Table 7 Summary of ablation study impacts across all evaluated architectures, showing qualitative component contributions, vector size reduction percentage, and accuracy gains.

From: A multi-filter deep transfer learning framework for image-based autism spectrum disorder detection

Model

Image enhancement

Data augmentation

Scaling strategy

Vector reduction (%)

ACC gain (Test)

ACC gain (Val)

AffectNet

Neutral (Test)

Positive (Test)

Standard/Robust (Val)

79.3

3.33

5.00

AlexNet

Positive

Positive

Standard

96.1

2.34

0.00

ResNet-50

Positive

Negative

Standard

97.0

1.33

8.00

VGG16

Positive

Neutral/Negative

Neutral

96.7

1.00

7.00

VGG19

Positive

Neutral/Negative

Robust

96.0

2.00

6.00

ViT

Positive

Neutral

MinMax

72.2

3.00

4.00

ViTFER

Positive

Neutral

Standard

73.5

1.33

6.00

ViTSwin

Strong Positive

Strong Positive

MinMax

83.7

2.34

6.00