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Least squares residual power
series solutions for Kawahara and
Rosenau-Hyman nonlinear wave
interactions with applications in
fluid dynamics
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The present study uses the least squares residual power series (LSRPS) method to obtain approximate
solutions to the nonlinear fractional-order Kawahara and Rosenau- Hyman equations. This method
combines the residual power series (RPS) technique and the least squares approach. The calculations
are obtained using Caputo’s sense as a basis. To obtain approximations of solutions, the well-known
RPS method is first used. The functions are then proven to be linearly independent by checking the
Wronskian determinant at fractional order. Next, a system of linear equations is generated and
processed using the least squares approach. Using the least squares method, which uses fewer
expansion terms than the classical RPS method, approximate solutions are determined. The problems
presented below demonstrate how much faster the proposed method converges compared to the
RPS method. Numerical results are presented to demonstrate the efficiency, accuracy, and rapid
convergence of the method.

Keywords Fractional derivatives, Least squares approximations, Residual power series method, Fractional
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Fractional calculus has grown in popularity and application in many fields of science and engineering over the
last few decades, including fluid mechanics, diffusive transport, electrical networks, electromagnetic theory,
and various branches of physics, biological sciences, and other applications!~>. When it comes to modeling
physical events, using fractional derivatives instead of integer derivatives provides greater benefits. The fractional
derivatives improve the model by incorporating memory effects and nonlocal interactions, making it more
applicable to complex physical systems. Caputo’s derivative is among the most often used fractional derivatives
because it allows initial conditions to be included in the same way as classical differential equations, which is
crucial in physics and engineering'. The definition is also more important than other definitions because it
has a better memory effect than other definitions. Caputo derivative has been widely studied and applied in
engineering, physics, and control systems. The ABC derivative is still relatively new, which means that there
are few validated numerical methods, tools, and practical applications. Most nonlinear differential equations
are often produced by modeling various physical systems mathematically. Finding analytical solutions to these
problems is typically exceedingly challenging. The Roseau-Hyman equation was discovered as a simplified model
for studying the role of nonlinear dispersion in pattern creation in liquid droplets, and it has found several uses
in the modeling of various issues in physics and engineering®. The fractional Kawahara equation is an extension
of the classical Kawahara equation, a higher-order, nonlinear partial differential equation used to describe wave
propagation in dispersive media. This equation also simulates the propagation of long waves in shallow water,
plasma waves, and fluid dynamics in systems. In the past, this problem has been extensively studied using a
variety of methods, see’"!°. The Kawahara equation is crucial for explaining the kinematics of plasma waves,
capillary-gravity water waves, surface tension water waves, shallow water waves, and other wave types'!"14. The
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fractional Rosenau-Heymann (RH) equation is a generalization of the classical Rosenau-Heymann equation,
which models nonlinear wave phenomena, such as localized waves that do not dissipate over time'>-!%. It also
has physical applications in Shallow water waves, Plasma and optical pulse propagation. For various fractional
differential equations, several approaches have been investigated. These include the Double (G’/G, 1/G)-
expansion technique'®?’, the Lie group analysis and Lie’s invariant analysis methods?!?2, the Laguerre wavelet
collocation method??, the fractional reduced differential transform method??, the Hirota bilinear method, the
variational iteration method, Kudryashov method?*>-%, Adomian decomposition method*’, Homotopy analysis
method?!, RPS method®*~3* and other efficient techniques®**~** which are powerful tools to find the solutions of
the nonlinear partial differential equations (NPDEs). The main objective of this study is to develop and validate
semi-analytical solutions to the time-fractional Kawahara and Rosenau- Hyman equations arising in fluid
dynamics using the LSRPS method with the Caputo definition of time-fractional derivatives. The study aims
to demonstrate the advantages of the LSRPS method in dealing with nonlinear terms without assumptions and
to demonstrate the effects of enhanced memory. The LSRPS method is computationally efficient and robust for
solving both linear and nonlinear equations. By utilizing least squares minimization and iterative projection,
this method offers a powerful alternative to traditional direct and iterative methods, especially in cases involving
unconditional or large-scale problems.

The following is the paper’s structure: The definitions of Caputo and Wronskian’s fractional are introduced in
Sect. 2. Section 3 suggests the LSRPS approach. Section 4 Displays some applications of LSRPS Method. There
is a conclusion in Sect. 5.

Preliminaries
Some basic concepts and properties of fractional calculus theory relevant to this section will be introduced. The
Wronskian fractional equation is also described in this section.

Riemann-Liouville fractional integral
The Riemann-Liouville fractional integral of order & > 0 of a function f : RT — R s defined as:

x

1)/(m—t)(‘*1f(t) dt, a>0,z>0, (1)

Jf () = T(a)

0
where

Jf(z)=f(x). )
Hence, we have:

F(y+1)
JU = — T T gty a>0,v>-1,t>0. 3
T(a+vy+1) K 3)
Riemann-Liouville fractional derivative
Riemann-Liouville fractional derivatives of ordera of a continuous function f: R' — Ris obtained
consecutively by:

D*f(z) = D" (J"""f (z)),

Dif(x) =J7 % (D™ f (),
wherem — 1 < a < m, m € N.
The Caputo fractional derivative
The Caputo fractional derivative of a continuous function f : Rt — R may be represented as follows:
« m—a m 1 ¢ m—a —1 pm
D = D - - _
Flo) =" D @) = ity [ w=0m T @ ©
wherem —1<a<m,meN, z>0.
Some of the fundamental fractional derivatives and integrals for o, 3 € R are as follows:
TS fa) = T f (@),
J*J7 f(x) = 7T f () ©)
Py +1) +
JO = LT ety >0,v>—1,¢t>0.
T(a +v +1) R

Caputo fractional derivative characteristics
If -1<a<m,méeN, u>—1itholds:
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L D*J% f(z) = f (),

m—1 k
2. JYDYf(x)=f(x)+ k0+z—,a:>(),
f()f();f()k! o)
3. D“ (C) =0, Cisconstant.
DT (€ ft)+0g 1)=& D" () +6 D% (9(2).
where £ , 0, and C are real constants.
The fractional partial Wronskian (see?)
Let ¢ 1,9¢,,... ¥, are the number of functions of the variables x and t that are specified on the domain 2.
Then, the fractional partial Wronskian of ¢ 1, ¢ o, ... , ¢, take the form:
w [1, 02, ¢l
%o 1 P2 e
D? (o) D? (1) D? (¢2) o D2 (on)
_ | D™ (#0) D™ (1) D (2) e D (pn) £0, (8)
D(n—l)a ((PO) D(n—l)a (@1) D(n—l)a (()02) L D(n—l)a (Qan)
where 0 < a < 1, D® (¢ ;) = ((,%—i—g%) (¢;), wherei=1, 2, 3,... ,n.
D" = D* D% ... D% (n—times)and ¢, (z.t), ¢, (.t),... , ¢ ,(z.t) areconsideredtobelinearly
independent if and only if the fractional partial Wronskian of all n functions ¢ | (z.t) , ¢ 5 (z.t),... , ¢ ,(z.t)

is nonzero at least once in the domain Q = [a.b] X [a.b].

Theorem (Convergence theorem) (see“5~48)
Suppose that u (x,t) € C ([r,t,] X [r,ty +1]), Di*u(x,t) € C([r,t0] X [r,ty +1])

0<m-1< ac< mandDitD‘u(x,t) canbefori=0,1,2,... N+ 1 where
with respect to t on ( to,t, + r) then m — 1 differentiate

u(et) 2 Y Y K oUiie (%) (6= to) T

where

Ditoc +J
Uj i - 7 - 7t ’
J+ (X) F(1“+J+1)H(X 0)

and r is the radius of convergence. Moreover, the error term ry (x,t) has the form

m—1 . .
D(N+1)Q+Ju(x &) N+t
= ’ <ELt.
[l (x,8) || = supgepo,my -20: ( T(N+ Dat+itD) , where0 < £ <t
=
Proof (see®).
Methodology

In this section, we will outline the general procedure of the LSRPS technique, as described in*®Y for solving
time-fractional differential equations. This technique combines the classical (RPS) method with the least-
squares method.

Residual power series method (RPSM)
Considering the following time-fractional differential equation:

1% (u(z,t)) + N (u(z,1)) =0, t>0, 0 < < 1, ©)

where [* is a linear fractional operator, [V is a nonlinear operator, u (x, t) is an unknown function, and I is an
initial condition. Based on the classical (RPS) technique as described in references®*~*%, an algorithm can be
proposed as follows:

e tnoc
t) = n —, 0 <1, I,0<t<R.
w@ )= So () prypay 0@ Shael0st< (10)
n=0
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To obtain a reasonable approximation for Eq. (9), the K series of u (.t) is introduced. Thus, the truncated
series u (x.t) is defined as follows

> tnoc

n=0
The 0-th RPS approximate solution of w (z.t) is:
wo (2,8) = u(2,0) = £ (2). (12)

Equation (9) can be written by:

> t’VlDC
Let’s define the residual function for Eq. (9) as follows:
Resy (x,t) =1 (uk (z,t)) + N (uk (z,¢)), t>0, 0<a < 1. (14)

Considering the initial condition I (u) = 0, let’s define the Kt residual function Res, x as follows:
Resy i (z,t) = 1% (ug (z,t)) + N (uk (z,t)), t >0, 0<a < 1. (15)
To obtain f, (x), n € N™, we seek the solution of the following Eq.
D"V Resu g (2,00 =0, ke N, (16)
where N* ={1, 2, 3,.... ,n}.
To determine f (x), f2 (x), f3 (X), ..., we consider (k =1, 2, 3.....) in Eq. (10) and substitute this

series expansion into Eq. (9) to obtain an approximate solution for Eq. (1). The standard residual power series
approach can be employed to obtain K" order approximation solutions as:

Up =@Pot @ +@yt+... @y, (17)
where,
(PO:fO (X)v Lo
1= h (X)m,
t2a
2 = f2 (%) razay (18)

tho

o = fi (%) rray

Least-Squares residual power series technique (LSRPS)
This section presents the methodology for the LSRPS technique and introduces key definitions necessary for its
implementation. o

Let the remainder Res for Eq. (1) be:

Res (z,t,4) = 1% (u (2,1)) + N ((z,1)), t>0, 0<a<1, (19)
with I (u) = 0, and u is the approximate solution of Eq. (2).
Remark that if
lim Res (:v,t, 5 (:v,t)) =0, (20)
11— OO

where {s** (x,t)} ;e N is converge to the solution of Eq. (1).
The w is the € —approximate RPS method solution of Eq. (1) on domain  if:

‘If%ves(x,t,ﬂ)‘ < e, (21)

and I (u) = 0is also satisfied by .
If u is the weak -approximate (RPS) method solution of Eq. (1) on domain 2, we call it that:

H Res (z,4,0) dedt < e, (22)
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where I (u) = 0 is also satisfied by u.
To implement the least-squares Residual Power Series approach, we propose the following procedures:

1st step
We adopt the classical residual power series approach to approximate the solution. The expression for wuy (x.t)
can be represented as follows:

o t’l’LD(
uk(x,t):znzofn(x)m,0<a§1,m€[,0§t<R, (23)

and the k™ residual function Res,,  take the form:
Resy.k (z,t) = 1% (ug (x,t)) + N (ug (x,t)), t>0, 0<a < 1. (24)

Subsequently, we seek solutions for f, (x) by exploring the following procedure:
D"V Resyp (2,00 =0.k € N, (25)
where N* = {1, 2, 3,.,n}.
In this case, the implementation of the RPS technique provides kth-order approximation solutions
characterized by the following:
U =PotT P TPt Pp, (26)
where ¢ 4, ¢ 1, ¢ 5 can be computed by Eq. (4)

2nd step

The linearly independent functions can be verified or validated using the following procedure:

w[p1.p2.... P

900& 501& tpga QD%
D? (o) D® (1) D? (¢2) o D2 (pn)
_ | D** (v0) D** (¢1) D** (p2) o D (pn) £ 0, (27)
D(n—l)a (4,0 0) D(n—l)a (@1) D(n—l)a (@2) D(n—l)a (90 n)
where D® (¢ ;) = (% + g; ) (p,),and sp={pg,¢1,-.. ,9 .+ be a set of linearly independent

elements in the vector space of continuous functions defined on R.
If it is not possible to identify any point where w ® [¢ 1, ¢ 5,... , ¢ ,,] is not equal to 0, then it implies that
the set of functions sy, is linearly dependent.

3rd step
We assume that:

B= Y b o 2
By considering the approximated solution Uy for Eq. (1), we can substitute it into Eq. (5) to obtain:
Res (x,t,c}) = Res (z,t, ) . (29)

4th step
We relate the following functional to:

/ / Q (]/é\e(/s (z,t,0))* do dt = min J, (30)

and obtain some constants of ¢,, by solving the algebraic systems ;’ c‘i =0,n=12,...,k.

Application of the least-squares residual power series method

this section focuses on the application of the LSRPS method to address various problems. During the initial
iterations of this new strategy, we often utilize the fractional RPS technique. The unidentified coefficients are
subsequently determined using the least-squares method. To assess the accuracy of the approximation solutions,
we employ graphs and tables, providing a visual and numerical analysis.

Problem 1 Considering the time-fractional Rosenau-Hyman equation:
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D;X U — SUpr Uy — Uy — Ulggr = 07 (31)

wheret >0, € R,0<a<1.
Subject to the initial condition:

u(z,0) = 7%0032 (E) (32)

The exact solution at a=1 is

To introduce the solution of fractional Rosenau-Hyman equation, we can employ the well-known (RPS)
method®* which offers a solution for the equation as:

(e 2 3a
u(et) = F @+ e RO raren PP O ra s T
where
fz)= —%0082 (E) ) (34)
fi(z) = 7?:2 sin (g) , (35)
fo(x) = gcos (%) (36)

The linearly independent functions could be validated by using:

W 0o, 01,0 @ 0]

8c,. .2 (x

5 cos (24)

D“ (—%cos (

_ D% (7%6082(

n
) Do (sin (3Dri) 0 (505 (3)) ety

) ) D* (%Clzsin (%))%) D* <(§cos (%)) %) #0,

DI (~eos’ (7))

NERalld

where @ =1,t=052=0,c=1landw [0y, 1,04 # 0.
Hence, the functions ¢ ¢, ¢ 1, ¢ 5 are linearly independent define as:

Soozf(ﬂf)»

tOt
<P1:f1(ff)m,

t2a
<P2:f2($)m~

Consequently, we can obtain an approximation that can be formulated as follows:

i=o (=500 (3)) +o (Fon (3))) ey + o (Go (5))) sy @
A} 1 3 2))) T0+«) " 2\\3 2))) T(1+2x)
The residual function can be obtained by:
Res (z,t,0) = DU — Uty — 3 (W) Unw — Ul (39)

With the initial condition:

o = — Co (20032 (%)) . (40)

By using uo put co = 1, u can be written as:
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t2£x

u= (26082 (E) +c1 ((%Qsm(g)) F(lti:wx) +c2 ((%COS( g ))) T 20y (41)
By substituting w into Res (z,t, ), we can obtain Res. As a result, the functional J can be expressed as:
ff Q Res (z,t, H)Z dx dt = J(c1,c2). (42)
We have two algebraic equations:
=2 =0, == =0. (43)
And following that, we calculate the unknown coefficients of Eq. (43) when o = 1 as:

c1 = 0.997977578799891, c2 = 1.013022733315692. (44)

The absolute error between the exact and approximated solutions using the proposed technique can be illustrated
using the following formula:

Error = |u;(x,t) — u(z,t)|. (45)
Problem 2 We will now examine the fractional Kawahara Eq.
Dtcx u + (u) Uz + Uzzr — Uzzzocr = 0, (46)

wheret>0, x € R,0<a<1.
Subject to the initial condition:

105 4 T
u(x,0) = f(x) = — sech . 47
(2.0) = £ 0) = g sect (2 @)
The exact solution when o« = 1 is:
_ 105 4 1 _ 361
u(z,t) = 169 sech L \/ﬁ(x 169 )} . (48)

By employing a similar approach as the classical residual power series method demonstrated in problem (1), we
can derive the following Eq.

4 x X
7560 sech (2\/ﬁ ) tanh (W) (49)
f1 (X) = )
28561 v/13
6 x x
) 136080 sech (25) (=3 + 2cosh (2\/§ )) (50)
2\ = 62748517 ’
7 x : x ] T
) 4898880 sech (%/ﬁ) (713s1nh(2\/§)+2smh(2\/ﬁ)) 51)
2 (z) = ,
° 10604499373 v/13
8 T T . 2x
o) 88179840 sech (2\/ﬁ> (52 — 49 cosh(57=) + 4cosh (\/ﬁ )) (52)
1) = 23298085122481
The series representation of the solution is provided as follows:
t £ s e
w@) =1 @10 rrey RO rr ey T s @O ra g T Y

To verify the linear independence of the functions, we can employ the following procedure:
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wa[¢07¢17-~~7€0”]
Yo $1 P2 P3 P4
D*(0) D% (1) D*(p2) D*(p3) D (p4)
_ | D**(0) D**(¢1) D**(2) D**(3) D** () £0 (54)

D D(pg) DTV (r)  DMTVY(py) DTV (pg) DTN (gy)

By  evaluating the  given  parametersa =1,¢t=0.5andz =0, we can  determine
thatw * [0 5, ¢ 1,9 2,9 3,0 4] 7 0. Consequently, it can be concluded that the functions ¢ .9 |.¢ 5. 5.0 4
are linearly independent. These functions are defined as:

‘p():f(x)v
1= h @ r ey
t2a
902:f2(f)m»
t3a
WngS(I)m»
t4a
W4:f4(3)m-

Therefore, based on this observation, we can deduce an approximation that can be expressed as follows:

4 x x
_ (105 . ( ” )) 7560 sech (wﬁ ) tanh (W) @
U= co +

— sech™ | ——
169 2413 28561 /13 Nl+«)
6 x T
. 136080 sech (2\/ﬁ ) (73 + 2cosh (2\/ﬁ )) 20
2 62748517 T (1+2x)
(55)
7 T : T : T
. 4898880 sech (2\/ﬁ ) <713 sinh (2\/ﬁ ) + 2sinh (m/ﬁ )) 30
.
’ 10604499373 /13 I'(l+3x)
8 T x 2z
88179840 sech (2\/§ ) <52 — 49 cosh (W) + 4cosh (\/ﬁ )) o
te 23298085122481 T(1+4a)
The residual function can be obtained as:
with the initial condition:
~ 105 4 X
— h . 57
ug 169 sec (2\/ﬁ> (57)

By using o and put ¢o = 1, u can written as:
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t |x |RPSM LSRPSM Exact Absolute error LSRPSM | Absolute error RPSM3*
0.2 % —2.3657092 | —2.36545716 | —2.36555610 | 9.8936223E-05 1.53100E - 04

0.6 % —2.5165586 | —2.51543414 | —2.51265233 | 2.7818097E-03 3.906270E - 03

1 % —2.6296958 | —2.62720764 | —2.61273283 | 1.447480E—-02 1.69630E — 02

02 | —1.4666666 | —1.46639701 | —1.46644455 | 4.7545022E - 05 2.21100E-04

0.6 | ;v |-1.7333333 | —1.73252436 | —1.72736027 | 5.164089E-03 5.973030E-03

1 T —2.0000000 | —1.99865171 | —1.97256738 | 2.608433E—02 2.74326E-02

Table 1. The absolute errors between the approximate and exact solutions obtained using the (LSRPS)
approach with the (RPS) method for problem 1 at o« = 1.

4 x T
B <105 . ( " )) 7560 sech (2m)tanh (2\/ﬁ> o
h +c1

169 213 28561 /13 C(1+4o)
6 x x
. 136080 sech (2\/ﬁ ) (—3 + 2cosh (2\/ﬁ )) 20
2 62748517 T(1+2x)
(58)
7 T . T . z
. 4898880 sech <2m> (713 sinh (2\/ﬁ> -+ 2sinh (2\/ﬁ )) 3
C.
? 10604499373 /13 T (1+3c)
8 x x 2x
. 88179840 sech (2\/ﬁ ) (52 — 49 cosh (W) + 4cosh (\/ﬁ )) Ao
c 23298085122481 T(1+40)

Hence, by substituting u into Res (z,t,u), then we obtain Res. Subsequently, the functional ] can be expressed

as:
L — 2
jf o Res (z,t,u) dxdt= J(c1,c2,c3,c4). (59)

By evaluating the functional J, we arrive at four algebraic equations, which can be stated as follows:

oJ 0J _0J 9J

Jo e Do der (©0
Subsequently, the unknown coeflicients (c1, c2, 3, c4) for the case & = 1 take the form:
c1 = 1.000000000023623, c2 = 0.999999986234735,
c3 = 1.000004426520602, c4 = 0.998830217957528. (61)
The formula for absolute error is:
Error = |u;(x,t) — u(z,t)|. (62)

Conclusion

The least squares residual power series method (LSRPSM) is an improved version of the residual power
series method (RPSM), incorporating the least squares technique to improve accuracy and convergence. This
paper introduces a novel comparative analysis between LSRPSM and RPSM, highlighting the advantages of
incorporating the least squares approach in improving accuracy and convergence speed. The correctness of these
results is displayed in Tables 1 and 2 and visually in Figs. 1, 2, 3, 4, 5, 6, 7 and 8 to demonstrate the effectiveness
and distinctiveness of this approach. It can be observed that the LSRPSM often converges more quickly than
RPSM, especially for problems with complex boundary conditions. It is suitable for problems where standard
RPSMs cannot achieve sufficient accuracy within a limited number of terms. In this regard, it is significant
and a useful alternative approach for resolving fractional NPDEs. In the future, least squares technique can be
combined with other analytical methods to obtain optimal results. Other fractional definitions can also be used.
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t |x |LSRPS |Exact Absolute error (LSRPSM) | Absolute error (RPSM)'®

0 0.030421 | 0.030421 |0 0
? 0.030739 | 0.030739 | 6.7233E-16 1.41553E-15
E 0.031061 | 0.031061 | 9.124E—-15 4.68063E—-14
F 0.031386 | 0.031386 | 9.9486E—-14 3.6391E-13
W 0.031714 | 0.031714 | 5.4738E-13 1.56886E — 12
E 10 | 0.032046 | 0.032046 | 2.0665E—12 4.89617E—-12
W 0.03238 | 0.03238 | 6.0629E—-12 1.24542E-11
W 0.032718 | 0.032718 | 1.4917E-11 2.75069E-11
W 0.033059 | 0.033059 | 3.2291E-11 5.47829E-11
W 0.033403 | 0.033403 | 6.3467E—-11 1.0081E-10
17 0.033715 | 0.033715 | 1.1571E-10 1.7428E-10

Table 2. Comparison between the least squares residual power series method (LSRPSM) and the residual
power series method (RPSM) for problem 2 at o« = 1.

-2.56

T
1

-2.58

u(x,t)

-2.62

-2.64

Exact |
LSRPSM

0 0.2 0.4 0.6 0.8

Fig. 1. Comparison between the LSRPSM and the exact solution for the Rosenau-Hyman equation at x = 1
anda = 1.
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-2.56

-2.58
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