Table 3 Summary of performance metrics for different deep learning architectures applied to the test set of the benchmark.
From: A multi-filter deep transfer learning framework for image-based autism spectrum disorder detection
DL Architecture | Scale | Length | Use DA | ACC | F1 | AUC | EER | ACE | Recall | Precision | Specificity | FP | FN | TP | TN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AffectNet | None | 1000 | False | 87.67 | 88.18 | 94.16 | 12.00 | 12.33 | 92.00 | 84.66 | 83.33 | 25 | 12 | 138 | 125 |
AffectNet + FW | None | 207 | True | 91.00 | 91.26 | 95.09 | 10.00 | 9.00 | 94.00 | 88.68 | 88.00 | 18 | 9 | 141 | 132 |
AlexNet | None | 1000 | False | 79.33 | 80.13 | 85.56 | 22.00 | 20.67 | 83.33 | 77.16 | 75.33 | 37 | 25 | 125 | 113 |
AlexNet + FW | Standard | 39 | True | 81.67 | 82.54 | 87.66 | 20.00 | 18.33 | 86.67 | 78.79 | 76.67 | 35 | 20 | 130 | 115 |
ResNet-50 | None | 1000 | False | 75.67 | 76.68 | 82.45 | 24.00 | 24.33 | 80.00 | 73.62 | 71.33 | 43 | 30 | 120 | 107 |
ResNet-50 + FW | Standard | 30 | False | 77.00 | 77.67 | 79.29 | 24.67 | 23.00 | 80.00 | 75.47 | 74.00 | 39 | 30 | 120 | 111 |
VGG16 | None | 1000 | False | 73.00 | 73.27 | 80.27 | 27.33 | 27.00 | 74.00 | 72.55 | 72.00 | 42 | 39 | 111 | 108 |
VGG16 + FW | None | 33 | True | 74.00 | 75.32 | 77.85 | 27.33 | 26.00 | 79.33 | 71.69 | 68.67 | 47 | 31 | 119 | 103 |
VGG19 | None | 1000 | False | 72.00 | 73.08 | 78.36 | 28.67 | 28.00 | 76.00 | 70.37 | 68.00 | 48 | 36 | 114 | 102 |
VGG19 + FW | Robust | 40 | True | 74.00 | 75.62 | 79.07 | 29.33 | 26.00 | 80.67 | 71.18 | 67.33 | 49 | 29 | 121 | 101 |
ViT | None | 1000 | False | 87.67 | 87.87 | 94.40 | 12.00 | 12.33 | 89.33 | 86.45 | 86.00 | 21 | 16 | 134 | 129 |
ViT + FW | Minmax | 278 | True | 90.67 | 90.91 | 95.42 | 10.00 | 9.33 | 93.33 | 88.61 | 88.00 | 18 | 10 | 140 | 132 |
ViTFER | None | 1000 | False | 87.00 | 87.21 | 93.44 | 12.67 | 13.00 | 88.67 | 85.81 | 85.33 | 22 | 17 | 133 | 128 |
ViTFER + FW | Standard | 265 | True | 88.33 | 88.45 | 93.33 | 12.00 | 11.67 | 89.33 | 87.58 | 87.33 | 19 | 16 | 134 | 131 |
ViTSwin | None | 1000 | False | 90.33 | 90.49 | 95.35 | 10.67 | 9.67 | 92.00 | 89.03 | 88.67 | 17 | 12 | 138 | 133 |
ViTSwin + FW | Minmax | 163 | True | 92.67 | 92.81 | 95.29 | 8.67 | 7.33 | 94.67 | 91.03 | 90.67 | 14 | 8 | 142 | 136 |