Table 3 Summary of performance metrics for different deep learning architectures applied to the test set of the benchmark.

From: A multi-filter deep transfer learning framework for image-based autism spectrum disorder detection

DL Architecture

Scale

Length

Use DA

ACC

F1

AUC

EER

ACE

Recall

Precision

Specificity

FP

FN

TP

TN

AffectNet

None

1000

False

87.67

88.18

94.16

12.00

12.33

92.00

84.66

83.33

25

12

138

125

AffectNet + FW

None

207

True

91.00

91.26

95.09

10.00

9.00

94.00

88.68

88.00

18

9

141

132

AlexNet

None

1000

False

79.33

80.13

85.56

22.00

20.67

83.33

77.16

75.33

37

25

125

113

AlexNet + FW

Standard

39

True

81.67

82.54

87.66

20.00

18.33

86.67

78.79

76.67

35

20

130

115

ResNet-50

None

1000

False

75.67

76.68

82.45

24.00

24.33

80.00

73.62

71.33

43

30

120

107

ResNet-50 + FW

Standard

30

False

77.00

77.67

79.29

24.67

23.00

80.00

75.47

74.00

39

30

120

111

VGG16

None

1000

False

73.00

73.27

80.27

27.33

27.00

74.00

72.55

72.00

42

39

111

108

VGG16 + FW

None

33

True

74.00

75.32

77.85

27.33

26.00

79.33

71.69

68.67

47

31

119

103

VGG19

None

1000

False

72.00

73.08

78.36

28.67

28.00

76.00

70.37

68.00

48

36

114

102

VGG19 + FW

Robust

40

True

74.00

75.62

79.07

29.33

26.00

80.67

71.18

67.33

49

29

121

101

ViT

None

1000

False

87.67

87.87

94.40

12.00

12.33

89.33

86.45

86.00

21

16

134

129

ViT + FW

Minmax

278

True

90.67

90.91

95.42

10.00

9.33

93.33

88.61

88.00

18

10

140

132

ViTFER

None

1000

False

87.00

87.21

93.44

12.67

13.00

88.67

85.81

85.33

22

17

133

128

ViTFER + FW

Standard

265

True

88.33

88.45

93.33

12.00

11.67

89.33

87.58

87.33

19

16

134

131

ViTSwin

None

1000

False

90.33

90.49

95.35

10.67

9.67

92.00

89.03

88.67

17

12

138

133

ViTSwin + FW

Minmax

163

True

92.67

92.81

95.29

8.67

7.33

94.67

91.03

90.67

14

8

142

136

  1. Significant values are in bold.