HCC patients.
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Materials and methods
Data collection and identification of HSCRGs
In this study, a total of 478 HCC samples from two high-throughput platforms were included: 363 samples from 
TCGA (https://tcga-data.nci.nih.gov/tcga/) and 115 samples from GEO (GSE76427) ​(​​​h​t​t​p​:​/​/​w​w​w​.​n​c​b​i​.​n​l​m​.​n​i​h​
.​g​o​v​/​g​e​o​/​​​​​)​. The mRNA expression data and clinical information from the Japan-HCC cohort were downloaded 
at International Cancer Genome Consortium (ICGC, https://dcc.icgc.org/projects/LIRI-JP). Additional 
information, including somatic mutation data, copy number variations (CNV), clinical details, and survival data, 
was collected. All patients were required to have complete follow-up information and RNA-seq data. Patients 
with incomplete survival information were excluded from subsequent analyses. Subsequently, 308 senescence 
-related genes (SRGs) were obtained from the CellAge database (http://genomics.senescence.info/cells/, accessed 
on February 2, 2024). Additionally, a search with the keyword “hypoxia” in the GeneCards database ​(​​​h​t​t​p​:​/​/​w​w​w​.​
g​e​n​e​c​a​r​d​s​.​o​r​g​/​​​​​, accessed on February 2, 2024) under the filter condition of Relevance Scores > 1.5 yielded a total 
of 1603 hypoxia-related genes (HRGs). Intersection of these sets using Venn diagram resulted in 184 HSCRGs 
(Table S1). The single-cell RNA seq (scRNA-seq) data of 4 HCC patients were obtained from GSE146115 in the 
GEO database, with a total of 3200 cells obtained. Table S2 presents baseline characteristics of these cohorts.

Unsupervised clustering based on HSCRGs
The R package “ConsensusClusterPlus”24 was utilized for hierarchical agglomerative clustering of samples. 
Unsupervised analysis incorporated stability evidence to ascertain cluster count and membership. This iterative 
process was repeated 1,000 times to ensure clustering stability.

Gene enrichment analysis
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) gene enrichment analysis 
was used to explore the relevant cytological functions and pathways of DEGs25–27. q-value < 0.05 was the cutoff 
criterion for determining whether a gene is significantly enriched.

Immune cell infiltration and immune function analysis
We employed the “GSVA” R package to perform single-sample gene set enrichment analysis (ssGSEA) for the 
quantitative assessment of immune cell infiltration and immune functionality in each sample. Additionally, 
48 immune checkpoints from prior studies were incorporated28. The stromal/immune/estimate scores were 
computed using the “estimate” R package. Further analysis of the correlation between the expression of HLA-
DPA1/CD4 in different immune cell types and marker genes was conducted using the Tumor Immune Estimation 
Resource (TIMER) database (timer.comp-genomics.org), accessed on February 22, 2024. The TIMER offers 6 
main analysis modules that allow users to interactively explore the association between immune infiltration and 
a variety of factors, including gene expression, clinical outcomes, somatic mutations, and somatic copy number 
alterations29. Stemness Score (RNAss) was downloaded from the Pan-Cancer Atlas Center at ​h​t​t​p​s​:​/​/​p​a​n​c​a​n​a​t​l​
a​s​.​x​e​n​a​h​u​b​s​.​n​e​t​​​​​.​​

Identification of differentially expressed genes between hypoxia and senescence co-related 
Subtypes
The “Limma” R package30was employed to detect differentially expressed genes (DEGs) among distinct HSCRGs 
subtypes, considering an adjusted p-value threshold of < 0.01(adjusted for multiple testing using the Benjamini–
Hochberg correction method). The overlapping set of DEGs between the two groups was then identified, and 
their expressions across all samples were extracted for further analysis.

Screening of disease characteristic genes using the random forest algorithm
In this study, we employed the random forest model for gene selection31. To ensure the stability and convergence 
of the model, the number of trees (ntree) was set to 500. Additionally, other hyperparameters were configured as 
follows: the maximum number of features (max_features) was set to “sqrt”, meaning that the number of features 
considered at each split is the square root of the total number of features; the minimum number of samples 
required to split an internal node (min_samples_split) was set to 2; and the minimum number of samples 
required in a leaf node (min_samples_leaf) was set to 1. The importance score, measured by Mean Decrease 
Gini, was utilized to identify genes critical for disease classification. The parameter settings were determined 
based on default configurations and preliminary experimental results, ensuring optimal model performance 
while mitigating the risk of overfitting.

Construction of the HSCRGs-based prognostic risk model
A training dataset (n = 239) and a test dataset (n = 239) were randomly selected from a pool of 478 patients in a 
1:1 ratio, so as to prevent overfitting, select the optimal model and parameters, and provide a reliable assessment 
of the generalization ability of the model. In the training cohort, we utilized the "survival," "glmnet," "survminer," 
and “timeROC” R packages to perform univariate and multivariate Cox regression analyses, and employed 
LASSO regression to construct the risk score. In the LASSO regression model, we utilized the R package “glmnet” 
for feature selection and model construction32. Specifically, we determined the optimal lambda value via tenfold 
cross-validation to ensure that the model avoided overfitting while retaining the most predictive genes. During 
the cross-validation process, the lambda value corresponding to the minimum cross-validation error was selected. 
Additionally, the alpha parameter was set to 1 to enforce the L1 regularization property of LASSO regression, 
enabling sparse feature selection. Initially, univariate Cox regression analysis was conducted to identify genes 
significantly associated with prognosis (P < 0.05, adjusted for multiple testing using the Benjamini–Hochberg 
correction method). Subsequently, these genes were subjected to LASSO regression analysis, with the optimal 
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model parameters selected through tenfold cross-validation. Following this, multivariate Cox regression analysis 
was performed to establish the risk score, which was determined based on the minimum Akaike Information 
Criterion (AIC) value. A lower AIC value indicates a more accurate model33.The risk score was formulated as a 
predictive factor, represented by the sum of coefficients and associated genes: Risk score20,23,24 = ∑n

i=1Coefi × Xi, 
Where Coefi is the correlation coefficient of the prognostic key genes, and Xi signifies the expression of the 
prognostic key genes. Lastly, multivariate Cox proportional hazards regression analysis was executed to identify 
crucial clinical phenotypes.

Validation of the HSCRGs-based risk score
To evaluate the generalizability of our model, we employed both a test set and an external validation dataset. 
Specifically, we validated the model’s generalizability by applying the risk score to the LIRI-JP dataset from 
the ICGC database, which comprises survival status and survival time data from 231 HCC patients. We 
reviewed prognostic signatures developed by various researchers in recent years, including anoikis-related gene 
signatures34, methylation-related gene signatures35, immune-related gene signatures36, and ferroptosis-related 
gene signatures37. Additionally, we conducted a C-index comparison, where the C-index ranges from 0.5 to 1, 
with values closer to 1 indicating higher predictive accuracy.

Quality control and single-cell RNA-seq analysis
To investigate tumor cell heterogeneity in HCC cells, we incorporated single-cell RNA sequencing data from 
GSE146115. Quality control (QC) procedures were conducted using the R package “Seurat”. Single cells were 
deemed low-quality and subsequently removed if they exhibited fewer than 50 unique molecular identifiers 
(UMIs) or if mitochondrial-derived UMI counts exceeded 5%. Patient batch effects were normalized using the 
integration function within “Seurat”. The top 1500 variable genes were selected for further analysis. Subsequently, 
principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) were employed 
to process the data, with major cell clusters visualized in two-dimensional t-SNE plots38. We employed the 
FindAllMarkers function to identify the markers of each cell cluster. The R package “SingleR” is used for 
the annotation of different cell types39. Finally, the R packages “CellChat”40 and “patchwork” were used for 
intercellular communication analysis and network visualization.

Human protein atlas (HPA)
Cancer tissue microarray sections were obtained from HPA (https://www.proteinatlas.org/) for 
immunohistochemical staining, and the corresponding slides were digitally scanned to generate images. All 
relevant immunohistochemistry results in this study are from the HPA database.

Cells culture and establishment of stably transfected cells
One strain of normal human liver cells (LO2) and three strains of human liver cancer cell lines (Hep 3B, 
HepG2, and Huh-7) were provided by the State Key Laboratory of Cellular Stress Biology at the School of Life 
Sciences, Xiamen University. Each cell line was cultured in its specific culture medium. MLH1 was knocked 
down with pPLK-CMV-MLH1-sh1-GFP-Puro plasmid (MLH1). pPLK-CMV-GFP-Puro plasmid was used as 
control (NC). The plasmids were purchased from GenePharma (Shanghai, China), and the whole constructs 
were verified by sequencing. Briefly, Hep 3B cells were placed in 6-well plates overnight and then transfected 
with pcDNA3.1/MLH1-sh1 and pcDNA3.1/MLH1-sh2 plasmids and pcDNA3.1/NC plasmid using LipoMax 
reagent (SUDGEN, China) according to the supplier’s instructions. Twenty-four hours after transfection, cells 
were selected with 1 μg/ml puromycin (Invitrogen, USA) for 14 days. Stable colonies were screened and stored 
in 1 μg/ml puromycin.

Quantitative real-time PCR
Total RNA extracts were prepared from cells and tissues using TRIzol reagent, followed by reverse transcription 
into cDNA for qRT-PCR. After obtaining the CT values for the target samples, the relative expression levels 
of the target genes were calculated using 2^(− ΔΔCt), with normal liver cells and adjacent tissues serving as 
controls. Human ACTB or GAPDH was utilized as the reference gene. The primer sequences were synthesized 
by QIAGEN Biotech Co., Ltd. (Xiamen Synthesis Department), as detailed in Table S3.

Western blot
The protein was transferred onto a polyvinylidene difluoride (PVDF) membrane (Millipore, Billerica, MA, 
USA) following 10% SDS-PAGE electrophoresis. After blocking with 5% skim milk for 1 h, the membrane was 
incubated overnight at 4  °C with MLH1 antibody (diluted to 1:1000; #ab131924, Abcam, USA) and β-actin 
antibody (diluted to 1:1000; #ab115777, Abcam, USA). Subsequently, the membrane was incubated at room 
temperature for 1 h with secondary antibodies conjugated to enzymes. The blot signal was detected using an 
enhanced chemiluminescence reagent (Advansta, USA).

Cell counting Kit-8 assay
The growth of Hep 3B cells was assessed using the CCK-8 assay kit (APExBIO, USA). A total of 2000 cells were 
seeded per well in a 96-well plate with 100 μL of culture medium and incubated for a duration of 4 days.

Colony formation assay
Transfected Hep 3B cells are grown in 6-well plates (500 cells per well) and cultured for approximately 14 days. 
The medium was changed every 3 days. The cells were then fixed with 4% PFA and stained with 0.1% CVSS for 
20 min. After rinsing with PBS, colony formation was photographed and counted.
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Flow cytometry analysis of the cell apoptosis
Following a 48-h period of Hep 3B cells transfection and incubation, the cells were carefully washed and 
subsequently collected in flow cytometry tubes. Staining was performed in strict accordance with the instructions 
provided by the reagent manufacturer (YEASEN, #40305ES20, China), followed by detection using an advanced 
analytical flow cytometer (BD LSRFortessa™ X-20, USA).

Wound-healing assay
Hep 3B cells were seeded in a six-well plate and cultured overnight until confluence was achieved. Subsequently, 
the cells were gently scratched using a 200 μl pipette tip to create a wound, and the process of wound healing was 
monitored at both 0 and 48 h.

Cell migration and invasion assays
The stably transfected cells (Hep 3B) were seeded in transwell chambers (8  mm pore size, Corning, USA) 
containing 100  μl of serum-free DMEM medium. The lower chamber was filled with 600  μl of medium 
supplemented with 20% FBS. To evaluate cellular invasion capability, the transwell chambers were pre-coated 
with matrigel and after a further incubation period of 48 h, the invaded cells that traversed the membrane were 
stained using a solution of 0.1% crystal violet and subsequently quantified.

Statistical analysis
Biological information analyses were conducted using R version 4.3.2. Data are expressed as mean ± SD of three 
independent tests. Differences between experimental and control groups were compared by Student’s t-test and 
one-way or two-way ANOVA. Survival rates were calculated by the K-M method. Results were analysed using 
GraphPad Prism 8.0. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, not significant.

Results
Study workflow
In this study, we integrated bioinformatics, machine learning, and experimental validation methodologies, as 
outlined in the accompanying flowchart (Fig. 1).

Genetic variation of HSCRGs in HCC
Using the “Venn” R package, 1603 hypoxia-related genes and 307 senescence -related genes were analyzed to 
identify 184 HSCRGs (Fig.  2a). Initially, widespread copy number variations (CNV) were observed on the 
chromosomes of HSCRGs (Fig. 2b). The analysis indicated that CNV is prevalent in HSCRGs associated with 
HCC. Over half of the HSCRGs exhibited copy number gains (Fig. S1), with SHC1 and TP73 being the most 
common genes associated with copy number gains and losses, respectively. Subsequently, we investigated the 
differential expression of these genes and identified 20 genes significantly upregulated in cancer tissues (Fig. 2c). 
Univariate COX and correlation analysis were employed to study the interaction, association, and impact of 
these DEGs on disease prognosis. 16 genes were identified as risk factors (HR > 1), 3 genes as a protective 
factor (HR < 1), and they exhibited a positive correlation, significantly influencing HCC prognosis (all P < 0.05) 
(Fig. 2d), suggesting that they may contribute to the occurrence and development of HCC.

MLH1 was identified as a disease characteristic gene
In order to further screen disease characteristic genes, we used the random forest algorithm to analyze the 
above 20 differential genes, and the results showed that MLH1 was the most important for disease (Fig. 3a). 
Survival analysis showed that HCC patients with high MLH1 expression had significantly lower survival rates 
(Fig. 3b). qPCR results further verified that MLH1 was highly expressed in liver cancer cell lines, while it was low 
expressed in normal liver cells (Fig. 3c). Western blot results showed that the expression of MLH1 in malignant 
tumor cells was higher than that in normal cells (Fig.  3d). It can be seen that MLH1 is highly expressed in 
Hep 3B cells, therefore, we will use Hep 3B cells for our subsequent experiments. In addition, we searched the 
immunohistochemical staining results of MLH1 from the Human Protein Atlas (HPA) database, and also found 
that MLH1 protein was highly expressed in tumor tissues compared to normal tissues (Fig.  3e,f). Similarly, 
single-cell sequencing also showed that MLH1 was highly expressed mainly in liver malignant cells (Fig. 3g). 
These results indicate that MLH1 gene, as a co-related gene of hypoxia and senescence, is highly expressed in 
HCC and also predicts poor survival prognosis.

To elucidate the effect of MLH1 on HCC cells, we constructed two MLH1-targeting shRNA and transfected 
them into Hep 3B HCC cell lines. The efficiency of MLH1 knockdown was detected by qPCR and western 
blot (Fig. 4a,b). We found that MLH1 knockdown significantly inhibited the proliferation and clone formation 
capacity of Hep 3B cells in the CCK-8 and plate cloning experiments, respectively (Fig. 4c,d). The suppression 
of MLH1 expression, meanwhile, can effectively trigger apoptosis in Hep 3B cells (Fig. 4e). The results of wound 
healing assay showed that the migration ability of Hep 3B cells was significantly inhibited after knockdown 
of MLH1 (Fig.  4f). At the same time, the transwell assay also showed that MLH1 knockdown significantly 
inhibited the migration and invasion ability of Hep 3B cells (Fig. 4g). These results suggest that MLH1 may be an 
oncogene, as inhibiting the expression of MLH1 can suppress the proliferation, migration and invasion of HCC 
cells and induce apoptosis.

The initial clustering: unique immune infiltration characteristics and biological behaviors of 
hypoxia and senescence co-related subtypes
We utilized the R package “ConsensusClusterPlus” to conduct a cluster analysis of the patients, based on the varied 
expression patterns of HSCRGs. The analysis delineated two hypoxia and senescence correlated phenotypes, 
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designated as HSCRGs-clusters A and B (Fig.  5a). Furthermore, the principal component analysis (PCA) 
plot successfully differentiated the distribution patterns of HCC samples within clusters A and B of HSCRGs, 
demonstrating the efficacy of this clustering pattern (Fig. 5b). Among the two clusters, patients in HSCRGs-
cluster A had a better survival prognosis, while patients in HSCRGs-cluster B had a relatively poor survival 
prognosis (P < 0.001) (Fig. 5c). A heatmap revealed elevated expression levels of HSCRGs in HSCRGs-cluster 
B, corresponding with advanced clinical stages (Fig. 5d). Additionally, we utilized the single-sample gene set 
enrichment analysis (ssGSEA) algorithm to assess the degree of immune infiltration between the two subgroups 
(Fig. 5e). The results revealed that HSCRGs-cluster B exhibited a markedly higher abundance of immune cells, 
including activated dendritic cells, MDSC and regulatory T cells. In contrast, HSCRGs-cluster A is enriched 
with only two types of cells, eosinophilia and neutrophils. To explore the biological distinctions between the two 
HSCRGs-clusters, we conducted GO and KEGG-related GSVAs (Fig. 5f,g). The results indicated that biological 
processes related to amino acid metabolism and signaling pathways associated with the metabolism of various 
bioactive substances were significantly enriched in cluster A. In contrast, the positive regulation of organelle 
tissue and the pathogenic Escherichia coli infection signaling pathway were significantly enriched in cluster B. 
These results showed that the two subgroups exhibited distinct characteristics in terms of survival prognosis, 
gene expression, and immune infiltration levels.

Fig. 1.  The flowchart of the entire study.
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The secondary clustering: comprehensive analysis of differentially expressed genes based on 
hypoxia and senescence co-related subtypes in HCC
To further investigate the biological functions of HSCRGs subtypes in HCC, a differential analysis was 
conducted to identify the differentially expressed genes (DEGs) within HSCRGs clusters using the “limma” 
script. The consensus clustering analysis identified 831 DEGs, revealing three distinct gene cluster subtypes: 216 
samples in gene cluster A, 186 samples in gene cluster B, and 76 samples in gene cluster C (Fig. 6a). Survival 
analysis showed that patients with gene cluster C had the worst prognosis, gene cluster A patients had the best 
prognosis, and patients with gene cluster B had a median prognosis (P < 0.001) (Fig. 6b). A heatmap illustrates 
that the majority of patients in gene clusters A and C are aligned with HSCRG clusters A and B, respectively 
(Fig. 6c). Expressions of all 184 HSCRGs varied significantly across the different gene clusters (Fig. 6d). Thus, 
the gene clusters corresponded well with HSCRGs-clusters. GO enrichment analysis revealed that the DEGs 
were involved in organic acid catabolic and carboxylic acid catabolic processes. Additionally, KEGG pathway 
enrichment analysis indicated that these DEGs were predominantly enriched in the cell cycle, ECM receptor 
interaction, and other signaling pathways (Fig. 6e,f).

Construction of a prognostic signature based on differentially expressed genes
An analysis was conducted to assess the prognostic value of differentially expressed genes (DEGs) based on 
HSCRGs in HCC patients. Specifically, univariate Cox analysis was executed, identifying 443 prognostic factors 
with p < 0.05, including 103 favorable factors and 340 risk factors. The figure displays the top 10 genes with 
the most significant prognostic impact (Fig. 7a). Using the “glmnet” package, LASSO analysis was performed, 

Fig. 2.  (a) A total of 184 HSCRGs. (b) The location of CNV alterations of HSCRGs on different chromosomes. 
(c) The expression of different HSCRGs between normal and tumor tissues. (d) Prognostic network diagram 
of DEGs in HCC. The circle size represents the range of significance values of each DEG on the prognosis. 
The p-values were calculated by log-rank test. Green dots represent favorable factors for prognosis, and purple 
dots represent risk factors for prognosis. The lines linking DEGs represent their correlation. The thickness of 
the lines represents the strength of correlation between DEGs. Negative and positive correlations were marked 
with blue and red, respectively. HSCRGs, hypoxia-senescence co-related genes; CNV, copy number variation; 
HCC, hepatocellular carcinoma; DEGs, differentially expressed genes. *p < 0.05; **p < 0.01; ***p < 0.001.
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selecting 11 essential variables from the pool of 443 prognostic factors (Fig. 7b,c). Multivariate Cox analysis 
was employed to establish a prognostic risk model consisting of seven key prognostic genes and to calculate 
the risk score (RS) for HCC patients (Fig. 7d). The computation of the RS utilized the following formula: Risk 
score = (0.369) * KPNA2 + (0.271) * TRIB3 + (0.232) * ATP1B3 + (0.147) * EPO + (− 0.157) * CXCL9 + (− 0.139) * 
LINC01554 + (-0.132) * ANXA10. To validate the impact of these seven key prognostic genes on the survival and 
prognosis of HCC patients, the relationship between the expression levels of these genes and patients’ survival 
rates was analyzed. Findings revealed a significant association between the expression levels of these genes 
and patients’ survival prognosis. Specifically, patients exhibiting high expression of KPNA2, ATP1B3, TRIB3, 
and EPO demonstrated a significantly reduced survival rate, whereas those with elevated levels of CXCL9, 
LINC01554, and ANXA10 showed a significantly enhanced survival rate (Figs.  7e–k; S2a–g). These results 
emphasize the critical role of these seven genes.

Fig. 3.  (a) Random forests identifying key genes for disease. (b) Kaplan–Meier curves showed overall survival 
difference between high and low MLH1 expression groups in the TCGA-LIHC cohort (p = 0.037). (c, d) Real 
time-PCR and Western blot revealed that the expression of MLH1 was notably increased in HCC cell lines. (e, 
f) Immunohistochemical staining of MLH1 in tumor tissues and normal tissues of HCC patients in the HPA 
database (100 ×). (g) Expression pattern of MLH1 in the tumor microenvironment by single cell analysis. HCC, 
hepatocellular carcinoma; HPA, Human Protein Atlas.*p < 0.05, ** p < 0.01.
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Fig. 4.  (a, b) The knockdown levels of MLH1 in Hep 3B cell line were detected by qPCR and western blot. 
β-actin was used as internal parameter. (c) Cell proliferation capacity was determined by CCK-8 analysis 
after knockdown of MLH1 in Hep 3B cells. (d) Effect of inhibition of MLH1 expression on colony formation 
of Hep 3B cells. (e) Effect of inhibition of MLH1 gene expression on apoptosis of Hep 3B cells (f) Wound 
healing assays revealed that knockdown MLH1 notably inhibited migration ability of Hep 3B cells (100 ×). (g) 
Transwell assays revealed that knockdown MLH1 notably inhibited migration and invasion of Hep 3B cells 
(100 ×). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Fig. 5.  (a) The consensus matrixes for all HCC samples displayed the clustering stability with 1000 iterations. 
All samples were clustered into an appropriate number of subtypes (k = 2). (b) Principal component analysis of 
the two subgroups. (c) Kaplan–Meier curves showed the overall survival difference between HSCRGscluster 
A and B (p < 0.001). (d) The heatmap demonstrates the expression of HSCRGs in different HSCRGsclusters. 
Heatmap colors indicate relative HSCRGs expression levels. (e) The abundance of each immune cell infiltration 
in HSCRGscluster A and B. (f, g) GO and KEGG related GSVA showing the activation status of biological 
behaviors in HSCRGscluster A and B.HCC, hepatocellular carcinoma; HSCRGs, hypoxia-senescence co-
related genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes(www.kegg.jp/kegg/
kegg1.html); GSVA, gene set variation analysis. *P < 0.05, ** P < 0.01, ***P < 0.001.
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Fig. 6.  (a) The consensus matrixes for TCGA-LIHC cohorts based on the DEGs among the 2 HSCRGs 
clusters. TCGA samples were clustered into an appropriate number of subtypes (k = 3). (b) Kaplan–Meier 
curves showed an overall survival difference between gene clusters (p < 0.001). (c)The heatmap shows the 
expression of the hypoxia and senescence co-related DEGs in different HSCRGs clusters and gene clusters. (d) 
The difference of HSCRGs expression in different gene clusters. (e, f) GO and KEGG enrichment analysis of 
hypoxia and senescence co-related DEGs. DEGs, differentially expressed genes; HSCRGs, hypoxia-senescence 
co-related genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes(www.kegg.jp/kegg/
kegg1.html). *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 7.  (a)The univariate Cox analysis of hypoxia-senescence co-related DEGs. (b, c) Identification of 
feature prognostic variables via LASSO analysis. (d) The prognosis key genes coefficient via multivariate 
Cox regression analysis. (e–k) Survival curves of 7 key prognostic genes (p < 0.001 and 0.05). (l) The Sankey 
diagram shows the potential relationship of risk score and clinical survival outcome in HSCRGs-clusters 
and gene clusters. (m, n) Difference analysis of risk score in HSCRGs-clusters and gene clusters. DEGs, 
differentially expressed genes; HSCRGs, hypoxia-senescence co-related genes (p < 0.001).
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The Sankey plot delineates the potential correlation between the risk score and clinical prognosis within 
HSCRGs clusters and gene clusters (Fig. 7l). HCC patients were initially classified into two HSCRGs clusters 
and then divided into three gene clusters. Contrary to gene cluster A, which is associated with more favorable 
prognoses, patients in gene cluster C, characterized by poorer prognoses, were grouped with the high-risk 
score group. Similarly, the majority of patients in gene cluster B, characterized by unfavorable prognoses, also 
were part of the high-risk score group. Further investigation into the relationship between the RS and the two 
clustering modes revealed significant differences in the RS across the diverse clustering modes. Notably, the 
median RS in HSCRGs-cluster B was significantly higher than in HSCRGs-cluster A (p < 0.001) (Fig.  7m). 
Moreover, the median RS of gene cluster C exceeded that of gene clusters A and B (p < 0.001) (Fig. 7n). Patients 
in HSCRGs cluster B and gene cluster C demonstrated a relatively worse prognosis, validating the consistency 
of the predictive efficacy. These results showed that the risk score functions as an independent indicator for 
prognostic prediction.

Development and validation of a risk model based on risk score
To explore the potential association between the risk score and clinical outcome prognosis for HCC samples, the 
samples were divided into a training cohort and a test cohort at a 1:1 ratio using the “caret” script. In addition, 
the ICGC-LIRI-JP cohort was utilized as our independent external validation cohort. Significant differences in 
survival rates between the low-risk and high-risk groups were observed across the entire cohort, training cohort, 
testing cohort, and ICGC cohort, with the poorest prognosis noted in the high-risk group across all four cohorts 
(p < 0.05) (Figs.  8a–c; S3a). Concurrently, Kaplan–Meier survival analysis indicated that the high-risk group 
experienced worse progression-free survival (PFS) compared to the low-risk group across all three cohorts 
(Fig. 8d–f). The area under the curve (AUC) from the ROC curve served to evaluate the model’s predictive 
efficacy. At one, three, and five years, the AUC of the ROC curve was 0.753, 0.728, and 0.706 for the entire 
cohort; 0.829, 0.833, and 0.786 for the training cohort; 0.690, 0.646, and 0.639 for the test cohort; 0.829, 0.760, 
and 0.503 for the ICGC cohort (Figs. 8g–i; S3b). This suggests that the risk score is more effectively utilized to 
predict patient prognosis. The nomogram illustrated that the risk score played a pivotal role in forecasting overall 
survival at 1, 3, and 5 years (Fig. 8j). Calibration curves indicated that the predictive lines closely approximated 
the ideal line at 1, 3, and 5 years (Fig. 8k). The nomogram also showed good predictive performance in the 
ICGC cohort (Fig. S3c,d). The areas under the ROC curves (AUCs) for the nomogram in the entire cohort, 
training cohort, test cohort, and ICGC cohort were 0.765, 0.780, 0.751, and 0.866, respectively. These AUC 
values were superior to other clinical features, thereby demonstrating the robust performance of this nomogram 
in predicting the survival of HCC patients (Figs. 8l; S3e–g). The expression patterns of the seven key prognostic 
genes across different risk groups, as well as the distribution of survival time in relation to the risk score within 
the training cohort, test cohort, and ICGC cohort were respectively displayed (Fig. S4a–c). These results showed 
that risk score has robust predictive effect.

Finally, we performed a comprehensive and systematic comparison of the prognostic signatures associated 
with HCC that have been developed in recent years. The results demonstrated that the C-index of our model was 
significantly higher than those of the other four models, thereby providing stronger evidence for the superior 
predictive accuracy and overall performance of our model (Fig. S5).

Analyzing tumor immune microenvironment, functional strength and mutation 
characteristics in the two risk groups
Results from CIBERSORT showed higher infiltration levels of resting CD4 + memory T cells and Macrophages 
M1 in the low-risk group, while activated CD4 + memory T cells, Monocytes, and Neutrophils demonstrated 
elevated levels in the high-risk group (Fig. 9a,b). Findings from ssGSEA revealed that several immune functions, 
including cytolytic activity and type I IFN response, were heightened in the low-risk group (Fig. 9c). Furthermore, 
it was observed that expression levels of immune checkpoints, including CD44, CTLA4, and PDCD1, were 
significantly higher in the low-risk group than in the high-risk group (Fig. 9d). The immune cell bubble plot, 
generated by seven different software tools, predicted the correlation between various immune cells and risk 
scores (Fig. 9e). Correlations between the seven prognostic key genes and 22 immune infiltrating cells were 
also unfolded (Fig. 9f). Diverse immune infiltrating cells were significantly correlated with the seven prognostic 
key genes, such as CD8 T cells, Macrophages M1, and activated CD4 memory T cells, etc., indicating potential 
functional associations. The ESTIMATE algorithm analysis revealed that the stromal score and composite 
score were significantly higher in the low-risk group, suggesting that the tumor microenvironment in the low-
risk group possessed elevated levels of stromal and immune cells, leading to reduced tumor cell infiltration 
(Fig. 9g). Accumulating evidence indicates that the elevated expression of stemness-related biomarkers in tumor 
cells correlates strongly with drug resistance and cancer recurrence. Therefore, the correlation between RNA 
stemness score (RNAss) and risk score was assessed, revealing a significantly positive correlation between the 
risk score and RNAss (Fig. 9h). These findings demonstrated that the low-risk group exhibited an immune-
active profile, while the high-risk group was characterized by a relatively immune-cold status. Patients within 
the low-risk group could potentially derive greater benefits from immunotherapy, given their active tumor 
microenvironment.

We presented the top ten significantly enriched functional annotations for the two risk groups using GSEA 
(Fig. S6a–d). The results indicate that in the high-risk group, there is a strengthening of functional annotations 
related to the chromosome centromeric region, condensed chromosome centromeric region, and cell cycle, 
etc. Conversely, in the low-risk group, functional annotations related to cellular amino acid catabolic process, 
fatty acid catabolic process, and fatty acid metabolism, etc. were strengthened. Next, we presented the top 20 
most frequently altered genes in both the low-risk and high-risk groups. CTNNB1 (25%) and TP53 (39%) were 
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Fig. 8.  (a–c) Survival differences between the low-risk group and the high-risk group in the entire cohort, 
training cohort, and test cohort (p < 0.001 and 0.05). (d–f) PFS between low-risk group and high-risk group 
in the entire, training and test cohorts (p < 0.001 and 0.05). (g–i) ROC curves at 1, 3, and 5 years in the entire 
cohort, training cohort, and test cohort. (j) Predictive nomogram based on the risk score and other clinical 
features. (k) Calibration curves at 1, 3, and 5 years. (l) ROC curves for clinical parameters, risk score and 
nomogram in the entire cohort. PFS, Progression-free survival; ROC, receiver operating characteristic curve.
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Fig. 9.  (a) Estimation of 22 immune infiltrating cells between the low-risk group and the high-risk group by 
CIBERSOR. (b) Proportion of 22 immune infiltrating cells for each HCC sample by CIBERSOR. (c) Estimation 
of immune activities between the low-risk group and the high-risk group by ssGSEA. (d) The expression 
pattern of immune checkpoints between the low-risk group and the high-risk group. (e) Different software 
analyzed the correlation of immune cells with risk scores. (f) Correlations between 7 key genes and 22 immune 
infiltrating cells. (g) Differences in stromal, immune, and ESTIMATE scores in the two different risk groups. 
(h) The relationship between risk score and RNAss. HCC, hepatocellular carcinoma; ssGSEA, Single sample 
gene set enrichment analysis; RNAss, RNA stemness score.
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identified as the most frequently altered genes in the low-risk and high-risk groups, respectively. The most 
common mutation type observed in both groups was missense mutation (Fig. S6e,f).

Single-cell analysis
Single-cell analysis was conducted based on GSE146115. In this study, a total of 3200 single cells from 4 HCC 
patients were included. The quality control criteria are presented in the Materials and Methods section. Among 
them, 3198 single cells met the quality control standards (Fig. S7a–c). The heatmap was used to display the 
most significantly expressed genes in 11 clusters (Fig. S7d). We used tSNE to perform dimensionality reduction 
and clustering on the preprocessed scRNA-seq data, and finally obtained 11 clusters (Fig. 10a). Cell types were 
automatically annotated by the SingleR package, and these 11 clusters were clustered into 4 cell types, including 
Tumor cells, T cells, Macrophage, and NK cells (Fig. 10b). Subsequently, we assessed the expression patterns 
of the seven key prognostic genes. KPNA2 was expressed in both tumor cells and T cells; ATP1B3 was found 
in T cells and macrophages; and TRIB3, CXCL9, LINC01554, and ANXA10 were predominantly expressed in 
tumor cells (Fig. 10c,d). Cellchat, a computational tool, is designed to identify communication patterns and 
predict functions within less explored pathways40. Our analysis revealed that tumor cells function as the primary 
signal transducers within the cellular communication network, evidenced by both the number and strength of 
interactions (Fig. 10e,f). We then explored whether the seven key prognostic genes played roles in cell signaling 
pathways. Our findings demonstrate the enrichment of key genes in the SPP1 and MK signaling pathways. 
Further examination of these pathways revealed that tumor cells predominantly function as senders in the SPP1 
signaling pathway, with major recipient cell subsets being NK cells, macrophages, and T cells. Additionally, 
tumor cells serve as senders, receivers, and influencers in the MK signaling pathway, indicating the potential for 
feedback loops (Fig. 10g–j).

Validation of the expression levels of the seven key prognostic genes
In further validation of the expression of the seven key genes, the immunohistochemical staining results for 
five genes (KPNA2, ATP1B3, TRIB3, EPO, and ANXA10) were obtained from the HPA database, revealing 
significant differences in the expression of related proteins between cancerous and normal liver tissues (Fig. 
S8). Furthermore, the mRNA expression levels of these genes were evaluated in normal hepatocytes and various 
HCC cell lines. Results indicated significant upregulation of KPNA2, ATP1B3, TRIB3, and CXCL9 in HCC cell 
lines, whereas EPO, LINC01554, and ANXA10 were markedly upregulated in normal hepatocytes (P < 0.05) 
(Fig. 11a–g). These results showed that the seven key prognostic genes could serve as a crucial foundation for 
evaluating the prognosis of HCC patients.

Discussion
In this study, the identification of 184 HSCRGs was followed by the revelation of two distinct co-expression 
clusters within these genes. Significant differences in immune infiltration are exhibited by these two clusters. 
Analysis of immunoinfiltration reveals that cluster B of HSCRGs is characterized by active immune activity and 
significant immune cell infiltration within the tumor microenvironment. Within cluster B, MDSCs, activated 
dendritic cells, and Tregs are identified as playing crucial roles among the main immune cells. MDSCs exhibit 
strong immunosuppressive activity, inhibiting T cell and NK cell functions, thus facilitating immune escape41. It 
has been demonstrated that Tregs are recruited by tumor cells within the tumor microenvironment, undermining 
anti-tumor immunity42. Furthermore, systematic disruption of dendritic cell differentiation and development 
within the tumor microenvironment is regarded as a significant contributor to tumor immune escape43. These 
immunosuppressive characteristics might account for the adverse prognosis observed in cluster B of HSCRGs.

In recent years, significant progress has been made in molecular classification and precision oncology 
research for HCC. For example, studies based on genes related to anoikis, methylation, and immune subtypes 
have successfully divided HCC patients into different molecular subtypes and identified prognostic genes, 
providing valuable insights into the molecular mechanisms and treatment of HCC34–36. However, these 
studies primarily focused on individual factors such as anoikis, methylation, or immune subtypes, and did not 
comprehensively explore the interplay between hypoxia and senescence in HCC. Our study uniquely integrates 
HSCRGs to delineate molecular subtypes and construct a prognostic risk model. This approach not only 
captures the complex interactions between hypoxia and senescence but also provides a novel perspective on the 
tumor microenvironment and immune landscape in HCC44. By identifying two distinct HSCRGs clusters and 
developing a risk score model, we offer a more comprehensive understanding of HCC heterogeneity and potential 
therapeutic targets45. This distinguishes our work from previous studies and underscores the importance of 
considering multiple biological processes in HCC classification and prognosis prediction.

The external validation of our prognostic model using the ICGC cohort significantly strengthens the 
reliability and generalizability of our findings. The consistent performance of the nomogram across both 
our internal datasets and the independent ICGC cohort underscores the robustness of our risk stratification 
approach. This external validation is crucial as it demonstrates that our model can be effectively applied to 
diverse patient populations, enhancing its potential clinical utility46,47. The successful validation in the ICGC 
cohort48, which comprises patients from different geographical regions and treatment backgrounds49, further 
supports the notion that our HSCRGs signature captures fundamental biological processes in HCC progression 
that transcend specific patient cohorts.

MLH1 is a tumor suppressor gene located in the region of human chromosome 1p36.1, and the protein 
encoded by MLH1 gene is one of the key proteins involved in DNA mismatch repair pathway50. Studies have 
shown that the mutation of MLH1 gene is closely related to the incidence of various cancers, such as colorectal 
cancer, gastric cancer, and endometrial cancer51–53. Statistics show that MLH1 gene mutations occur in 8–21% 
of colorectal cancer patients54–56, 14.5% of gastric cancer patients, and 24–37% of endometrial cancers53,57,58. 
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Fig. 10.  (a, b) Identification of cell subgroups in the tumor microenvironment of hepatocellular carcinoma. (c, 
d) Expression pattern of the seven key genes in the tumor microenvironment. (e, f) Diagrams displaying the 
interaction number and strength in cell clusters. (g,h) associated with malignant cell subpopulation and their 
cell communication networks. The thicker the line represented, the more the number of interactions, and the 
stronger the interaction strength between the two cell types. (i,j) Primary originators and influencers of key 
signaling pathways.
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Loss, low expression of MLH1 gene, or mutations are important factors in the pathogenesis of these cancers59–61. 
However, the function of MLH1 in liver cancer, especially HCC, is unclear. In this study, we found that MLH1 
is highly expressed in HCC, and the prognosis of HCC patients with high expression of MLH1 is significantly 
worse. In addition, we have verified the function of MLH1 at the cellular level for the first time, and knocking 
down MLH1 can significantly inhibit the proliferation, migration and invasion of cancer cells. This suggests that 
MLH1 may be an oncogene in HCC, and targeting MLH1 may be a new target for HCC treatment.

Subsequently, three clusters of DEGs related to hypoxia and senescence were identified, and these clusters 
exhibited significant associations with immune activity. We reiterated the significance of alterations in hypoxia 
and senescence in shaping distinct tumor immune microenvironment (TIME) landscapes. Additionally, we 
developed a scoring system, denoted as the RS (Risk Score), to quantify the hypoxia and senescence patterns in 
each HCC patient. This scoring system aims to facilitate individualized prognostic analysis and precise treatment 
planning for HCC. Previous studies have demonstrated that a prognostic nomogram based on RS can enhance 
the accuracy of survival rate estimation for patients with breast cancer62. Likewise, the risk score may be valuable 
in predicting prognosis and indicating immune infiltration in colon cancer63. In addition, the risk score can also 
be used to risk stratify patients with HCC and help individualize treatment for patients64. These analyses further 
suggest that the RS could serve as a potential and reliable prognostic marker in HCC.

Single-cell transcriptome data is sequenced from high-quality annotated cells, which makes it more accurate 
than ordinary bulk RNA sequencing data65. Therefore, it is widely used to dissect the tumor microenvironment 
to further understand tumor heterogeneity66. In this study, we dissected the expression patterns of seven key 
prognostic genes in the tumor microenvironment of HCC based on single-cell analysis. We found that tumor 
cells, T cells, and macrophages were the main cell subtypes, and TRIB3 was the most expressed in the tumor 
microenvironment among the 7 key genes, mainly expressed in tumor cells. TRIB3 has been found to reduce 
CD8( +) T cell infiltration and induce immune evasion by inhibiting the STAT1-CXCL10 axis in colorectal 
cancer67, which is consistent with our findings suggesting that TRIB3 may be a target for the treatment of cancer. 
Next, we identified that the ligand receptor CXCL9/SPP1 mediates cellular crosstalk between tumor cells and 
macrophages. It has been shown that changes in macrophage polarity, determined by the expression of two 
genes, CXCL9 and SPP1, are a simple but critical feature of the tumor microenvironment68. The CXCL9:SPP1 
ratio can characterize the abundance of anti-tumor immune cells in tumors, the regulation of communication 
networks that indicate tumor control or progression, and the response to immunotherapy.

The present study had certain limitations. Primarily, in the experimental part, we did not combine clinical 
samples for further validation, and our findings have not been fully elucidated, and the biological function of 
the prognostic core gene has not been fully elucidated. Secondly, our findings suggest that these HSCRGs play 
different roles in HCC, such as IME landscape, drug sensitivity, and immunotherapy efficacy. However, the 
underlying molecular mechanisms have not been evaluated, and further studies are needed to elucidate the 
detailed mechanisms of HSCRGs in HCC. Thirdly, HSCRGs clustering and risk models can effectively distinguish 
the risk stratification, sensitivity of immunotherapy, and prognosis assessment of HCC patients. Therefore, 
further research is needed on whether these HSCRGs can be used as diagnostic markers or therapeutic targets 

Fig. 11.  (a–g) The mRNA levels of the seven prognostic key genes in normal hepatocellular cell line and 
hepatocellular carcinoma cell lines (benign cell: LO2; malignant cells: Hep3B, HepG2, and Huh-7). *P < 0.05, 
**P < 0.01, ***P < 0.001, ns, non-significant.
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for HCC to guide more effective immunotherapy strategies. Finally, in our study, we confirmed that MLH1 
gene is a pro-cancer gene in HCC, but its potential molecular mechanism of action and whether it has clinical 
application value need to be further studied.

In addition, future research should explore the potential of drug repurposing and the use of various vitamins, 
such as vitamin D, as preventive measures. These interventions have been shown to have regulatory effects 
and could positively impact HCC outcomes. For instance, vitamin D has been reported to modulate immune 
responses and exert anti-tumor effects, which could be beneficial in the management of HCC69.

Conclusions
In summary, this study delineated subgroups correlated with hypoxia and senescence, constructing a prognostic 
risk model for HCC. The expression and specific function of MLH1 gene in HCC were identified. The results 
highlighted the identification of seven prognostic genes significantly associated with tumor occurrence and 
immune cell infiltration. The prognostic risk model exhibited robust and effective performance in predicting 
overall survival in HCC, as demonstrated by successful external validation in the ICGC cohort. This validation 
underscores the potential clinical utility of our model in improving risk stratification and guiding personalized 
treatment strategies for HCC patients. Overall, these findings have significant implications for exploring the 
molecular pathways and mechanisms in HCC and advancing treatments and prognostic approaches.

Data availability
All data generated or analyzed during this study are included in this published article and are available from the 
corresponding author on reasonable request.
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