Table 4 Summary of performance metrics for different deep learning architectures applied to the validation set of the benchmark.

From: A multi-filter deep transfer learning framework for image-based autism spectrum disorder detection

DL Architecture

Scale

Length

Use DA

ACC

F1

AUC

EER

ACE

Recall

Precision

Specificity

FP

FN

TP

TN

AffectNet

None

1000

False

82.0

81.63

90.60

18.0

18.0

80.0

83.33

84.0

8

10

40

42

AffectNet + FW

None

167

False

87.0

86.60

90.60

16.0

13.0

84.0

89.36

90.0

5

8

42

45

AlexNet

None

1000

False

82.0

81.25

88.08

22.0

18.0

78.0

84.78

86.0

7

11

39

43

AlexNet + FW

Robust

43

False

82.0

82.69

90.40

18.0

18.0

86.0

79.63

78.0

11

7

43

39

ResNet-50

None

1000

False

72.0

70.83

83.56

24.0

28.0

68.0

73.91

76.0

12

16

34

38

ResNet-50 + FW

Standard

36

False

80.0

80.00

86.76

20.0

20.0

80.0

80.00

80.0

10

10

40

40

VGG16

None

1000

False

70.0

66.67

78.44

28.0

30.0

60.0

75.00

80.0

10

20

30

40

VGG16 + FW

Robust

31

False

77.0

76.77

83.84

22.0

23.0

76.0

77.55

78.0

11

12

38

39

VGG19

None

1000

False

68.0

63.64

76.36

30.0

32.0

56.0

73.68

80.0

10

22

28

40

VGG19 + FW

Standard

38

False

74.0

73.47

79.76

28.0

26.0

72.0

75.00

76.0

12

14

36

38

ViT

None

1000

False

81.0

80.81

92.36

18.0

19.0

80.0

81.63

82.0

9

10

40

41

ViT + FW

None

130

False

85.0

85.15

91.00

16.0

15.0

86.0

84.31

84.0

8

7

43

42

ViTFER

None

1000

False

80.0

79.17

89.68

20.0

20.0

76.0

82.61

84.0

8

12

38

42

ViTFER + FW

Robust

213

False

86.0

84.78

92.64

14.0

14.0

78.0

92.86

94.0

3

11

39

47

ViTSwin

None

1000

False

81.0

80.81

91.68

18.0

19.0

80.0

81.63

82.0

9

10

40

41

ViTSwin + FW

None

186

False

87.0

86.60

91.96

16.0

13.0

84.0

89.36

90.0

5

8

42

45

  1. Significant values are in bold.