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Non-alcoholic fatty liver disease (NAFLD) affects about 25% of adults worldwide. Its advanced 
form, non-alcoholic steatohepatitis (NASH), is a major cause of liver fibrosis, but there are no non-
invasive tests for diagnosing or preventing it. In our study, we analyzed data from multiple sources 
to find crucial genes linked to NASH fibrosis. We built diagnostic models using 103 machine learning 
algorithms and validated them with two external datasets. All models performed well, with the best 
one (RF + Enet[alpha = 0.6]) achieving an average AUC of 0.822. This model used five key genes: LUM, 
COL1A2, THBS2, COL5A2, and NTS. Our findings show that these genes are important in collagen 
and extracellular matrix pathways, shedding light on how NASH progresses to liver fibrosis. We also 
found that certain immune cells, like M1 macrophages, are involved in this process. This study provides 
a reliable diagnostic tool for assessing fibrosis risk in NASH patients and suggests potential for 
immunotherapy, laying a foundation for future treatments.
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Considering that nearly 40% of the global population is overweight or obese, non-alcoholic fatty liver disease 
(NAFLD) has swiftly emerged as a major health concern, currently affecting about 25% of adults worldwide1,2. 
Liver fibrosis develops as a consequence of chronic inflammation, typically after prolonged periods of sustained 
or recurrent tissue injury and immune response. This condition is marked by the accumulation of extracellular 
matrix (ECM) components, leading to structural alterations in the liver, particularly through the deposition 
of collagen and other fibrous proteins like elastin in the Disse space. Excessive ECM production can disrupt 
liver architecture, compromise organ function, and impair intrahepatic blood flow, eventually progressing to 
cirrhosis. While the incidence of liver fibrosis associated with hepatitis B and C has declined due to advances in 
treatment and vaccination programs, fibrosis resulting from non-alcoholic steatohepatitis (NASH) is on the rise, 
becoming a leading cause of liver transplantation3. Despite the substantial burden posed by NASH-related liver 
diseases, there are currently no approved therapies specifically targeting NASH4. Thus, identifying key genes 
involved in the progression of NASH to liver fibrosis is essential for discovering reliable therapeutic targets to 
reverse this condition.

One of the significant clinical challenges is the lack of accurate tools to predict the risk of liver fibrosis 
in NASH patients who do not yet have fibrosis, even though methods like the NAS score provide reliable 
assessments of NASH severity5. This limitation hampers the ability to determine appropriate therapeutic 
interventions. While histological evaluation remains the gold standard for diagnosing, prognosticating, 
and monitoring NAFLD, it is constrained by variability in accuracy and reliance on pathologists’ expertise6. 
Developing a simple, reproducible, and non-invasive method to assess the risk of liver fibrosis in NASH patients 
would allow for targeted treatment of high-risk individuals, potentially reducing the incidence of end-stage liver 
disease. Advances in artificial intelligence, particularly in machine learning, offer a more efficient approach to 
knowledge discovery and the creation of predictive models with greater accuracy than traditional statistical 
methods. Machine learning is particularly advantageous in analyzing large, high-dimensional clinical datasets7. 
Recent studies have successfully employed bioinformatics and machine learning techniques to identify potential 
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feature genes for NAFLD, with promising validation outcomes7,8. Therefore, constructing a risk model for NASH 
sfibrosis using machine learning is not only feasible but also holds significant clinical promise.

Materials and methods
Data retrieval and collection
We used keywords such as “NAFLD”, “NASH”, “Fatty liver” to search, all the datasets related to NASH and NASH 
fibrosis and contains clear information on the distinction between NASH and NASH fibrosis (such as NAS 
score) were obtained from the Gene Expression Omnibus (GEO) database, including GSE48452, GSE49541, 
GSE89632, GSE130970, and GSE163211 (https://www.ncbi.nlm.nih.gov/geo/). We downloaded gene expression 
profile data, relevant annotation files, and clinical information, including fibrosis staging, for all datasets. To 
maintain a minimal discrepancy between the sizes of the training and validation sets and include as many 
datasets as possible in the training set, thereby preventing model overfitting and enhancing the reliability of the 
model during validation (avoiding selection bias due to an excess of training samples and a paucity of validation 
samples), the datasets GSE48452, GSE49541, and GSE89632 were assigned as training datasets, comprising a 
total of 48 samples with non-fibrotic NASH and 61 samples with fibrotic NASH. Specifically, GSE48452 includes 
4 samples with NASH without fibrosis and 14 samples with NASH fibrosis; GSE49541 comprises 40 samples with 
NASH without fibrosis and 32 samples with NASH fibrosis; GSE89632 includes 4 samples with NASH without 
fibrosis and 15 samples with NASH fibrosis. The datasets GSE130970 and GSE163211 served as validation 
datasets. GSE130970 contains 11 samples with NASH without fibrosis and 49 samples with NASH fibrosis, while 
GSE163211 consists of 72 samples with NASH without fibrosis and 82 samples with NASH fibrosis.

Data normalization and differential analysis
For RNA-seq data analysis, quantile normalization of gene expression was conducted using the 
normalizeBetweenArrays function from the limma package, followed by log2 transformation. To visualize 
relative gene expression between NASH non-fibrotic and fibrotic tissues, the ggplot2 package was utilized. 
Differentially expressed genes (DEGs) associated with NASH fibrosis were identified using the limma package, 
applying criteria of |FC| ≥ 1.5 and FDR < 0.059.

Weighted gene co-expression network analysis (WGCNA)
WGCNA is a powerful tool for identifying gene networks, co-expressed gene modules, and pivotal genes linked 
to phenotypic traits. In this study, we integrated training datasets to identify gene modules that are significantly 
associated with NASH fibrosis using the WGCNA R package. To evaluate the network’s scale-free topology, we 
tested various β values and selected β = 4 based on the scale-free topology criteria. Genes with similar expression 
patterns were then grouped into modules using the “dynamic tree cut” algorithm. Additionally, Pearson 
correlation analysis was conducted to explore the relationship between module genes and clinical traits10.

Gene enrichment functional analysis
To uncover the molecular mechanisms underlying fibrosis in NASH, we conducted a comprehensive gene 
ontology (GO) analysis, covering GO biological processes (GO BP), GO cellular components (GO CC), and GO 
molecular functions (GO MF), along with KEGG pathway analysis using the clusterProfiler R package. The top 
30 enriched terms were visualized using bubble plots to provide a clear representation of the enrichment results.

In addition, Gene Set Enrichment Analysis (GSEA) was utilized to detect potential changes in biological 
functions between different NASH subgroups11. The significance criteria were set at |normalized enrichment 
score (NES)| > 1 and a nominal p-value < 0.05. These analyses revealed key differentially expressed genes and 
enriched pathways/processes.

For Gene Set Variation Analysis (GSVA), we downloaded two gene sets, “c2.cp.kegg.v7.4.symbols” and “c5.
go.bp.v7.5.1.symbol,” from the MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb/)12. Using the 
limma package, we calculated GSVA scores to evaluate the differential enrichment of functions and pathways 
across ERS-related subtypes. Pathways with a |t-value| > 2 were considered significantly enriched.

Construction and validation of a diagnostic model for NASH fibrosis
The study focused on binary classification tasks by evaluating 12 distinct machine learning algorithms. Regression-
based approaches, including Elastic Net (Enet), Ridge, Stepwise Generalized Linear Model (Stepglm), and Least 
Absolute Shrinkage and Selection Operator (LASSO), were included due to their strengths in handling high-
dimensional data and feature selection, which helps mitigate overfitting. Additionally, classification algorithms 
such as Support Vector Machines (SVM), Linear Discriminant Analysis (LDA), glmBoost, Partial Least Squares 
Regression Generalized Linear Model (plsRglm), Random Forest, Gradient Boosting Machine (GBM), Extreme 
Gradient Boosting (XGBoost), and Naive Bayes were implemented. A total of 103 models were generated by 
combining these algorithms.To prevent overfitting, two strategies were employed: first, cross-validation was 
performed, where one algorithm handled variable selection, and another built the classification model; second, 
the validation dataset size was increased. The area under the receiver operating characteristic (ROC) curve was 
calculated for all 103 models using the training set, and a heatmap was used to visualize the results, identifying 
the best-performing algorithms. The genes selected by the top-performing algorithm were subsequently used to 
compute ROC values for diagnosing NASH fibrosis in both the training and validation datasets.

Evaluation of immune infiltration patterns in NASH fibrosis
The CIBERSORT algorithm was employed to quantify the infiltration of 22 immune cell types across NASH 
subgroups13. Group differences were evaluated using the Student’s t-test and visualized using the ggboxplot R 
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package. Correlations between the model genes and immune cell types were analyzed with the corrplot package 
and displayed using pheatmap.

Statistical analysis
All statistical analyses were conducted using R software (version 4.3.1, https://www.r-project.org) along with the 
relevant R packages13. Data are presented as mean ± standard error (SE). The t-test was used for comparisons 
between two groups, while one-way ANOVA was employed for comparisons involving three or more groups. 
Spearman’s correlation analysis was performed using the ggpubr and stats packages. Statistical significance was 
defined as p-values < 0.05. Significance levels are denoted as follows: * (p < 0.05), ** (p < 0.01), *** (p < 0.001).

To account for multiple testing in differential gene expression and pathway enrichment analyses, the false 
discovery rate (FDR) was controlled using the Benjamini-Hochberg method. Genes and pathways with FDR-
adjusted p-values below 0.05 were deemed statistically significant. Additionally, during machine learning-based 
model construction, stringent feature selection criteria were applied to prevent overfitting.

Results
Identification of differentially expressed genes in NASH fibrosis
Our study proceeded according to the flowchart depicted in Fig. 1A. We combined the GSE48452, GSE49541, 
and GSE89632 datasets, all of which included data related to NASH fibrosis staging. Box plots demonstrated 
that our normalization technique effectively minimized batch effects across the datasets (Fig.  1B). Principal 
Component Analysis (PCA) further confirmed that, after batch effect correction, the datasets GSE48452, 
GSE49541, and GSE89632 displayed consistent distributions (Fig. 1C), ensuring the quality of the integrated 
dataset. Next, to pinpoint genes with abnormal expression in NASH fibrosis, we identified 104 differentially 
expressed genes (DEGs), consisting of 25 upregulated and 79 downregulated genes, when comparing the NASH 
fibrosis group to the non-fibrosis group (Fig. 1D, Table S1). Additionally, we created a heatmap to visualize the 
expression levels of the top 50 genes ranked by log fold change (logFC) in NASH across various groups (Fig. 1E).

Identification and functional enrichment analysis of key gene modules in NASH fibrosis
Clustering analysis was conducted on NASH samples using R.cutreeStatic to identify any outliers. No abnormal 
samples were detected, resulting in the inclusion of all 109 NASH samples and their clinical grouping information 
in the Weighted Gene Co-expression Network Analysis (WGCNA) (Fig. 2A). Based on the adjacency matrix and 
topological overlap matrix, a soft threshold of β = 4 (scale-free R2 = 0.91) was selected for subsequent adjacency 
calculations (Fig. 2B). Genes were grouped into modules, and those with pairwise correlations greater than 0.75 
were merged, resulting in a total of 10 modules (Figs. 2C-D, Table S2). Among these, the brown module (p = 0.01; 
R2 = − 0.27), green module (p = 1e–10; R2 = 0.57), magenta module (p = 0.04; R2 = − 0.2), and blue module 
(p = 0.03; R2 = − 0.21) demonstrated significant correlations with NASH fibrosis (Fig. 2E). The Gene Significance 
within these modules was also statistically significant for the brown, green, magenta, and blue modules (Fig. 2F). 
Additionally, the Module Significance for the green module was notable (Figure S1). By intersecting genes from 
these four key modules with the previously identified 104 differentially expressed genes (DEGs), we narrowed 
down to 74 critical genes associated with NASH fibrosis (Fig. 2G).

To further investigate the primary functions, pathways, and underlying mechanisms linked to NASH fibrosis, 
we performed functional enrichment analysis. KEGG pathway analysis revealed significant enrichment in 
pathways such as focal adhesion, PI3K-Akt signaling, and ECM-receptor interaction (Fig.  2H), highlighting 
essential intercellular and intracellular signaling processes involved in NASH fibrosis. Additionally, GO 
enrichment analysis identified significant changes in molecular functions (MF), cellular components (CC), 
and biological processes (BP) related to fibrosis. Notably, fibrosis-related biological processes like extracellular 
matrix organization, extracellular structure organization, and collagen fibril organization were enriched, along 
with cellular components such as collagen-containing extracellular matrix, collagen trimers, and collagen trimer 
complexes. Furthermore, fibrosis-associated molecular functions, including extracellular matrix structural 
components and those providing tensile strength, were highlighted (Figs.  2I–J). These findings affirm the 
reliability of the identified gene set. Additionally, we uncovered novel functions not previously linked to NASH 
fibrosis, such as cellular responses to amino acid stimuli and ligand-gated monoatomic cation channel activity 
(Figs. 2I–J), offering new theoretical insights for future research in these emerging areas.

Construction and establishment of NASH fibrosis diagnostic model
Based on the expression profiles of key genes involved in NASH fibrosis, we employed a machine learning 
integration approach to develop a robust diagnostic model for NASH fibrosis. This model was validated using 
two external datasets, GSE130970 and GSE163211. Using a leave-one-out cross-validation (LOOCV) framework, 
we fitted 103 different diagnostic models and calculated the C-index for each model across all validation datasets 
(Fig. 3A, Table S3). Notably, all 103 machine learning models demonstrated strong performance (with mean 
AUC values exceeding 0.7), affirming the validity of the key genes identified for NASH fibrosis. Among them, the 
RF + Enet[alpha = 0.6] model was the most effective, achieving a mean AUC of 0.822 and incorporating five key 
genes: LUM, COL1A2, THBS2, COL5A2, and NTS (Fig. 3A, Table S4). This model exhibited strong diagnostic 
capabilities in both the training set and the external validation sets (GSE130970 and GSE163211), with AUC 
values of 0.898, 0.831, and 0.737, respectively (Fig. 3B). Additionally, we visualized the confusion matrix to assess 
the diagnostic accuracy of the model, which showed excellent specificity and sensitivity in both the training and 
validation datasets (Fig. 3C).
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Expression patterns and interactions of genes in the NASH fibrosis diagnostic model
Next, we illustrated the differential expression distribution of the five model genes in NASH fibrosis using a 
volcano plot (Fig. 4A). Interestingly, all five model genes are highly expressed in NASH fibrosis, indicating that 
they are potential risk factors for the condition (Fig. 4B). Additionally, ROC curve analysis demonstrated that 
these five model genes are effective in diagnosing NASH fibrosis, with LUM showing the highest AUC of 0.874 
(Fig.  4C). We also performed Pearson correlation analysis to evaluate the relationships between the model 
genes, revealing that LUM and THBS2 exhibit strong correlations with all other genes, suggesting they may be 
hub genes. Notably, LUM, COL1A2, and THBS2 show the most significant correlations among them (Fig. 4D). 
Furthermore, using GeneMANIA (http://genemania.org/), a tool designed for exploring gene interactions and 
functional predictions, we found that the model genes collectively participate in and regulate critical NASH 
fibrosis functions and pathways, including collagen trimer formation, banded collagen fibril assembly, and 
extracellular matrix structural components (Fig.  4E). These findings further validate the reliability of our 
diagnostic model.

Fig. 1.  Standardization and differential analysis of NASH data. (A) Detailed flowchart illustrating our 
screening and validation process. (B) Box plot demonstrating data integration before and after batch effect 
correction. (C) PCA (Principal Component Analysis) analysis showing sample distribution before and after 
batch effect correction. (D) Volcano plot highlighting differentially expressed genes in NASH fibrosis. (E) 
Heatmap displaying the top 50 genes with the highest differential expression fold change in NASH fibrosis. 
All images were created using R software (version 4.3.1, https://www.r-project.org). Statistical significance is 
denoted as *p < 0.05, **p < 0.01, ***p < 0.001.
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Functional enrichment analysis highlighted the primary roles of each model gene in the 
NASH fibrosis process
Gene Set Variation Analysis (GSVA) is a non-parametric, unsupervised approach for assessing gene set 
enrichment across microarray or transcriptomic data. It transforms sample-specific gene expression matrices 
into matrices of gene set expression levels, enabling the evaluation of differential metabolic pathway enrichment 
across samples. Our GSVA results suggest that LUM predominantly influences pathways like KEGG ECM-
receptor interaction and GOCC integrin complex, indicating its role in promoting NASH fibrosis through the 
regulation of inflammatory responses (Fig. 5A). COL1A2 is mainly linked to KEGG focal adhesion and GOCC 
collagen trimer complex, implying its involvement in directly driving fibrosis by enhancing fibrin production 

Fig. 2.  WGCNA and functional enrichment analysis. (A) Analysis of sample clustering and identification of 
outliers. (B) Scale-free fit index analysis across different soft threshold powers (β). (C) Dendrogram cut at a 
height of 0.25 to detect and merge similar modules. (D) Original and merged modules under the dendrogram. 
(E) Heatmap of module-trait relationships, with each cell displaying the corresponding correlation and 
p-value. (F) Bar graph showing gene significance across different modules. (G) Venn diagram illustrating 
the intersection between differentially expressed genes and key gene modules identified by WGCNA. (H) 
Bubble chart displaying the KEGG enrichment analysis results for the intersected gene set. (I) Bubble chart 
presenting the GO enrichment analysis results for the intersected gene set. (J) Circular plot showing the GO 
enrichment analysis results for the intersected gene set, including annotations for each enriched pathway. 
GO:0071229: cellular response to acid chemical; GO:0030199: collagen fibril organization; GO:0071230: 
cellular response to amino acid stimulus; GO:0001101: response to acid chemical; GO:0061326: renal tubule 
development; GO:0030198: extracellular matrix organization; GO:0098644: complex of collagen trimers; 
GO:0005583: fibrillar collagen trimer; GO:0098643: banded collagen fibril; GO:0062023: collagen-containing 
extracellular matrix; GO:0005788: endoplasmic reticulum lumen; GO:0005581: collagen trimer; GO:0005201: 
extracellular matrix structural constituent; GO:0030020: extracellular matrix structural constituent conferring 
tensile strength; GO:0048407: platelet-derived growth factor binding; GO:0019838: growth factor binding; 
GO:0042805: actinin binding; GO:0099094: ligand-gated monoatomic cation channel activity. All images 
were created using R software (version 4.3.1, https://www.r-project.org). Statistical significance is denoted as 
*p < 0.05, **p < 0.01, ***p < 0.001.
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in NASH fibrosis (Fig. 5B). THBS2 and COL5A2 display enrichment patterns similar to COL1A2 (Figs. 5C–D). 
NTS, on the other hand, shows unique functions related to NASH fibrosis regulation, such as involvement in the 
GG NOD-like receptor signaling pathway, KEGG riboflavin metabolism, and GOBP regulation of mesodermal 
cell differentiation, pointing to its potential fibrogenic roles in cellular processes (Fig. 5E).

Gene Set Enrichment Analysis (GSEA) is a method for evaluating the distribution patterns of predefined 
gene sets within a ranked gene expression profile based on phenotype relevance. By comparing the expression 
levels of genes within these sets to those across the entire genome, GSEA assesses their contributions to specific 
phenotypes. In addition, GSEA can be cross-correlated with GSVA to demonstrate the accuracy of our analysis 

Fig. 3.  Construction of NASH fibrosis diagnosis model based on machine learning model. (A) The heatmap 
illustrates the area under the curve (AUC) of the performance metrics for both the training and validation sets, 
evaluated across 12 machine learning models and 103 algorithms. The variable selection and model-building 
algorithms were used in the order shown in the text. (B) The ROC curves demonstrate the testing performance 
of the model based on the RF (Random Forest) + Enet (Elastic Net, α = 0.6) algorithm for both the training 
and validation sets. (C) The confusion matrix reveals the sensitivity and specificity of the diagnostic model in 
detecting NASH fibrosis within the training and validation sets.
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results. Our GSEA revealed that the model genes are associated with key fibrosis-related pathways, including 
KEGG ECM-receptor interaction and KEGG cytokine-cytokine receptor interaction, which is consistent with 
the GSVA analysis. Notably, each gene is also linked to distinct pathways that merit further exploration (Figure 
S2A–E).

Changes in the immune microenvironment of NASH fibrosis
Research indicates that NASH (Non-Alcoholic Steatohepatitis) fibrosis may be linked to immune regulation14,15. 
To investigate this, we employed the CIBERSORT algorithm to analyze the immune cell composition and 
immune function states in NASH samples, aiming to understand the immune microenvironment in NASH 
fibrosis. Our findings reveal a reduction in resting NK cells, alongside a significant increase in activated NK 
cells and monocytes, as well as an elevation in pro-inflammatory M1 macrophages. Conversely, alternatively 
activated M2 macrophages, typically involved in wound healing, showed a marked decline (Figs. 6A–B). These 
findings suggest that immune cell-mediated inflammation is substantially heightened in NASH fibrosis and 
could play a critical role in driving fibrosis progression.

Additionally, we examined the interactions between different immune cell types in NASH fibrosis to discern 
their cooperative or antagonistic roles during disease progression. The analysis revealed that resting CD4 
memory T cells and resting mast cells are negatively correlated with activated NK cells and other inflammatory 
responses (Fig. 6C), indicating a potential protective function in NASH fibrosis. In contrast, follicular helper T 
cells and eosinophils showed positive correlations with activated NK cells and inflammation (Fig. 6C), suggesting 
they may exacerbate the inflammatory environment in NASH fibrosis. Correlation analysis between each model 
gene and immune cell types or functional states further revealed key insights. Notably, LUM, COL1A2, and 
THBS2 were positively correlated with M1 macrophages and negatively with M2 macrophages, indicating 
these genes primarily influence inflammatory responses in NASH (Figs.  6D–F). COL5A2 showed a unique 
positive association with regulatory T cells (Tregs) (Fig. 6G), while NTS was linked to increased memory B cell 
activity and decreased neutrophil activity (Fig. 6H). A correlation heatmap provided additional clarity on the 
intercellular communication modulated by each model gene. LUM primarily negatively regulated interactions 
between plasma cells and naive B cells (Fig. 6I), while COL1A2 positively regulated interactions between plasma 
cells and gamma delta T cells (Fig. 6I). Both THBS2 and COL5A2 positively influenced the interaction between 
M0 macrophages and activated NK cells (Fig. 6I), whereas NTS mainly negatively regulated interactions between 
Tregs and memory B cells (Fig. 6I).

Fig. 4.  Characterization of key genes in NASH fibrosis in diagnostic models. (A) The volcano plot illustrates 
the differential expression and statistical significance of key genes in the diagnostic model related to NASH 
fibrosis. (B) The box plot displays the relative expression levels of key genes in various diagnostic models for 
NASH fibrosis. (C) The ROC curves demonstrate the diagnostic efficacy of different key genes in the diagnostic 
models for NASH fibrosis. (D) The Pearson correlation analysis reveals the relationships between key genes 
in the diagnostic model, assessing their synergistic or antagonistic interactions. (E) Based on GeneMANIA 
(http://genemania.org/), this analysis explores the interactions and functional predictions of key genes in the 
diagnostic model. All images were created using R software (version 4.3.1, https://www.r-project.org).
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Discussion
In this study, we integrated and standardized datasets related to NASH and NASH-related fibrosis (GSE48452, 
GSE49541, and GSE89632) to identify critical gene clusters involved in the progression of NASH fibrosis through 
differential analysis and WGCNA. Using these genes, we constructed diagnostic models for NASH fibrosis 

Fig. 5.  GSVA functional enrichment analysis reveals the unique roles of genes in different diagnostic models in 
NASH fibrosis. (A) GSVA analysis of NASH samples with varying LUM expression levels was conducted using 
KEGG and GO databases. (B) GSVA analysis of NASH samples with different COL1A2 expression levels was 
performed utilizing KEGG and GO databases. (C) KEGG and GO databases were used for GSVA analysis of 
NASH samples with different THBS2 expression levels. (D) GSVA analysis was carried out on NASH samples 
with varying COL5A2 expression levels, based on KEGG and GO databases. (E) GSVA analysis of NASH 
samples with different NTS expression levels was conducted using KEGG and GO databases.
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employing 103 machine learning algorithms and validated the models with two external datasets (GSE130970 
and GSE163211). Our results demonstrated that all machine learning models based on our gene set performed 
well (with mean AUC values above 0.7), with the RF + Enet[alpha = 0.6] model showing the best performance 
(mean AUC of 0.822). This model was comprised of five key genes: LUM, COL1A2, THBS2, COL5A2, and 
NTS. Gene function enrichment analyses, including KEGG, GO, GESA, and GSVA, revealed that these five key 
genes play significant roles in pathways such as collagen trimer, banded collagen fibril, and extracellular matrix 
structural constituent, suggesting their involvement in the potential mechanisms underlying the progression 
from NASH to liver fibrosis. Additionally, immune cell infiltration analysis indicated that cells like Macrophages 
M1 might be actively involved in the NASH fibrosis process. Our findings highlight critical factors in the 
progression of NASH to liver fibrosis and provide a robust diagnostic model for assessing fibrosis risk in NASH 
patients, facilitating early intervention. Furthermore, the unique immune microenvironment associated with 
NASH fibrosis suggests potential for immune-based therapies. Our research offers a solid theoretical foundation 
for the clinical management of NASH and the development of future targeted treatments.

Fig. 6.  Immune infiltration analysis reveals the immune microenvironment status in NASH fibrosis. (A) The 
bar chart illustrates the percentage distribution of various immune cells or immune functions within NASH 
samples. (B) The bar chart displays the abundance of different immune cells or immune functions across 
different NASH subgroups. (C) The correlation heatmap shows the relationships between various immune 
cells or immune functions. (D) The dendrogram reveals the correlation between LUM expression levels 
and immune cells or immune functions. (E) The dendrogram illustrates the correlation between COL1A2 
expression levels and immune cells or immune functions. (F) The dendrogram depicts the correlation 
between THBS2 expression levels and immune cells or immune functions. (G) The dendrogram presents the 
correlation between COL5A2 expression levels and immune cells or immune functions. (H) The dendrogram 
demonstrates the correlation between NTS expression levels and immune cells or immune functions. (I) 
The correlation heatmap displays the regulatory effects of different key genes in diagnostic models on cell 
communication in NASH fibrosis. All images were created using R software (version 4.3.1, ​h​t​t​p​s​:​/​/​w​w​w​.​r​-​p​r​o​j​e​
c​t​.​o​r​g​)​. Statistical significance is denoted as *p < 0.05, **p < 0.01, ***p < 0.001.
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NASH (Non-Alcoholic Steatohepatitis) fibrosis significantly contributes to increased mortality and reduced 
quality of life in patients. Although liver biopsy remains the gold standard for diagnosing NASH-related fibrosis, 
its invasive nature, associated risks, and high cost limit its practicality in clinical settings. As obesity and metabolic 
syndrome become more prevalent, NASH increasingly burdens healthcare systems and the economy16. Therefore, 
developing simpler and more efficient screening methods for NASH is of great importance17. In response to this 
challenge, we employed 103 different machine learning algorithms to create a model for identifying individuals 
at high risk of NASH fibrosis. These models performed well, with mean AUC values consistently above 0.7, 
underscoring the relevance of the key genes identified for NASH fibrosis. Notably, the RF + Enet[alpha = 0.6] 
model emerged as the top performer, with a mean AUC of 0.822, integrating five key genes: LUM, COL1A2, 
THBS2, COL5A2, and NTS. This model demonstrated strong diagnostic performance across both the training 
set and external validation datasets GSE130970 and GSE163211, achieving AUCs of 0.898, 0.831, and 0.737, 
respectively. Additionally, the confusion matrix visualized the model’s diagnostic accuracy, showcasing high 
specificity and sensitivity in both the training and validation sets. This diagnostic model holds promise in aiding 
clinical decision-making, offering patients more cost-effective and accurate diagnostic and therapeutic options.

NASH is a complex, multifactorial disease with an unclear etiology. Typically, it involves a combination 
of factors, such as steatosis, liver damage, and inflammation, which collectively can lead to fibrosis and even 
hepatocellular carcinoma (HCC) in some cases18. Although NASH generally develops from NAFLD, not all 
cases progress to fibrosis. Additional stressors, including lipotoxicity, oxidative stress, and inflammation, drive 
NASH fibrosis by activating cellular stress pathways, leading to hepatocyte death, inflammation, and fibrotic 
changes19. Through gene function and pathway enrichment analyses, we identified several known fibrosis-related 
pathways in NASH, such as KEGG’s ECM RECEPTOR INTERACTION and GOCC’s INTEGRIN COMPLEX. 
Interestingly, we also uncovered novel pathways not previously linked to NASH fibrosis, including GG’s NOD-
LIKE RECEPTOR SIGNALING PATHWAY, KEGG’s RIBOFLAVIN METABOLISM, and GO’s REGULATION 
OF MESODERMAL CELL DIFFERENTIATION. These newly identified pathways may have significant roles in 
NASH fibrosis and warrant further investigation.

The liver is not only vital for metabolism and detoxification but also plays a crucial role in immunity, housing 
a diverse array of innate and adaptive immune cells14. Its highly vascularized architecture, with fenestrated 
capillaries called liver sinusoids, creates a unique environment where immune cells are exposed to pathogens 
from both the blood and the gut14. In the context of NASH, the immune cell landscape in the liver undergoes 
significant changes, leading to uncontrolled inflammation, hepatocyte death, and fibrosis, all of which exacerbate 
the disease20. Key immune cells involved in this process include innate-like T cells, conventional CD8 + and 
CD4 + T cells, and neutrophils. Neutrophil accumulation is an early event in NASH, promoting inflammation and 
liver injury, particularly through the release of neutrophil extracellular traps (NETs) or NETosis4. Additionally, 
dendritic cells (DCs), particularly type 1 conventional dendritic cells (cDC1), increase in number and contribute 
to liver inflammation, potentially activating CD8 + T cells and worsening liver damage. Monocytes are also 
rapidly recruited to the liver, where they can differentiate into pro-inflammatory M1 macrophages or generate 
monocyte-derived Kupffer cells21. While most research on immune cells in NAFLD progression has been 
conducted using murine models, our study confirms that NASH fibrosis is associated with a significant reduction 
in resting NK cells and an increase in activated NK cells and monocytes. Additionally, there is a marked rise in 
pro-inflammatory M1 macrophages and a significant decline in alternatively activated M2 macrophages, which 
are involved in wound healing. These findings suggest that immune cell-driven inflammation plays a critical 
role in NASH and may significantly contribute to fibrosis progression. We also identified five key genes that 
are integral to immune cell communication, and their underlying mechanisms should be further explored in 
future studies. Given the current lack of effective therapies to mitigate liver fibrosis, there is a pressing need for 
innovative approaches. Recent studies have highlighted the potential of immunotherapy in reducing extracellular 
matrix deposition in NASH mouse models22. The key immune-regulatory genes identified in our study may 
serve as promising therapeutic targets in NASH fibrosis.

NAFLD (Non-Alcoholic Fatty Liver Disease) is a complex disorder, with NASH representing a pivotal stage 
that leads to significant liver damage and a high risk of progressing to fibrosis. Although NASH develops in the 
context of metabolic changes, it also has a substantial immune-inflammatory component23. During NASH, a vast 
network of immune cells is mobilized, and our research offers a comprehensive view of how specific immune 
cell subpopulations contribute to fibrosis in NASH. Additionally, we examined the interactions between various 
immune cell types and between immune cells and matrix cells, providing new insights into the complexity of 
NASH24.

Conclusion
Our research has developed a reliable diagnostic model for NASH fibrosis, leveraging 103 different machine 
learning algorithms. This model is designed to either diagnose NASH fibrosis or assess the risk of liver fibrosis 
progression in NASH patients. Additionally, we have identified critical changes in signaling pathways and 
functional states associated with NASH fibrosis, providing a solid theoretical foundation for further mechanistic 
studies. This study is subject to certain limitations due to the absence of datasets for NASH and NASH-related 
fibrosis from Asian populations, which may render our model more applicable to Western populations. 
Consequently, we anticipate the collection of NASH and NASH-related fibrosis samples from Asian cohorts 
in the future. Following extensive transcriptomic sequencing, we aim to further validate the model to assess its 
generalizability.
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Data availability
The results published here are in whole based upon data generated by the GEO datasets: ​h​t​t​p​s​:​/​/​w​w​w​.​n​c​b​i​.​n​l​m​.​
n​i​h​.​g​o​v​/​g​e​o​/​. All other relevant data can be found in the supplementary material and will be made available on 
request.
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