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The never-ending issue of inadequate energy availability is constantly on the outermost layer. 
Consequently, an ongoing effort has been made to improve electric power plants and power system 
configurations. Photovoltaic Distributed Generators (PVDG) and compensators such as Distributed 
Static Var Compensator (DSVC) are the center of these recent advances. Due to its high complexity, 
these devices’ optimum locating and dimensions are a relatively new issue in the Electrical Distribution 
Grid (EDG). A modified version of Newton Raphson Based Optimizer (mNRBO) has been carried out 
to optimally allocate the PVDG and DSVC devices in tested IEEE 33 and 69 bus EDG. The mNRBO 
algorithm integrates four parameters to enhance NRBO’s performance by addressing its limitations 
in balancing exploration and exploitation. The article suggested novel Multi-Objective Functions 
(MOF), which have been considered to optimize concurrently the overall amount of active power loss 
(APL), voltage deviation (VD), relays operation time (TRELAY), as well as improve the coordination time 
interval (CTI) between primaries and backup relays set up in EDG. The proposed mNRBO algorithm 
surpasses its basic NRBO version, as long as another alternative algorithm, while providing very good 
results, such as minimizing the APL from 210.98 kW until 26.482 kW and 224.948 kW until 18.763 kW 
for the IEEE 33 and 69 bus respectively. Which proves the capability of the mNRBO algorithm of solving 
such power system challenges.

Keywords  Hybrid System, Photovoltaic Distributed Generation, Distributed Static var Compensator, 
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General context
Over the past several decades, there has been a global emphasis on creating renewable energy sources (RESs) and 
integrating them into electrical power networks due to the growing need for energy1. The International Energy 
Agency (IEA) predicts that by 2050, the global capacity will have reached 4674 GW2.

Expanding the use of Renewable Energy Sources (RESs) requires distributed generation (DG). However, 
the erratic and unpredictable character of RESs can result in many severe problems with electricity quality. 
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Consequently, several attempts have been made to address these problems by optimizing the placements and 
sizes of DG in the Electrical Distribution System (EDS).

Due to renewable energy’s intermittent and unpredictable nature, installation locations and the size of RES 
power plants must be carefully chosen and incorporated into EDS in optimum DG allocation studies3.

The ideal number and placement of DG units in a power system depend on several important variables. 
These elements are considered throughout the optimal DG allocation process to find the best configuration4. 
The ideal placement and size of DG units depend heavily on the load profile and power consumption patterns. 
By placing DG units close to buses with significant distribution system losses, optimal DG allocation can lower 
losses, enhance voltage profiles, and boost system efficiency.

Though system design and configuration are comparatively less important, Recent research on new 
distribution power systems focuses on system-wide investigations highlighting operational management 
methods and energy dispatch optimization. Studies have also been done on the centralized dispatch model, 
distribution network topology, and DG unit location and capacity determination5.

However, after incorporating DGs, the unidirectional power flow in traditional energy systems has changed 
to a bidirectional power flow. Variable power generation, excessive short circuit current, and an unwanted 
voltage rise can all result from bidirectional power flow6. Reverse power flow is enhanced by more and larger 
distributed generators (DGs) on the network, adversely affecting the coordination of protective relays configured 
and built for unidirectional power flow. For example, bidirectional power flow might impact relays’ fault current 
and tripping time settings, leading to inaccurate protection or prolonged disruptions7.

Motivation
Relays must be configured optimally under fluctuating fault current levels to provide enough and appropriate 
protection, avoid unintentional disruptions, and function immediately8. The main issue affecting electrical 
networks is short circuits. When there’s a short circuit in the transmission network, it can cause a sudden voltage 
drop, often leading to a voltage sag or dip. This may cause Distributed Generation (DG) units, such as solar, wind, 
or gas-powered generators, to detach or disconnect from the grid to protect themselves from potential damage. 
When DG units disconnect, it may result in a loss of power supply in the affected area. The consequences of this 
can be pretty significant, including voltage sag and grid stability issues.

Short circuit analyses should be used to verify the power transmission lengths of busbars and lines and 
their short circuit resistance capacity before DG integration to choose the appropriate protective equipment9. 
Additionally, in controlled islanding, islanding caused by short circuits should be regulated by regulating life 
safety and the system against dangers10.

Modern power systems use numerous renewable energy sources in addition to traditional generators. 
Power electronics are also the basis for various devices; one such example is the Flexible Alternating Current 
Transmission System (FACTS) devices, the most sophisticated reactive energy compensation devices available 
today11.

Due to these issues and expenses, utilities engage in renewable energy, mainly photovoltaic distributed 
generation (PVDGs) or distributed static var compensator (DSVCs). These hybrid PVDG-DSVC units must 
meet strict technological and regulatory requirements for the distribution network to remain safe, stable, and 
effective. Reduced operation and maintenance costs of system components, enhanced dependability, maximized 
the benefits of renewable energy integration, minimizes power losses, enhances grid stability, and improves 
overall performance are the primary advantages of PVDG-DSVC units with EDSs. Poor placement can lead 
to inefficiencies, increased costs, and potential system instability, highlighting the importance of strategic 
placement for both economic and technical reasons12.

State-of-the-art review
Recently, many optimization algorithms have been applied to find the optimum allocation of PVDG and 
DSVC in EDG, such as applying the External Particle Swarm Optimization algorithm (EPSO) to optimize 
some economic savings across different IEEE standard grids13, the Water Cycle Algorithm (WCA) to minimize 
multiple objective functions represented as power losses, voltage deviation, energy cost and pollution emissions 
in the IEEE 33, and 69 bus grids14, the Mutated Salp Swarm Algorithm (MSSA) to minimize the losses in active 
power15, the application of Improved Gey Wolf Optimizer (IGWO) to optimize the losses in power, voltage 
deviation and the investment costs in different standard distribution networks16.

The Constriction Factor Particle Swarm Optimization algorithm (CF-PSO) was also applied to optimize 
different objective functions of losses in active powers, voltage deviation and the voltage stability index across 
multiple standard networks of IEEE 33- and 136-bus17, an Improved Particle Swarm Optimization (IPSO) 
to minimize both of the voltage deviation and voltage harmonics in standard distribution systems18, also the 
Jellyfish Search Algorithm (JSA) to minimize losses in active powers and the pollution emissions, as an objective 
function19, The Slime Mould Algorithm (SMA) to reduce some objective functions represented as power losses, 
voltage deviation and cost of investment20, applying the Bald Eagle Search Algorithm (BESA) to optimize the 
losses in power, the voltage deviation and stability index, along the heavy standard 118-bus21, and the Adaptive 
African Vultures Optimizer (AAVO) to optimize multiple objective functions of power losses, loading margin 
and voltage variation along the standard systems of IEEE 33, 85 and 141 bus22.

Main contributions
The Newton–Raphson-Based Optimizer (NRBO)23 is an innovative optimization approach designed to tackle 
complicated optimization issues by combining Newton’s method with contemporary optimization methods. 
Historically, Newton’s method operates to identify the function roots by continually enhancing initial estimates 
using gradient data. This successfully guides the search for solutions. The Newton–Raphson Search Rule (NRSR) 
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and the Trap Avoidance Operator (TAO), together with a few groups of matrices to further investigate the best 
results, are the two rules that the Newton–Raphson search rule algorithm uses to explore the complete search 
process.

Recently, there are several current Newton–Raphson method and algorithm implementations available in 
power system engineering topics for optimal droop-based islanded microgrid with DG integration24, parameter 
extraction of photovoltaic cell models in six various models25, graph attention network-based static voltage 
stability margin prediction technique26, power harmonics parameters estimation27, asymmetric multi-level 
inverter with selective harmonic reduction28, calculate the incremental losses due to unbalanced operation for a 
given distribution system29, the distribution network’s optimal impact on charging stations for electric vehicles30, 
state estimate for railway power supply systems using pseudo-measurement techniques31, ideal load distribution 
issue for islanded microgrids taking frequency fluctuations into account32, optimal power flow with integrated 
electric power and natural gas system33, and recently, optimal scalar speed control of the induction motors34.

The objectives for operation in this article are contradictory. Consequently, determining which to allocate 
hybrid PVDG and DSVC is a complex multi-objective function (MOF) problem that must be addressed while 
balancing competing objectives. Yet, the primary findings made by this study may be summed up in the following 
points:

•	 Developing a modified NRBO algorithm to solve the formulated problem,
•	 Implementing different evaluations and benchmark tests to assess the proposed algorithm,
•	 Optimal planning of hybrid PVDG and DSVC devices,
•	 The MOF considers the overcurrent protection characteristics,
•	 The proposed methodology is implemented on two EDG test grids.

Structure of the paper
The article is structured as follows: Section"Modeling the hybrid system"conveys the modelling system parts; 
Section"Multi-objective design"is devoted to formulating the allocating issues; Section"Proposed newton–
raphson-based optimizer (NRBO)"covers the assessment of the suggested method; Section"Application and 
optimized results"unveils its implementation and outcomes; and Section"Conclusion"finishes with a conclusion.

Modeling the hybrid system
Model of PVDG
The Probability Density Function (PDF) symbolizes a model of solar radiation over the entire day’s hours 
calculated using historical information35. In the genuine investigation, the PDF for the solar radiation was 
established for each hour time frame as follows:

	
fb (s) =

{
Γ(A+B)

Γ(A)Γ(B) s(α−1) 0 ≤ s ≤ 1, A, B ≥ 0
0 Otherwise

� (1)

Equations (2) and (3) define the parameters B and A as follows:

	
B = (1 − µ)

(
µ(1 − µ)

σ2 − 1
)

� (2)

	
A = µ × B

1 − µ
� (3)

where σ and μ  represent the average deviation and mean, accordingly35. The probability of the solar radiation 
state at any point in time might be expressed as follows:

	
Ps {G} =

∫ s2

s1

fb (s) ds� (4)

The PV panel’s power output may be expressed as follows35,36:

	 PP V ◦ (s) = N × F F × Vy × Iy � (5)

	
F F = VMP P × IMP P

Voc × Isc
� (6)

	 Vy = Voc × Kv × Tcy � (7)

	 Iy = s
[
Isc × Ki × (IT cy − 25)

]
� (8)

	
Tcy = TA + s

(
NOT − 20

0.8

)
� (9)

N is the module quantity, TA and Tcy are the atmosphere and cell temperatures, and Kv and Ki tend to be the 
current and voltage the temperature values, accordingly NOT represents the cell’s nominative temperature of 
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operation, FF is the fill variable, and Isc and Voc are the short-circuit electrical current as well as the voltage in the 
open circuit, accordingly IMPP and VMPP denote the current state and voltage at MPPT, respectively.

The overall generated power of the solar panel is determined by the requirements and radiation features as 
follows:

	
PP V (t) =

∫ s2

s1

PP V ◦ (s) Ps {G} ds� (10)

Model of DSVC
Figure 1 shows the overall circuit framework of the DSVC20,37. The DSVC is made up of a thyristor-controlled 
reactor and a permanent capacitor.

The firing angle (α) of the thyristors determines the corresponding susceptance of the DSVC equipment 
(BDSVC)37. This may be conveyed in the following manner:

	 BDSV C = BL (α) + BC � (11)

	
BL (α) = − 1

L.ω

(
1 − 2α

π

)
, BC = C.ω� (12)

BC is capacitor reactance, and BL remains the series induction reactance. C and L represent the capacitor’s 
capacity and the reactor’s inductance. Accordingly, Vj represents the voltage that exists at node j.

The DSVC gadget controls the reactive energy and current, as shown in the subsequent formulas:

	 QDSV C = −BDSV C .V 2
J � (13)

	 IDSV C = −BDSV C .VJ � (14)

Whenever a system’s load is capacitance, the DSVC uses thyristor-controlled springs to absorb QDSVC; 
alternatively, if the system’s load is primarily inductive, the DSVC uses parallel-coupled capacitors to provide 
QDSVC, thereby improving voltage levels.

The formulated problem incorporates the appropriate limits of DSVC as part of the reactive power (capacitive 
or inductive) operation:

	 −Qmax
DSV C ≤ −QDSV C ≤ +Qmax

DSV C � (15)

where –QDSVC
max and + QDSVC

max represent the DSVC’s introduced reactive power restricts (capacitive or 
inductive functioning modes, accordingly).

Multi-objective design
Multi-objective functions
The Multi-Objective Function (MOF) was designed to effectively find and dimension either PVDG and DSVC 
components within both EDG through reducing simultaneously and concurrently the technical parameters such 
as overall Active Power Loss (APL), overall Voltage Deviation (VD), overall Operating Time of the overcurrent 
relays (TRELAY), and the overall Coordination Time Interval (CTI) between the installed relays. The MOF could 
be established as follows:

Fig. 1.  DSVC device’s model: (a). Circuit framework, (b). Equivalent model.
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MOF = Minimize

[(∑NBus

i=1

∑NBus

j=2
AP Li,j +

∑NBus

j=2
V Dj +

∑NP R

i=1
TRELAY,i +

∑NP R

i=1

∑NBR

i=j
CT Ii,j

)]
� (16)

The APL38, could be formulated as follows:

	 AP Li,j = αij (PiPj + QiQj) + βij (QiPj + PiQj)� (17)

And,

	
αij = Rij

ViVj
cos(δi − δj)� (18)

	
βij = Rij

ViVj
sin (δi − δj)� (19)

Rij represents the line’s resistance, and Nbus denotes the number of buses. (δi, δj) and (Vi, Vj) represent the angles 
and voltages, accordingly. (Pi, Pj) and (Qi, Qj) denotes active and reactive powers, respectively.

The VD39, might be formulated as follows:

	 V Dj = |1 − VJ |� (20)

The TRELAY could be formulated as in40,41. For this research we have selected the characteristic of Normal Inverse, 
based on the standard IEC 60,255–3.

	
TRELAY = T DS.

(
A

MB − 1

)
� (21)

	
M = IF

IP
� (22)

	
IF = VF

ZF
� (23)

where TRELAY represents the relay operating time, and TDS denotes the time dial setting. The relay constants, A 
and B, have been adjusted to 0.14 and 0.02, accordingly. M is a multiple of pickup current. IF and IP denote the 
fault and pickup current, accordingly. VF represents the faut voltage magnitude, ZF is the line impedance where 
the fault current occurred. Also, NPR represents the quantity of primaries overcurrent relays, and NBR represents 
the quantity of backups overcurrent relays.

The Coordination Time Interval (CTI) between primaries and backups OCRs could be represented as41:

	 CT I = TRELAY −Backup − TRELAY −P rimary � (24)

The constraints of equality
Equality constraints could be defined through the equilibrium powers formulas below:

	 PSub−station + PP V DG = PLoad + AP L� (25)

	 QSub−station + QDSV C = QLoad + RP L� (26)

PSub-station and QSub-station represent the sub-stations overall active/reactive powers. PLoad and QLoad represent the 
overall active/reactive load demand power. APL and RPL constitute the EDS loss of power. PPVDG and QDSVC are 
the resulting powers generated by PVDG and DSVC units, accordingly.

The constraints of inequality
The unequal constraints over distribution systems could be established as follows:

	 Vmin ≤ |Vi| ≤ Vmax� (27)

	 |1 − V j | ≤ ∆Vmax� (28)

	 |Sij | ≤ Smax� (29)

Vmin and Vmax represent the min and max limits of bus’s voltage, respectively. ΔVmax represents the max drop 
in voltage. Sij and Smax denote the apparent electrical power in the power distribution line as well as the highest 
level of it, accordingly.

The constraints for PVDG and DSVC devices
The constraints for hybrid PVDG and DSVC devices may be expressed as below:

	 P min
P V DG ≤ PP V DG ≤ P max

P V DG� (30)

	 Qmin
DSV C ≤ QDSV C ≤ Qmax

DSV C � (31)
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NP V DG∑
i=1

PP V DG(i) ≤
Nbus∑
i=1

PLoad (i)� (32)

	

NDSV C∑
i=1

QDSV C(i) ≤
Nbus∑
i=1

QLoad (i)� (33)

	 2 ≤ P V DGP osition ≤ Nbus� (34)

	 2 ≤ DSV CP osition ≤ Nbus� (35)

	 NP V DG ≤ NP V DG.max� (36)

	 NDSV C ≤ NDSV C.max� (37)

	 nP V DG,i/Location ≤ 1� (38)

	 nDSV C,i/Location ≤ 1� (39)

where (PPVDG
min, QDSVC

min) represents the minimum power output delivered by PVDG and DSVC, accordingly. 
(PPVDG

max, QDSVC
max) represent the maximum power delivered by PVDG and DSVC, accordingly (NPVDG, 

NDSVC) represent the PVDG and DSVC devices numbers, accordingly. (nPVDG, nDSVC) represent the positions of 
PVDG and DSVC devices on bus i, accordingly.

Tested distribution grids
Many standard evaluation grids, including the IEEE 33-bus and 69-bus EDG, as mentioned in Fig. 242, were 
employed to gauge the efficacy of comparable NRBO and mNRBO algorithms. In electric power systems, testing 
grids are frequently used to benchmark and compare optimization algorithms.

The IEEE 33-bus grid consists of 33 buses and 32 branches, with a combined load of 3715.00 kW and 2300.00 
kVar. The IEEE 69-bus grid comprises 69 buses and 68 branches, with a combined load of 3790.00 kW and 
2690.00 kVar. The nominal and standard voltage for tested grids is 12.66 kV.

These test grids’ buses are safeguarded via an overcurrent relay, with the initial test grid requiring 32 relays 
while the subsequent tested grid requires 68 relays.

Insofar as the fundamental network is represented via an unchanged power load, load variation must be 
simulated frequently to examine load fluctuations. The efficacy of each of the applied algorithms in solving the 
optimum power flow problem must be evaluated with these conventional test grids.

The optimal power flow issue aims to identify the ideal point of functioning over a power system by 
enhancing production and load distribution while meeting numerous requirements such as power balance, 
voltage limitations, and device operational constraints. Multiple indicators of performance have been employed 
to assess the algorithm’s effectiveness.

The results from these assessments may provide useful insights into the algorithms’ shortcomings and 
advantages. Assisting researchers as well as practitioners in determining the most effective technique for a given 
problem.

Proposed newton–raphson-based optimizer (NRBO)
Newton–raphson-based optimizer (NRBO)
The Newton–Raphson-Based Optimizer (NRBO) is a new metaheuristic technique prompted by Newton–
Raphson’s technique23. It examines the complete search procedure by employing the Newton–Raphson Method 
(NRM) to identify the search region via several vector puts of: the Newton–Raphson Search Rule (NRSR) as well 
as the Trap Avoidance Operator (TAO), in addition to some sets of matrices to investigate the most effective 
outcomes more thoroughly.

Newton–raphson method (NRM)
Newton’s approach, referred to the Newton–Raphson Method (NRM), serves as a root-finding process which 
locates the base of a function f(x) by using the initial few elements of its Taylor Series (TS) in the vicinity of an 
assumed root.

NRM is essentially akin to Horner’s approach to polynomials, such as f(x). The NRM begins at an initial 
location (x0) then uses the TS assessed at x0 to find an additional point close to the original solution. The process 
continues till a suitable solution has been identified. The TS of f(x) about the point (x = x0 + ∈) is depicted as 
following.

	
f (x0+ ∈) = f (x0) + f ′ (x0) ∈ +f ′′ (x0) (∈)2

2! + f ′′′ (x0) (∈)3

3! + . . . � (40)

	
f (x0+ ∈) ≈ f ′ (x0) ∈ +f ′′ (x0) (∈)2

2!
� (41)

The formula (42) may be used to determine the offset ∈ needed to get nearer than the root starting from x0. 
Assume f(x0 + ∈) = 0 and Eq. (42) solved for ∈ ≡ ∈0 gives:
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∈0 = f ′ (x0)

f ′′ (x0) � (42)

Equation (43) represents the second-degree adjustment to the root’s location. When permitting x1 = x0 + ∈0, find 
the subsequent location of the root and recite the process up until it merges to the optimum root employing Eq. 
(44).

	
∈n = f ′ (xn)

f ′′ (xn) � (43)

Unfortunately, this procedure may be disproportionate close to a local peak or horizontal asymptotic. However, 
the approach may be used repeatedly to identify the subsequent approximate with the correct starting point.

	
xn + 1 = xn − f ′ (xn)

f ′′ (xn) , n = 1, 2, 3 . . . � (44)

In NRM, a rough zero (x0) was an initial location that guarantees the algorithm’s secure convergence.

Initialization
Consider a particular situation: The optimization is carried out using an unencumbered single-objective 
optimization issue via a next specification.

Fig. 2.  Single line diagram of tested distribution grids: (a). IEEE 33-bus, (b). IEEE 69-bus.
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	 Minimize : f(x1, x2, x3, . . . , xn)

	 lb ≤ xj ≤ ub, j = 1, 2, . . . , dim� (45)

f(x) is the function of fitness that needs to be reduced, xj is the decision vector, dim is the issue’s dimension, lb 
indicates the lower bounds, and ub reflects the upper bounds.

Similar to additional metaheuristic computations, NRBO begins its search over the optimum outcomes by 
generating initial random populations within the boundaries of the potential options. Given the assumption 
which there are multiple Np populations, every single one which contains dim decision variables/vectors. Thus, 
the random population is created via Eq. (46).

	 xn
j = lb + rand × (ub − lb) , n = 1, 2, . . . , NP and j = 1, 2, . . . , dim� (46)

xi
j is the position of jth dimension of nth population, rand represents the random number along (0,1). Equation 

(47) denots the population matrix which may portray the populations in all dimensions.

	

Xn =




x1
1 x1

2 · · · x1
dim

...
. . .

...
xNp

1 xNp
2 · · · xNp

dim


� (47)

Newton–Raphson search rule (NRSR)
The NRSR controls the vectors, resulting in more precise exploration of a viable area and improved positioning. 
The NRSR depends on the concept of how the NRM is put forward to encourage exploration and accelerate 
convergence. Because many methods of optimization aren’t distinguishable, the concept of NRM is employed to 
substitute the written description of the function in these cases.

The NRM starts out with an assumed initial solution and moves on to a subsequent place in a specific path. To 
obtain the NRSR via Eq. (45), the second order derived has to be determined with the TS. The TS for f (x—Δx) 
and f (x + Δx) is presented as next.

Algorithm 1. Pseudo code of the proposed mNRBO algorithm.
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f (x + ∆x) = f (x) + f ′ (x0) ∆x + 1

2!f
′′ (x0) ∆x2 + 1

3!f
′′′ (x0) ∆x3 + . . .

	
f (x − ∆x) = f (x) − f ′ (x0) ∆x + 1

2!f
′′ (x0) ∆x2 − 1

3!f
′′′ (x0) ∆x3 + . . . � (48)

Trap avoidance operator (TAO)
The TAO was added to enhance the efficiency of the proposed NRBO for dealing with real-world issues, which 
constitutes an altered and improved operator. The position of xn

IT+1 can be significantly changed through the 
use of TAO. It generates a solution of higher quality XTAO

IT through the combination of the ideal position Xb and 
the present vector location. Xn

IT. The solution XTAO
IT is generated if the number of rand is lesser than Deciding 

Factor (DF) employing Eq. (49).

	 xIT +1
n = xIT

T AO � (49)

rand is a standard number that occurs among (0,1), θ1 and θ2 are standard random numbers among (1, 1) 
and (0.5, 0.5), respectively, DF represents the deciding factor that manages the NRBO efficacity, μ1, and μ2 are 
random numbers, and it is generated employing Eq. (50) and Eq. (51), respectively.

	
µ1 =

{ 3 × rand, if ∆ < 0.5
1, Otherwise � (50)

	
µ2 =

{
rand, if ∆ < 0.5
1, Otherwise � (51)

Modified NRBO (mNRBO)
Despite the NRBO technique being a strong metaheuristic, it, like other optimization methods, may suffer from 
early convergence when tackling intricate optimization issues. This is undesirable since it gets trapped at a local 
optimum rather than identifying the optimal global solution to that issue. Local optimum traps tend to occur 
due to insufficient exploration of searching space.

In optimizing, exploration implies searching extensively throughout the solution space in search of various 
areas that might hold better solutions. In contrast, exploitation relates to improving potential solutions after 
they have been discovered. The mNRBO algorithm improves NRBO’s achievement by tackling its drawbacks 
in managing exploration and exploitation: linear time operator (ω), enhanced encircling phase of RSA with 
Gaussian mutation, chaotic local search (CLS), and improved solution reliability of the RUN algorithm.

Linear time operator (ω)
The created strategy employs an interim operator to accomplish an excellent balance of exploration and 
exploitation. The Transition Operator, shortened as ω, may be determined as shown in Eq. (52):

	
ω = exp(− t

T
)� (52)

t is the present iteration, and T is the highest and maximum iteration.

Enhanced encircling phase of RSA with gaussian mutation
Large step motion during the exploration phase is necessary to cover the search space. However, NRBO’s 
exploration phase falls short in this regard because it updates agent positions solely based on the best agent in 
the swarm and their current location, which prevents the agents from moving in large steps across the given 
region. In this part, we suggest the following exploration phase based on the Reptile Search Algorithm (RSA).

Good exploration strategies are based on the random selection of agents incorporated with Gaussian 
mutation and linear time operator. Gaussian mutation shows superior local search capabilities since it has a 
more focused mutation operator. The updated solution is given by:

	
Xt+1,j =

{
Xr2,j + ω ∗ Gaussian(0,1) ∗ |Xbest,j − Xt,j | t < T/4

Xr2,j + ω ∗ Gaussian (0,1) ∗ (Xbest,j − Xt,j) − β ∗ r ∗ R t < T
2 &t > T/4

Xbest,j otherwise
� (53)

	
Ri,j = Xbest,j − Xr1,j

Xbest,j + ε
� (54)

β = e−3, r=rand [0,1], j is the dimension, r1 and r2 are two random selected agents.

Chaotic local search (CLS)
Combining chaotic dynamics with a local search strategy and allowing an additional search in the neighboring 
area can enhance the effectiveness of the optimization process by facilitating more thorough exploration of the 
solution space.

This approach is particularly useful in complex optimization problems where finding the global optimum or 
near-optimum solutions is challenging. The Chaotic local search (CLS) is given by:
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	 Xt+1 = (1 − ω) .Xbest + ω.Cr � (55)

	 Cr = LB + rand. (UB − LB)� (56)

Experimental
Benchmark validation
This part demonstrates the significance of the mNRBO algorithm in optimization problems. It applies the 
algorithm to a range of test functions and proves its superior performance using a set of evaluation measures.

Benchmark description
As part of our research, we tested our mNRBO algorithm with some tricky optimization problems called 
CEC2022 test suites43. These problems come in four types: unimodal, multimodal, hybrid, and composite 
functions.

The settings for the test are the number of iterations equal to 1000, and the number of populations being 50 
in each try. To be sure of the results, we did this test with 30 independent runs. We looked at the average and the 
varied results. The best results are shown in bold.

Table 1 describes these functions’ names, search ranges, optimum values, and dimensions (dim). Furthermore, 
Fig. 3 visualizes the search spaces of some random benchmark functions.

Testing results and discussion
Statistical results
Table 2 shows each algorithm’s final ranking, standard deviation, best, worst, and mean based on 30 independent 
runs on the 12 CEC’2022 benchmark functions.

Based on the analysis of the table, the best answer marked in bold demonstrates that mNRBO demonstrates 
superior performance in achieving optimal solution accuracy on a significant majority of the test problems.

Specifically, out of the 12 test problems evaluated, mNRBO achieves optimal solutions in 10 cases. This 
indicates that mNRBO algorithm possesses robust and competitive search capabilities compared to other 
methods that were likely evaluated alongside it in the study.

Lastly, the nonparametric Wilcoxon test44 was used to compare the approaches, with a significance threshold 
of 0.05. Table 3 showed statistically significant differences of mNRBO compared to other algorithms presents 
the statistical findings. This performance superiority was consistent across various comparisons, indicating that 
the mNRBO method proposed in the study outperforms others and demonstrates the best overall performance.

Convergence analysis
The convergence curves in Fig. 4 demonstrate how mNRBO compares with competing algorithms in achieving 
optimal solutions over iterations. mNRBO consistently showed faster convergence towards near-optimal 
solutions compared to its competitors across various benchmark functions.

Specifically, in a comparison across twenty test functions, mNRBO exhibited the fastest convergence in ten 
cases, highlighting its superior performance in solving these optimization problems.

Boxplot analysis
Boxplots provide a clear visual representation of data distribution and variability. In the context of comparing 
algorithm performance, Fig. 5 shows narrower boxplots for the mNRBO algorithm indicate less variability and 
potentially more consistent performance across multiple benchmark functions.

Figure 6 represents the flowchart for the proposed mNRBO algorithm.

F function dim Range f∗
i

1 Shifted and full rotated Zakharov function 20 [− 100,100] 300

2 Shifted and full rotated Rosenbrock’s function 10 [− 100,100] 400

3 Shifted and full rotated expanded Schaffer’s 10 [− 100,100] 600

4 Shifted and full rotated non-continuous Rastrigin’s 10 [− 100,100] 800

5 Shifted and full rotated levy function 10 [− 100,100] 900

6 Hybrid function 1 (N = 3) 10 [− 100,100] 1800

7 Hybrid function 2 (n = 6) 10 [− 100,100] 2000

8 Hybrid function 3 (N = 5) 10 [− 100,100] 2200

9 Composition function 1 (N = 5) 10 [− 100,100] 2300

10 Composition function 2 (n = 4) 10 [− 100,100] 2400

11 Composition function 3 (n = 5) 10 [− 100,100] 2600

12 Composition function 4 (n = 6) 10 [− 100,100] 2700

Table 1.  Specifics about the benchmark functions.
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Application and optimized results
Following the completion of the section in which the performance of the mNRBO algorithm is evaluated and 
contrasted with different optimization methods, the outcomes show that the two algorithms NRBO and mNRBO 
algorithms accomplish the best achievement.

The mNRBO algorithm is proposed to handle more complex optimization problems, including those involving 
uncertainties like changing loads or the integration of Photovoltaic (PV) systems and DSVCs into power grids. 
For our proposed system where PV and DSVC devices are integrated, there can be significant variability in 
both generation and demand. The mNRBO can enhance robustness by adjusting its optimization process to 
better accommodate the nonlinear and dynamic nature of these systems. This includes refining the algorithm to 
respond to fluctuating power outputs from PV systems or varying load conditions. By incorporating additional 
considerations such as sensitivity to changing load patterns or real-time adjustments to DSVC settings, mNRBO 
offers greater flexibility and stability in optimizing grid performance.

To demonstrate its effectiveness and authority, we selected to carry on the application by solving a power 
system issue (Optimum PVDG-DSVC devices incorporation) and contrasting it to the identical methods used 
in the optimization part.

Tables 4 and 5 indicate the results of optimization employing the selected optimization techniques, contrasting 
the scenarios before and after the installation of PVDG and hybrid PVDG-DSVC devices in IEEE 33 and 69-bus 
EDG, accordingly.

Numerous simulations were performed via the MATLAB program to demonstrate the effectiveness of each 
of the chosen methods in producing the most favorable results for the two investigated EDG. The primary 
observation is that the mNRBO algorithm surpasses its fundamental variant as well as all other methods, 
resulting in the lowest Multi-Objective Function (MOF) scores of 54.569 and 74.381 for the two examined EDG, 
accordingly.

Furthermore, when speaking of every parameter on itself, the mNRBO algorithm delivered the ideal 
outcomes for all of them, along the hybrid PVDG-DSVC scenario. The previous debate verified the fact that 
mNRBO has been the most effective algorithm because, besides providing the successfully and minimum MOF 
scores, it additionally offered the ideal and lowest values of every parameter individually.

Whereas employing mNRBO algorithm for the optimum inclusion of hybrid PVDG-DSVC devices 
reduced APL until 26.482 kW and 18.763 kW, accordingly, the voltage deviation until 0.238 p.u. and 0.336 p.u., 

Fig. 3.  CEC’2022 benchmark functions.
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F index mNRBO NRBO HHO SCA CDO SCHO HLOA

1

Best 3.00E + 02 1.07E + 04 3.00E + 02 6.05E + 02 7.94E + 03 4.00E + 02 3.00E + 02

Worst 3.00E + 02 7.65E + 04 3.03E + 02 4.17E + 03 3.09E + 06 9.27E + 03 3.05E + 02

Mean 3.00E + 02 3.91E + 04 3.02E + 02 1.45E + 03 1.29E + 05 3.56E + 03 3.00E + 02

Std 1.79E- 07 1.88E + 04 6.68E- 01 8.75E + 02 5.60E + 05 2.69E + 03 9.32E- 01

Rank 1 6 3 4 7 5 2

2

Best 4.00E + 02 6.62E + 02 4.00E + 02 4.31E + 02 6.98E + 02 4.00E + 02 4.00E + 02

Worst 4.71E + 02 3.99E + 03 4.99E + 02 5.06E + 02 8.78E + 02 6.09E + 02 4.86E + 02

Mean 4.07E + 02 1.72E + 03 4.21E + 02 4.64E + 02 8.47E + 02 4.43E + 02 4.18E + 02

Std 1.26E + 01 9.30E + 02 2.87E + 01 1.40E + 01 3.23E + 01 5.32E + 01 2.70E + 01

Rank 1 7 3 5 6 4 2

3

Best 6.00E + 02 6.52E + 02 6.09E + 02 6.10E + 02 6.32E + 02 6.02E + 02 6.20E + 02

Worst 6.02E + 02 7.06E + 02 6.57E + 02 6.27E + 02 6.45E + 02 6.46E + 02 6.70E + 02

Mean 6.01E + 02 6.78E + 02 6.28E + 02 6.18E + 02 6.36E + 02 6.15E + 02 6.44E + 02

Std 7.88E- 01 1.50E + 01 1.27E + 01 3.86E + 00 3.07E + 00 9.46E + 00 1.25E + 01

Rank 1 7 4 3 5 2 6

4

Best 8.10E + 02 8.59E + 02 8.13E + 02 8.23E + 02 8.37E + 02 8.21E + 02 8.20E + 02

Worst 8.35E + 02 9.33E + 02 8.44E + 02 8.53E + 02 8.63E + 02 8.65E + 02 8.80E + 02

Mean 8.21E + 02 8.94E + 02 8.27E + 02 8.40E + 02 8.47E + 02 8.36E + 02 8.43E + 02

Std 7.34E + 00 1.51E + 01 7.18E + 00 7.12E + 00 6.26E + 00 1.07E + 01 1.40E + 01

Rank 1 7 2 4 6 3 5

5

Best 9.00E + 02 1.23E + 03 9.25E + 02 9.21E + 02 1.28E + 03 9.37E + 02 1.07E + 03

Worst 9.69E + 02 4.86E + 03 1.70E + 03 1.08E + 03 1.57E + 03 1.96E + 03 1.82E + 03

Mean 9.12E + 02 2.78E + 03 1.37E + 03 9.83E + 02 1.40E + 03 1.31E + 03 1.36E + 03

Std 1.44E + 01 8.25E + 02 1.86E + 02 3.53E + 01 7.60E + 01 2.60E + 02 1.66E + 02

Rank 1 7 5 2 6 3 4

6

Best 1.81E + 03 4.77E + 06 1.96E + 03 8.26E + 04 2.98E + 07 2.74E + 03 1.87E + 03

Worst 5.37E + 03 1.22E + 09 7.62E + 03 7.77E + 06 2.89E + 09 3.49E + 04 8.15E + 03

Mean 2.31E + 03 5.07E + 08 3.79E + 03 1.94E + 06 3.60E + 08 9.31E + 03 2.79E + 03

Std 8.94E + 02 3.95E + 08 1.63E + 03 1.71E + 06 6.04E + 08 6.20E + 03 2.13E + 03

Rank 1 7 3 5 6 4 2

7

Best 2.00E + 03 2.11E + 03 2.02E + 03 2.04E + 03 2.11E + 03 2.01E + 03 2.03E + 03

Worst 2.03E + 03 2.32E + 03 2.14E + 03 2.07E + 03 2.15E + 03 2.12E + 03 2.32E + 03

Mean 2.02E + 03 2.20E + 03 2.07E + 03 2.06E + 03 2.14E + 03 2.04E + 03 2.13E + 03

Std 8.43E + 00 5.11E + 01 2.74E + 01 6.33E + 00 8.33E + 00 3.01E + 01 5.59E + 01

Rank 1 7 4 3 6 2 5

8

Best 2.20E + 03 2.25E + 03 2.22E + 03 2.23E + 03 2.22E + 03 2.21E + 03 2.22E + 03

Worst 2.22E + 03 2.59E + 03 2.27E + 03 2.24E + 03 2.25E + 03 2.35E + 03 2.52E + 03

Mean 2.22E + 03 2.42E + 03 2.24E + 03 2.23E + 03 2.23E + 03 2.23E + 03 2.29E + 03

Std 3.69E + 00 1.11E + 02 1.43E + 01 2.87E + 00 5.75E + 00 3.04E + 01 8.05E + 01

Rank 1 7 5 3 2 4 6

9

Best 2.53E + 03 2.68E + 03 2.53E + 03 2.53E + 03 2.66E + 03 2.53E + 03 2.53E + 03

Worst 2.68E + 03 2.97E + 03 2.68E + 03 2.60E + 03 2.71E + 03 2.74E + 03 2.55E + 03

Mean 2.53E + 03 2.81E + 03 2.56E + 03 2.56E + 03 2.66E + 03 2.60E + 03 2.53E + 03

Std 2.68E + 01 7.23E + 01 3.07E + 01 1.75E + 01 9.30E + 00 4.57E + 01 5.07E + 00

Rank 2 7 4 3 6 5 1

10

Best 2.50E + 03 2.54E + 03 2.50E + 03 2.50E + 03 2.64E + 03 2.50E + 03 2.50E + 03

Worst 2.63E + 03 4.97E + 03 2.66E + 03 2.64E + 03 3.59E + 03 2.99E + 03 3.91E + 03

Mean 2.52E + 03 2.98E + 03 2.57E + 03 2.51E + 03 2.80E + 03 2.61E + 03 2.67E + 03

Std 4.43E + 01 5.91E + 02 7.12E + 01 3.50E + 01 2.12E + 02 1.54E + 02 3.56E + 02

Rank 2 7 3 1 6 4 5

11

Best 2.60E + 03 2.98E + 03 2.60E + 03 2.75E + 03 2.87E + 03 2.61E + 03 2.60E + 03

Worst 3.00E + 03 4.83E + 03 3.20E + 03 3.26E + 03 3.35E + 03 3.19E + 03 3.23E + 03

Mean 2.70E + 03 3.78E + 03 2.79E + 03 2.80E + 03 3.30E + 03 2.80E + 03 2.74E + 03

Std 1.63E + 02 5.09E + 02 1.69E + 02 1.21E + 02 1.21E + 02 1.64E + 02 1.79E + 02

Rank 1 7 3 5 6 4 2

Continued
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respectively, and the TRELAY until the values of 20.149 s and 38.434 s for both IEEE 33 and 69 buses, accordingly, 
with the maintaining of the coordination time interval in its nominal limits.

Figures 7 and 8 show the convergence characteristics of MOF reduction using comparable techniques to 
optimize the incorporation of distributed units in the two tested grids.

Following numerous runs and applications, all comparable algorithms keep converging in fewer than 100 
iterations to resolve the suggested power system issue, which is the justification for setting that maximum 
number of iterations. All algorithms performed well in terms of MOF reduction. In addition, the mNRBO 
showed faster convergence times across the studied cases and grids. It was clearly shown that the mNRBO 
surpassed the conventional NRBO algorithm.

The mNRBO algorithm achieved its highest fitness scores within its first iterations across all investigated 
cases owing to the enhancements provided by those versions of NRBO. Consequently, the mNRBO improved 
the NRBO algorithm’s efficiency, problem-solving ability, and convergence rate.

Figure 9 shows an analysis of the bus voltage levels in the fundamental case and the remaining investigated 
scenarios for the optimum incorporation into the two testing grids EDG according to the results acquired by the 
mNRBO algorithm.

Figure 8 depicts the impact of every studied scenario for the optimum incorporation on the voltage levels of 
the two tested grids. Following the integration of all of the studied scenarios, the voltage profiles enhanced nearly 
everywhere across both EDG’s buses.

Furthermore, outstanding outcomes and substantial enhancements were obtained when incorporating 
hybrid PVDG and DSVC components into either EDG. The effects and improvement have been linked to the 
reduction of voltage deviation until 0.238 p.u. and 0.336 p.u. in IEEE 33 and 69 bus EDG, respectively. Insofar as 
it demonstrates the actual amount of the EDG’s voltage and how far it deviates compared to the nominal voltage’s 
amount of 1 p.u.

Figure 10 depicts the influence of the optimum integration across all investigated scenarios on the active 
power loss variance for every single branch of both tested EDG.

Given the axial structure for both of the tested distribution grids, active losses in power occur more frequently 
in most of the grids’ branches, making it vital to reduce them to accomplish a lot of techno-economic advantages.

The illustrations in Fig.  10 show that incorporating each scenario examined across both tested grids 
significantly minimized active losses in power nearly in every branch across both EDG.

The hybrid PVDG and DSVC devices produced the most effective outcomes in mitigating APL in every 
branch of the two EDG when they combined active and reactive powers.

The optimum incorporation of hybrid PVDG and DSVC devices additionally decreased overall active losses 
in power from 210.987 kW to 26.482 kW for the IEEE 33-bus and from 224.945 kW to 18.763 kW for the IEEE 
69-bus.

Figures 11 show the difference in fault current between the scenarios before and after incorporating PVDG 
and DSVC devices into the two testing grids.

F NRBO HHO SCA CDO SCHO HLOA

1 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

2 3E- 11 0.009457 2.14E-10 3E-11 0.000158 0.002153

3 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11

4 3.01E-11 0.004424 1.28E-09 3.01E-11 1.28E-06 2.66E-09

5 3.02E-11 4.08E-11 1.46E-10 3.02E-11 5.49E-11 3.02E-11

6 3.02E-11 3.32E-06 3.02E-11 3.02E-11 2.15E-10 0.297272

7 3.02E-11 8.15E-11 3.02E-11 3.02E-11 2.32E-06 4.08E-11

8 3.02E-11 6.07E-11 3.02E-11 2.61E-10 9.76E-10 1.33E-10

9 2.2E-11 3.84E-10 4.23E-10 3.84E-10 3.49E-10 4.23E-10

10 5.57E-10 1.87E-05 5.86E-06 3.02E-11 0.040595 5.6E-07

11 4.5E-11 0.000225 0.003501 1.78E-10 0.000422 0.005322

12 3.01E-11 2.15E-10 5.48E-11 3.01E-11 6.5E-09 2.15E-10

Table 3.  p-value of Wilcoxon sum test between mNRBO and its competitors.

 

F index mNRBO NRBO HHO SCA CDO SCHO HLOA

12

Best 2.86E + 03 2.89E + 03 2.86E + 03 2.87E + 03 2.87E + 03 2.86E + 03 2.86E + 03

Worst 2.87E + 03 3.25E + 03 2.98E + 03 2.87E + 03 3.35E + 03 2.97E + 03 3.02E + 03

Mean 2.86E + 03 2.99E + 03 2.91E + 03 2.87E + 03 3.30E + 03 2.90E + 03 2.90E + 03

Std 1.62E + 00 9.53E + 01 3.12E + 01 1.50E + 00 1.21E + 02 2.67E + 01 4.05E + 01

Rank 1 6 5 2 7 4 3

Table 2.  Comparison of different algorithms in solving the benchmark functions.
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The optimum incorporation of all investigated scenarios has been noticed to have an immediate effect on 
fault current, boosting it across all buses over each of the tested grids, including the highest impact from the case 
of hybrid PVDG and DSVC devices. For instance, within the standard IEEE 33-bus, via buses 11 and 19, the fault 
current raised approximately 4.6 kA and 5.2 kA, respectively.

Furthermore, compared with the fundamental scenario for IEEE 69-bus, it’s observed that following the 
incorporation of hybrid PVDG and DSVC devices, the fault current jumped to approximately 140.11 kA and 
84.50 kA in buses 18 and 69.

The setting up of PVDG and DSVC devices immediately affects the fault current across all buses over the 
two testing grids. The latter increases because of the inverse relationship between it and the bus voltage, which 
increases following the incorporation of investigated scenarios in the tested grids, as previously stated and due 
to the formula (23).

Fig. 4.  Convergence curves of mNRBO algorithm with competitors.

 

Scientific Reports |        (2025) 15:12871 14| https://doi.org/10.1038/s41598-025-97606-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Figure 12 shows the disparity in primary overcurrent relay operating time across the fundamental scenario 
and the remaining examined scenarios with the optimum incorporation into both tested EDG.

The primary function of overcurrent relays is to identify fault currents via lines and promptly isolate and 
safeguard the entire system. Reducing the operating time of those OCRs is both technically advantageous 
(protecting the system’s components) and economically profitable (extending the gadget’s lifetime).

The optimum implementation of every studied scenario using the mNRBO algorithm resulted in the 
reduction of operating time across all OCR set up in the two EDG standards, just like in Fig. 11 through ∆TRelay. 
This reflects the disparity among each OCR’s operating time during the fundamental scenario and following 
every scenario investigated for optimum incorporation into both EDG.

Fig. 5.  Boxplots of mNRBO algorithm with competitors.
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Additionally, it becomes apparent that the incorporation of hybrid PVDG and DSVC devices was the most 
effective scenario for this reduction, resulting in an overall TRELAY decrease from 20.574 s to 20.149 s over the 
initial standard EDG and from 38.772 s to 38.434 s for the subsequent standard IEEE 69-bus.

The effect was immediately associated with an upsurge in fault current, which was influenced by the boost 
of voltage levels stated in formulas (22 and 23). In this case, the OCR operates more quickly as the fault current 
rises.

Figure. 13 depicts the coordination time interval across the existing relays in the scenarios before and after 
incorporating PVDGs and DSVC devices into tested EDG.

The findings shown in Fig.  13 indicate that CTI dropped following the optimum incorporation of both 
studied scenarios into tested EDG stipulated through the mNRBO algorithm. The CTI was dropped across all 
systems’ primary and backup OCR, with respect to the permitted margins of the minimum CTI score of 0.2 s.

The decrease was caused by reducing the OCR’s primary operating time. Furthermore, it appears obvious that 
the optimum inclusion of hybrid PVDG and DSVC devices in the tested grids had the most significant impact 
on lowering CTI to 7.698 s and 16.717 s for both studied EDG, respectively.

Insofar as the CTI is regarded as the distinction between the primary and backup OCRs, reducing and 
maintaining it over the lowest permitted margin enhances the protection system by preventing miscoordination 
among the OCRs, as mentioned earlier.

Fig. 6.  Flowchart for mNRBO algorithm.
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Algorithm applied Type
PVDG
Bus

DSVC
Bus PPVDG (kW) QDSVC (kVar) ∑ APL (kW) ∑ VD (p.u.) ∑ TRELAY (sec) ∑ CTI (sec) MOF

Basic case – – 224.948 1.870 38.772 16.886 –

SCA

PVDG
4
18
61

–
1202
863
1363

– 80.729 1.065 38.561 16.797 137.144

Hybrid
PVDG
DSVC

13
18
62

7
58
61

892
597
1606

651
712
721

27.679 0.515 38.474 16.784 83.373

CDO

PVDG
7
28
62

–
1123
635
1712

– 79.298 1.145 38.559 16.794 135.840

Hybrid
PVDG
DSVC

3
28
61

14
42
62

892
732
1662

652
812
1171

25.870 0.648 38.461 16.777 81.862

SCHO

PVDG
4
14
61

–
912
639
1406

– 76.886 1.067 38.550 16.802 133.346

Hybrid
PVDG
DSVC

4
14
62

7
22
61

992
893
1622

650
782
897

23.618 0.448 38.456 16.749 79.292

NRBO

PVDG
22
61
62

–
712
533
1063

– 75.599 1.042 38.534 16.765 131.982

Hybrid
PVDG
DSVC

4
18
61

13
28
62

992
893
1311

652
922
967

20.359 0.378 38.445 16.732 76.005

mNRBO

PVDG
7
18
61

–
692
539
1610

– 70.590 1.032 38.526 16.760 126.965

Hybrid
PVDG
DSVC

7
18
61

14
28
63

724
830
1270

551
1090
961

18.763 0.366 38.434 16.717 74.381

Table 5.  Optimized outcomes for the IEEE 69-bus.

 

Algorithm applied Type
PVDG
Bus

DSVC
Bus PPVDG (kW) QDSVC (kVar) ∑ APL (kW) ∑ VD (p.u.) ∑ TRELAY (sec) ∑ CTI (sec) MOF

Basic case – – 210.982 1.812 20.571 7.808 –

SCA

PVDG
4
13
28

–
940
1202
803

– 92.324 1.001 20.28 7.746 121.349

Hybrid
PVDG
DSVC

7
13
28

4
14
30

770
970
1083

756
720
670

37.241 0.363 20.223 7.722 65.463

CDO

PVDG
13
24
31

–
1402
902
603

– 89.978 1.033 20.292 7.734 119.025

Hybrid
PVDG
DSVC

4
13
30

7
24
31

903
805
1603

711
678
770

35.171 0.334 20.205 7.729 63.401

SCHO

PVDG
7
13
28

–
1020
871
1003

– 87.904 1.014 20.278 7.734 116.931

Hybrid
PVDG
DSVC

4
14
31

3
13
31

704
906
1360

812
609
809

32.785 0.296 20.191 7.725 60.956

NRBO

PVDG
4
14
31

–
932
1002
813

– 83.041 0.984 20.253 7.730 112.075

Hybrid
PVDG
DSVC

3
14
28

4
13
31

1402
703
903

611
662
709

29.257 0.345 20.182 7.721 57.552

mNRBO

PVDG
3
13
31

–
1321
895
913

– 79.547 0.963 20.216 7.729 108.570

Hybrid
PVDG
DSVC

3
13
31

4
7
30

940
1011
803

708
612
1012

26.482 0.238 20.149 7.698 54.659

Table 4.  Optimized outcomes for the IEEE 33-bus.
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Conclusion
The modified Newton Raphson-based optimizer algorithm significantly enhanced the reliability of electrical 
distribution grids. It successfully tailored the placement of hybrid PVDG and DSVC devices, decreasing active 
losses by up to 26.48 kW and 18.26 kW for the IEEE 33 and 69 bus systems, respectively.

The implementation of the mNRBO algorithm resulted in higher voltage levels throughout distribution grids 
after minimizing the voltage deviation until 0.238 p.u. and 0.336 p.u. for both tested IEEE 33 and 69 bus grids, 
which enhanced overall system resilience and accuracy, especially during peak load limitations.

Meanwhile, the protection system based on overcurrent relays can be improved by minimizing operating time 
and maintaining coordination within adequate limitations, extending equipment lifetime, system selectivity, and 
safe service continuity. Distribution grids benefited from decreased environmental impact by integrating hybrid 
PVDG and DSVC devices. They enhanced their capacity to cope with greater demands while preserving voltage 
stability, causing an essential move towards sustainable energy targets.

By retaining this information throughout the discovery procedure, the mNRBO algorithm ensures an 
ongoing exploration process, yielding superior outcomes compared to the original method and other comparable 
computations in terms of effectiveness and capacity to attain more minor multi-objective function rankings.

Fig. 8.  Convergence curves of the applied competitor algorithms for the IEEE 69-bus: (a). PVDG Case, (b). 
Hybrid PVDG-DSVC Case.

 

Fig. 7.  Convergence curves of the applied competitor algorithms for the IEEE 33-bus: (a). PVDG Case, (b). 
Hybrid PVDG-DSVC Case.
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The convergence features demonstrated the following: overall optimized outcomes were obtained in a shorter 
period than the rest of the algorithms. The practical implementation of the mNRBO algorithm for hybrid device 
placement broadens new research avenues.

Prospective studies might investigate incorporating other renewable sources and battery storage, including 
charging stations for electric cars, and addressing various technological and financial obstacles to improve 
distribution grid performance and reliability.

Fig. 10.  Active power losses with the suggested cases for both tested grids: (a). IEEE 33-bus, (b). IEEE 69-bus.

 

Fig. 9.  Voltage profiles with suggested cases for both tested grids: (a). IEEE 33-bus, (b). IEEE 69-bus.
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Fig. 12.  Relay’s operating time after suggested cases for both tested grids: (a). IEEE 33-bus, (b). IEEE 69-bus.

 

Fig. 11.  Fault current variation after the suggested cases for both tested grids: (a). IEEE 33-bus, (b). IEEE 69-
bus.
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