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The present study uses the least squares residual power series (LSRPS) method to obtain approximate 
solutions to the nonlinear fractional-order Kawahara and Rosenau- Hyman equations. This method 
combines the residual power series (RPS) technique and the least squares approach. The calculations 
are obtained using Caputo’s sense as a basis. To obtain approximations of solutions, the well-known 
RPS method is first used. The functions are then proven to be linearly independent by checking the 
Wronskian determinant at fractional order. Next, a system of linear equations is generated and 
processed using the least squares approach. Using the least squares method, which uses fewer 
expansion terms than the classical RPS method, approximate solutions are determined. The problems 
presented below demonstrate how much faster the proposed method converges compared to the 
RPS method. Numerical results are presented to demonstrate the efficiency, accuracy, and rapid 
convergence of the method.
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Fractional calculus has grown in popularity and application in many fields of science and engineering over the 
last few decades, including fluid mechanics, diffusive transport, electrical networks, electromagnetic theory, 
and various branches of physics, biological sciences, and other applications1–5. When it comes to modeling 
physical events, using fractional derivatives instead of integer derivatives provides greater benefits. The fractional 
derivatives improve the model by incorporating memory effects and nonlocal interactions, making it more 
applicable to complex physical systems. Caputo’s derivative is among the most often used fractional derivatives 
because it allows initial conditions to be included in the same way as classical differential equations, which is 
crucial in physics and engineering1. The definition is also more important than other definitions because it 
has a better memory effect than other definitions. Caputo derivative has been widely studied and applied in 
engineering, physics, and control systems. The ABC derivative is still relatively new, which means that there 
are few validated numerical methods, tools, and practical applications. Most nonlinear differential equations 
are often produced by modeling various physical systems mathematically. Finding analytical solutions to these 
problems is typically exceedingly challenging. The Roseau-Hyman equation was discovered as a simplified model 
for studying the role of nonlinear dispersion in pattern creation in liquid droplets, and it has found several uses 
in the modeling of various issues in physics and engineering6. The fractional Kawahara equation is an extension 
of the classical Kawahara equation, a higher-order, nonlinear partial differential equation used to describe wave 
propagation in dispersive media. This equation also simulates the propagation of long waves in shallow water, 
plasma waves, and fluid dynamics in systems. In the past, this problem has been extensively studied using a 
variety of methods, see7–10. The Kawahara equation is crucial for explaining the kinematics of plasma waves, 
capillary-gravity water waves, surface tension water waves, shallow water waves, and other wave types11–14. The 
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fractional Rosenau-Heymann (RH) equation is a generalization of the classical Rosenau-Heymann equation, 
which models nonlinear wave phenomena, such as localized waves that do not dissipate over time15–18. It also 
has physical applications in Shallow water waves, Plasma and optical pulse propagation. For various fractional 
differential equations, several approaches have been investigated. These include the Double (G’/G, 1/G)-
expansion technique19,20, the Lie group analysis and Lie’s invariant analysis methods21,22, the Laguerre wavelet 
collocation method23, the fractional reduced differential transform method24, the Hirota bilinear method, the 
variational iteration method, Kudryashov method25–29, Adomian decomposition method30, Homotopy analysis 
method31, RPS method32–34 and other efficient techniques35–44 which are powerful tools to find the solutions of 
the nonlinear partial differential equations (NPDEs). The main objective of this study is to develop and validate 
semi-analytical solutions to the time-fractional Kawahara and Rosenau- Hyman equations arising in fluid 
dynamics using the LSRPS method with the Caputo definition of time-fractional derivatives. The study aims 
to demonstrate the advantages of the LSRPS method in dealing with nonlinear terms without assumptions and 
to demonstrate the effects of enhanced memory. The LSRPS method is computationally efficient and robust for 
solving both linear and nonlinear equations. By utilizing least squares minimization and iterative projection, 
this method offers a powerful alternative to traditional direct and iterative methods, especially in cases involving 
unconditional or large-scale problems.

The following is the paper’s structure: The definitions of Caputo and Wronskian’s fractional are introduced in 
Sect. 2. Section 3 suggests the LSRPS approach. Section 4 Displays some applications of LSRPS Method. There 
is a conclusion in Sect. 5.

Preliminaries
Some basic concepts and properties of fractional calculus theory relevant to this section will be introduced. The 
Wronskian fractional equation is also described in this section.

Riemann-Liouville fractional integral
The Riemann-Liouville fractional integral of order α > 0 of a function f : R+ → R is defined as:

	

Jαf (x) = 1
Γ (α)

x∫

0

(x − t)α −1 f (t) dt, α > 0, x > 0,� (1)

where

	 J0f (x) = f (x) .� (2)

Hence, we have:

	
Jαtγ = Γ (γ + 1)

Γ (α + γ + 1) tα+γ . α > 0, γ > −1, t > 0.� (3)

Riemann-Liouville fractional derivative
Riemann-Liouville fractional derivatives of order α  of a continuous function f : R+ → R is obtained 
consecutively by:

	

Dαf (x) = Dm
(
Jm−αf (x)

)
,

Dα
* f (x) = Jm−α (Dmf (x)) ,

� (4)

wherem − 1 < α ≤ m, m ∈ N.

The Caputo fractional derivative
The Caputo fractional derivative of a continuous function f : R+ → R may be represented as follows:

	
Dα f (x) = Jm−α (Dmf (x)) = 1

Γ (m + α )

∫ x

0
(x − t)m−α −1fm (t) dt,� (5)

where m − 1 < α ≤ m, m ∈ N, x > 0.
Some of the fundamental fractional derivatives and integrals for α, β ∈ R+ are as follows:

	

Jα Jβ f (x) = Jα +β f (x) ,

Jα Jβ f (x) = Jβ Jα f (x)

Jα tγ = Γ (γ + 1)
Γ (α + γ + 1) tα +γ , α > 0, γ > −1, t > 0.

� (6)

Caputo fractional derivative characteristics
If −1 < α ≤ m, m ∈ N, µ ≥ −1 it holds:
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1. Dα Jα f (x) = f (x) ,

2. Jα Dα f (x) = f (x) +
m−1∑
k=0

fk
(
0+) xk

k! , x > 0,

3. Dα (C) = 0, C is constant.
4. Dα (ξ f (t) + θ g (t)) = ξ Dα (f (t)) + θ Dα (g (t)) .

� (7)

where ξ , θ , and C are real constants.

The fractional partial Wronskian (see45)
Let φ 1, φ 2, . . . , φ n are the number of functions of the variables x and t that are specified on the domain Ω . 
Then, the fractional partial Wronskian of φ 1, φ 2, . . . , φ n take the form:

	

ωα [φ1, φ2, . . . , φn]

=

∣∣∣∣∣∣∣∣∣

φ0 φ1 φ2 · · · φn

Dα (φ0) Dα (φ1) Dα (φ2) · · · Dα (φn)
D2α (φ0) D2α (φ1) D2α (φ2) · · · D2α (φn)
...

...
...

...
...

D(n−1)α (φ0) D(n−1)α (φ1) D(n−1)α (φ2) · · · D(n−1)α (φn)

∣∣∣∣∣∣∣∣∣
̸= 0,

� (8)

where 0 < α ≤ 1, Dα (φ i) =
(

∂
∂ x

+ ∂ α

∂ tα

)
(φ i) , where i = 1, 2, 3, . . . , n.

Dnα = Dα Dα . . . Dα ( n − times)and φ 1 (x.t) , φ 2 (x.t) , . . . , φ n(x.t)  are considered to be linearly 
independent if and only if the fractional partial Wronskian of all n functions φ 1 (x.t) , φ 2 (x.t) , . . . , φ n(x.t)
is nonzero at least once in the domain Ω = [a.b] × [a.b].

Theorem (Convergence theorem) (see46–48)
Suppose that u (x,t) ∈ C ([r,t0] × [r,t0 + r]) , Diα

t u (x,t) ∈ C ([r,t0] × [r,t0 + r])

	 0 ≤ m − 1 ≤ α ≤ m and Diα
t u (x,t) can be for i = 0, 1, 2, . . . ,N + 1 where

with respect to t on ( t0,t0 + r) then m − 1 differentiate

	
u (x,t) ∼=

∑
m−1
j=0

∑
N
i=0Uj+iα (x) (t − t0)j+iα ,

where

	
Uj+iα (x) = Diα +J

t

Γ (iα + j + 1)u (x,t0) ,

and r is the radius of convergence. Moreover, the error term rN (x,t) has the form

	
∥rN (x,t)∥ = supt∈[0,T]

∣∣∣∣∣
m−1∑
j=0

(
D(N+1)α+ju (x, ξ) t(N+1)α+j

Γ((N + 1)α + i + 1)

)∣∣∣∣∣ , where 0 ≤ ξ ≤ t.

Proof (see48).

Methodology
In this section, we will outline the general procedure of the LSRPS technique, as described in46,47 for solving 
time-fractional differential equations. This technique combines the classical (RPS) method with the least-
squares method.

Residual power series method (RPSM)
Considering the following time-fractional differential equation:

	 lα (u (x, t)) + N (u (x, t)) = 0, t > 0, 0 < α ≤ 1,� (9)

where lα  is a linear fractional operator, N  is a nonlinear operator, u (x, t) is an unknown function, and I is an 
initial condition. Based on the classical (RPS) technique as described in references32–34, an algorithm can be 
proposed as follows:

	
u (x, t) =

∞∑
n=0

fn (x) tnα

Γ(1 + nα) , 0 < α ≤ 1, x ∈ I, 0 ≤ t < R.� (10)
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To obtain a reasonable approximation for Eq. (9), the Kth series of u (x.t) is introduced. Thus, the truncated 
series uk(x.t) is defined as follows

	
uk (x, t) =

∞∑
n=0

fn (x) tnα

Γ(1 + nα) , 0 < α ≤ 1, x ∈ I, 0 ≤ t < R.� (11)

The 0-th RPS approximate solution of u (x.t) is:

	 u0 (x, t) = u (x, 0) = f (x) .� (12)

Equation (9) can be written by:

	
uk (x, t) = f (x) +

∞∑
n=1

fn (x) tnα

Γ(1 + nα) , 0 < α ≤ 1, x ∈ I, 0 ≤ t < R.� (13)

Let’s define the residual function for Eq. (9) as follows:

	 Resu (x, t) = lα (uk (x, t)) + N (uk (x, t)) , t > 0, 0 < α ≤ 1.� (14)

Considering the initial condition I (u) = 0, let’s define the Kth residual function Resu.k  as follows:

	 Resu.k (x, t) = lα (uk (x, t)) + N (uk (x, t)) , t > 0, 0 < α ≤ 1.� (15)

To obtain fn (x) , n ∈ N∗, we seek the solution of the following Eq. 

	 D
(n−1)α
t Resu.k (x, 0) = 0, k ∈ N*,� (16)

where N∗ = {1, 2, 3, . . . . , n} .
To determine f1 (x), f2 (x) , f3 (x), …, we consider (k = 1, 2, 3. . . . .) in Eq.  (10) and substitute this 

series expansion into Eq. (9) to obtain an approximate solution for Eq. (1). The standard residual power series 
approach can be employed to obtain Kth order approximation solutions as:

	 uk = φ 0 + φ 1 + φ 2 + . . . φ k,� (17)

where,

	

φ0 = f0 (x) ,
φ1 = f1 (x) tα

Γ(1+α) ,

φ2 = f2 (x) t2α

Γ(1+2α) ,

...
φk = fk (x) tkα

Γ(1+kα) .

� (18)

Least-Squares residual power series technique (LSRPS)
This section presents the methodology for the LSRPS technique and introduces key definitions necessary for its 
implementation.

Let the remainder R̃es for Eq. (1) be:

	 R̃es (x, t, ũ) = lα (u (x, t)) + N (ũ (x, t)) , t > 0, 0 < α ≤ 1,� (19)

with I (ũ) = 0, and ũ is the approximate solution of Eq. (2).
Remark that if

	
lim

i→ ∞
R̃es

(
x, t, siα (x, t)

)
= 0,� (20)

where {siα (x, t)} i∈ N∗ is converge to the solution of Eq. (1).
The ũ is the ϵ −approximate RPS method solution of Eq. (1) on domain Ω  if:

	

∣∣∣R̃es (x, t, ũ)
∣∣∣ < ϵ ,� (21)

and I (u) = 0 is also satisfied by ũ.
If ũ is the weak -approximate (RPS) method solution of Eq. (1) on domain Ω , we call it that:

	

�
R̃es (x, t, ũ)

2
dx dt ≤ ϵ ,� (22)
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where I (u) = 0 is also satisfied by ũ.
To implement the least-squares Residual Power Series approach, we propose the following procedures:

1st step
We adopt the classical residual power series approach to approximate the solution. The expression for uk (x.t) 
can be represented as follows:

	
uk (x, t) =

∑
∞
n=0fn (x) tnα

Γ(1 + nα) , 0 < α ≤ 1, x ∈ I, 0 ≤ t < R,� (23)

and the kth residual function Resu.k  take the form:

	 Resu.k (x, t) = lα (uk (x, t)) + N (uk (x, t)) , t > 0, 0 < α ≤ 1.� (24)

Subsequently, we seek solutions for fn (x) by exploring the following procedure:

	 D
(n−1)α
t Resu.k (x, 0) = 0. k ∈ N*,� (25)

where N∗ = {1, 2, 3, ., n}.
In this case, the implementation of the RPS technique provides kth-order approximation solutions 

characterized by the following:

	 uk = φ 0 + φ 1 + φ 2 + . . . φ k ,� (26)

where φ 0, φ 1, φ 2 can be computed by Eq. (4)

2nd step
The linearly independent functions can be verified or validated using the following procedure:

	

ω α [φ 1.φ 2. . . . .φ n]

=

∣∣∣∣∣∣∣∣∣

φ0 φ1 φ2 . . . φn

Dα (φ0) Dα (φ 1) Dα (φ 2) . . . Dα (φ n)
D2α (φ0) D2α (φ 1) D2α (φ 2) · · · D2α (φ n)
...

...
...

...
D(n−1)α (φ 0) D(n−1)α (φ 1) D(n−1)α (φ 2) · · · D(n−1)α (φ n)

∣∣∣∣∣∣∣∣∣
̸= 0,

� (27)

where Dα (φ i) =
(

∂
∂ x

+ ∂ α

∂ tα

)
(φ i) , and sk = {φ 0, φ 1, . . . , φ n} be a set of linearly independent 

elements in the vector space of continuous functions defined on R.
If it is not possible to identify any point where ω α [φ 1, φ 2, . . . , φ n] is not equal to 0, then it implies that 

the set of functions sk  is linearly dependent.

3rd step
We assume that:

	
ũk =

∑
k
n=0cn

k φ r.� (28)

By considering the approximated solution ũk for Eq. (1), we can substitute it into Eq. (5) to obtain:

	 R̃es (x, t, cn
k ) = R̃es (x, t, ũk) .� (29)

4th step
We relate the following functional to:

	

∫ ∫
Ω (R̃es (x, t, ũ))2 dx dt = min J,� (30)

and obtain some constants of cn by solving the algebraic systems ∂ J
∂ cn

= 0, n = 1,2, . . . , k.

Application of the least-squares residual power series method
this section focuses on the application of the LSRPS method to address various problems. During the initial 
iterations of this new strategy, we often utilize the fractional RPS technique. The unidentified coefficients are 
subsequently determined using the least-squares method. To assess the accuracy of the approximation solutions, 
we employ graphs and tables, providing a visual and numerical analysis.

Problem 1  Considering the time-fractional Rosenau-Hyman equation:
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	 Dα
t u − 3uxxux − uux − uuxxx = 0,� (31)

where t >0, x ∈ R, 0 < α ≤ 1.
Subject to the initial condition:

	
u (x, 0) = −8 c

3 cos2
(x

4

)
� (32)

.
The exact solution at α=1 is

	
u (x, t) = −8c

3 cos2
(x − ct

4

)

.
To introduce the solution of fractional Rosenau-Hyman equation, we can employ the well-known (RPS) 

method34 which offers a solution for the equation as:

	
u (x, t) = f (x) + f1 (x) tα

Γ (1 + α ) + f2 (x) t2α

Γ (1 + 2α ) + f3 (x) t3α

Γ (1 + 3α ) + . . . � (33)

where

	
f (x) = −8c

3 cos2
(x

4

)
,� (34)

	
f1 (x) = −2c2

3 sin
(x

2

)
,� (35)

	
f2 (x) = c3

3 cos
(x

2

)
.� (36)

The linearly independent functions could be validated by using:

	

ω α [φ 0, φ 1, . . . , φ n]

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− 8c
3 cos2 (

x
4

)
.

Dα
(
− 8c

3 cos2 (
x
4

)
.
)

D2α
(
− 8c

3 cos2 (
x
4

)
.
)

...
D(n−1)α

(
− 8c

3 cos2 (
x
4

))

(
−2c2

3 sin
(

x
2

)) (
c3

3 cos
(

x
2

))
. . .

Dα
(

−2c2

3 sin
(

x
2

)
) tα

Γ(1+α )

)
Dα

((
c3

3 cos
(

x
2

))
t2α

Γ(1+2α )

)
. . .

D2α
(

−2c2

3 sin
(

x
2

)
) tα

Γ(1+α )

)

...
D(n−1)α

(
−2c2

3 sin
(

x
2

))

D2α
((

c3

3 cos
(

x
2

))
t2α

Γ(1+2α )

)

...
D(n−1)α

(
c3

3 cos
(

x
2

)) . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

̸= 0,
� (37)

where α = 1, t = 0.5, x = 0, c = 1 and ω 1 [φ 0, φ 1, φ 2] ̸= 0.
Hence, the functions φ 0, φ 1, φ 2 are linearly independent define as:

	 φ 0 = f (x) ,

	
φ 1 = f1 (x) tα

Γ (1 + α ) ,

	
φ 2 = f2 (x) t2α

Γ (1 + 2α ) .

Consequently, we can obtain an approximation that can be formulated as follows:

	
ũ = c0

(
−8

3cos2
(x

4

))
+ c1

((−2
3 sin

(x
2

))) tα

Γ (1 + α ) + c2

((1
3cos

(x
2

))) t2α

Γ (1 + 2α ) .� (38)

The residual function can be obtained by:

	 R̃es (x, t, ũ) = Dα
t ũ − ũũx − 3 (ũx) ũxx − ũũxxx.� (39)

With the initial condition:

	
ũ0 = − c0

(8
3cos2

(x
4

))
.� (40)

By using ũ0 put c0 = 1, ũ can be written as:
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ũ = (8

3cos2
(x

4

)
+ c1

(
(−2

3 sin(x
2 )

) tα

Γ (1 + α ) + c2

((1
3cos

( x
2 ))

) t2α

Γ (1 + 2α ) .� (41)

By substituting ũ into R̃es (x, t, ũ), we can obtain R̃es. As a result, the functional J can be expressed as:

	

� .

Ω
R̃es (x, t, ũ)

2
dx dt = J (c1, c2) .� (42)

We have two algebraic equations:

	
∂ J

∂ c1
= 0,

∂ J

∂ c2
= 0.� (43)

And following that, we calculate the unknown coefficients of Eq. (43) when α = 1 as:

	 c1 = 0.997977578799891, c2 = 1.013022733315692.� (44)

The absolute error between the exact and approximated solutions using the proposed technique can be illustrated 
using the following formula:

	 Error = |ũi(x, t) − u(x, t)| .� (45)

Problem 2  We will now examine the fractional Kawahara Eq. 

	 Dα
t u + (u) ux + uxxx − uxxxxx = 0,� (46)

where t >0, x ∈ R, 0 < α ≤ 1.
Subject to the initial condition:

	
u (x, 0) = f (x) = 105

169 sech4
(

x

2
√

13

)
.� (47)

The exact solution when α = 1 is:

	
u (x, t) = 105

169 sech4
[

1
2

√
13

(x − 36 t

169 )
]

.� (48)

By employing a similar approach as the classical residual power series method demonstrated in problem (1), we 
can derive the following Eq. 

	
f1 (x) =

7560 sech4
(

x
2

√
13

)
tanh

(
x

2
√

13

)

28561
√

13
,� (49)

	
f2 (x) =

136080 sech6
(

x

2
√

13

)
(−3 + 2cosh

(
x

2
√

13

)
)

62748517 ,
� (50)

	
f3 (x) =

4898880 sech7
(

x

2
√

13

)
(−13 sinh( x

2
√

13 ) + 2sinh
(

x

2
√

13

)
)

10604499373
√

13
,� (51)

	
f4 (x) =

88179840 sech8
(

x

2
√

13

)
(52 − 49 cosh( x

2
√

13 ) + 4cosh
(

2x√
13

)
)

23298085122481 .
� (52)

The series representation of the solution is provided as follows:

	
u (x, t) = f (x) + f1 (x) tα

Γ (1 + α ) + f2 (x) t2α

Γ (1 + 2α ) + f3 (x) t3α

Γ (1 + 3α ) + f4 (x) t4α

Γ (1 + 4α ) + · · · � (53)

To verify the linear independence of the functions, we can employ the following procedure:
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ω α [φ0, φ 1, . . . , φ n]

=

∣∣∣∣∣∣∣∣∣

φ0 φ1 φ2 φ3 φ4
Dα(φ0) Dα(φ1) Dα(φ2) Dα(φ3) Dα(φ4)
D2α(φ0) D2α(φ1) D2α(φ2) D2α(φ3) D2α(φ4)
...

...
...

...
...

D(n−1)α(φ0) D(n−1)α(φ1) D(n−1)α(φ2) D(n−1)α(φ3) D(n−1)α(φ4)

∣∣∣∣∣∣∣∣∣
̸= 0,

� (54)

By evaluating the given parameters α = 1, t = 0.5 and x = 0, we can determine 
that ω 1 [φ 0, φ 1, φ 2, φ 3, φ 4] ̸= 0. Consequently, it can be concluded that the functions φ 0.φ 1.φ 2.φ 3.φ 4 
are linearly independent. These functions are defined as:

	 φ 0 = f (x) ,

	
φ 1 = f1 (x) tα

Γ (1 + α ) ,

	
φ 2 = f2 (x) t2α

Γ (1 + 2α ) ,

	
φ 3 = f3 (x) t3α

Γ (1 + 3α ) ,

	
φ 4 = f4 (x) t4α

Γ (1 + 4α ) .

Therefore, based on this observation, we can deduce an approximation that can be expressed as follows:

	

ũ = c0

(
105
169 sech4

(
x

2
√

13

))
+ c1


7560 sech4

(
x

2
√

13

)
tanh

(
x

2
√

13

)

28561
√

13


 tα

Γ (1 + α)

+ c2


136080 sech6

(
x

2
√

13

) (
−3 + 2cosh

(
x

2
√

13

))

62748517


 t2α

Γ (1 + 2α)

+ c3


4898880 sech7

(
x

2
√

13

) (
−13 sinh

(
x

2
√

13

)
+ 2sinh

(
x

2
√

13

))

10604499373
√

13


 t3α

Γ (1 + 3α)

+ c4


88179840 sech8

(
x

2
√

13

) (
52 − 49 cosh

(
x

2
√

13

)
+ 4cosh

(
2x√
13

))

23298085122481


 t4α

Γ (1 + 4α) .

� (55)

The residual function can be obtained as:

	 R̃es (x, t, ũ) = Dα
t ũ + (ũ) ũx + ũxxx − ũxxxxx,� (56)

with the initial condition:

	
ũ0 = 105

169 sech4
(

x
2

√
13

)
.� (57)

By using ũ0 and put c0 = 1, ũ can written as:

Scientific Reports |        (2025) 15:14929 8| https://doi.org/10.1038/s41598-025-97639-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports
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Hence, by substituting ũ into R̃es (x, t, ũ), then we obtain R̃es. Subsequently, the functional J can be expressed 
as:

	

� .

Ω
R̃es (x, t, ũ)

2
dx dt = J (c1, c2, c3, c4) .� (59)

By evaluating the functional J, we arrive at four algebraic equations, which can be stated as follows:

	
∂ J

∂ c1
= ∂ J

∂ c2
= ∂ J

∂ c3
= ∂ J

∂ c4
= 0.� (60)

Subsequently, the unknown coefficients (c1, c2, c3, c4) for the case α = 1 take the form:

	
c1 = 1.000000000023623, c2 = 0.999999986234735,
c3 = 1.000004426520602, c4 = 0.998830217957528. � (61)

The formula for absolute error is:

	 Error = |ũi(x, t) − u(x, t)| .� (62)

Conclusion
The least squares residual power series method (LSRPSM) is an improved version of the residual power 
series method (RPSM), incorporating the least squares technique to improve accuracy and convergence. This 
paper introduces a novel comparative analysis between LSRPSM and RPSM, highlighting the advantages of 
incorporating the least squares approach in improving accuracy and convergence speed. The correctness of these 
results is displayed in Tables 1 and 2 and visually in Figs. 1, 2, 3, 4, 5, 6, 7 and 8 to demonstrate the effectiveness 
and distinctiveness of this approach. It can be observed that the LSRPSM often converges more quickly than 
RPSM, especially for problems with complex boundary conditions. It is suitable for problems where standard 
RPSMs cannot achieve sufficient accuracy within a limited number of terms. In this regard, it is significant 
and a useful alternative approach for resolving fractional NPDEs. In the future, least squares technique can be 
combined with other analytical methods to obtain optimal results. Other fractional definitions can also be used.

t x RPSM LSRPSM Exact Absolute error LSRPSM Absolute error RPSM34

0.2 π
2 − 2.3657092 − 2.36545716 − 2.36555610 9.8936223E − 05 1.53100E − 04

0.6 π
2 − 2.5165586 − 2.51543414 − 2.51265233 2.7818097E − 03 3.906270E − 03

1 π
2 − 2.6296958 − 2.62720764 − 2.61273283 1.447480E − 02 1.69630E − 02

0.2 π − 1.4666666 − 1.46639701 − 1.46644455 4.7545022E − 05 2.21100E − 04

0.6 π − 1.7333333 − 1.73252436 − 1.72736027 5.164089E − 03 5.973030E − 03

1 π − 2.0000000 − 1.99865171 − 1.97256738 2.608433E − 02 2.74326E − 02

Table 1.  The absolute errors between the approximate and exact solutions obtained using the (LSRPS) 
approach with the (RPS) method for problem 1 at α = 1.
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Fig. 1.  Comparison between the LSRPSM and the exact solution for the Rosenau-Hyman equation at x = 1 
and α = 1.

 

t x LSRPS Exact Absolute error (LSRPSM) Absolute error (RPSM)18

0

10

0.030421 0.030421 0 0

0.1 0.030739 0.030739 6.7233E − 16 1.41553E − 15

0.2 0.031061 0.031061 9.124E − 15 4.68063E − 14

0.3 0.031386 0.031386 9.9486E − 14 3.6391E − 13

0.4 0.031714 0.031714 5.4738E − 13 1.56886E − 12

0.5 0.032046 0.032046 2.0665E − 12 4.89617E − 12

0.6 0.03238 0.03238 6.0629E − 12 1.24542E − 11

0.7 0.032718 0.032718 1.4917E − 11 2.75069E − 11

0.8 0.033059 0.033059 3.2291E − 11 5.47829E − 11

0.9 0.033403 0.033403 6.3467E − 11 1.0081E − 10

1 0.033715 0.033715 1.1571E − 10 1.7428E − 10

Table 2.  Comparison between the least squares residual power series method (LSRPSM) and the residual 
power series method (RPSM) for problem 2 at α = 1.
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Fig. 2.  Comparison of the LSRPSM, RPSM, and exact solutions for Rosenau-Hyman equation at x = 1.
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Fig. 4.  3D surface graphs of the fractional Rosenau-Hyman equation (a) α = 0.9 (b) α = 0.5.

 

Fig. 3.  LSRPS solution for Eq. (4.17) at different values of α .
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Fig. 5.  Comparison between the LSRPSM and the Exact Solutions for the Kawahara Equation at x = 10.
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Fig. 6.  Comparison between LSRPSM, RPSM and the Exact Solutions for the Kawahara Equation at x = 10.
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Fig. 8.  3D surface graphs of the fractional Kawahara equation (a) α = 0.9 (b) α = 0.5.

 

Fig. 7.  LSRPS Solution of Eq. (46) using for different values of α .
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