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In smart manufacturing, logistics, and other inside settings where the Global Positioning System 
(GPS) doesn’t work, indoor positioning systems (IPS) are essential. Due to environmental complexity, 
signal noise, and possible data manipulation, traditional IPS techniques struggle with accuracy, 
resilience, and security. Online and offline phases are distinguished in the suggested indoor location 
system that employs deep learning and fingerprinting. During the offline phase, mobile devices gather 
signal strength measurements and contextual data traverse inside settings via Wi-Fi, Bluetooth, and 
magnetometers. Fingerprint classification using Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) clustering follows the application of signal processing techniques for noise reduction 
and data augmentation. The online phase involves extracting information to improve the model’s 
accuracy. These features can be signal-based, spatial–temporal, motion-based, or environmental. The 
Deep Spatial–Temporal Attention Network (Deep-STAN) is an innovative hybrid model for location 
classification that combines Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), 
Long-Short Term Memory (LSTMs), and attention processes. The model hyperparameters are fine-
tuned using hybrid optimization to guarantee optimal performance. The work’s main contribution 
is the incorporation of ECC, an effective encryption and decryption method for signal data, which is 
based on Galois fields. This cryptographic method is well-suited for real-world applications since it 
guarantees low-latency operations while simultaneously improving data integrity and confidentiality. 
In addition, S-box enhances the IPS’s resilience and security by including QR codes for distinct location 
marking and blockchain technology for safe and immutable storing of positioning data. Moreover, the 
performance of the suggested model includes an accuracy of 0.9937, precision of 0.987, sensitivity 
of 0.9898, and specificity of 0.9878, while when 80% of data were used it had an accuracy of 0.9804, 
precision of 0.9722, sensitivity of 0.9859, and specificity of 0.9756. These outcomes prove that the 
proposed system is stable and flexible enough to be used in indoor positioning applications.

Keywords  Indoor positioning system, Galois field cryptography, QR codes, Blockchain technology, Deep 
learning, Fingerprinting, Hybrid optimization

List of symbols
RSSIi	� RSSI value at position i
RSSImin and RSSImax	� Min and max RSSI values in the dataset
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Zi	� Z-score of RSSIi,
µ	� Mean of the RSSI
σ	� Standard deviation
RSSIi−j 	� RSSI values within the window
N 	� Number of points in the moving window
q	� Core point
n	� Column dimension
fconcat	� Concatenated feature vector
Linear (.)	� Linear transformation
Epos	� Positional embeddings
X 	� The input sequence
Q, K , and V 	� Query, key, and value matrices
WQ, WK , and WV 	� Learnable weight matrices
dk 	� Key dimension

Indoor positioning is a rapidly expanding technology in the connected world that is revolutionizing the way they 
interact and navigate with indoor spaces1–3. It is worth noting that indoor positioning systems provide more 
precise location details within structures for instance, malls, airports, hospitals, or offices as opposed to GPS 
which works primarily outdoor4. Indoor positioning utilizes numerous methods like ultra-wideband, Wi-Fi, 
Bluetooth Low Energy, RFID, inertial navigation systems, computer vision, and magnetic positioning to ensure 
accurate location finding of people or objects within certain spaces, often within a high precision range of a few 
meters or even centimetres5,6. These technologies work together to find out where people or things are within 
a small space with a lot of accuracy most of the time within two or even one meter only7. Indoor positioning 
has got many various uses that keep increasing day by day. It could make shopping much more fun through 
tailored advertisements together with easy guidance and aid logistics or warehouse management by speeding up 
movement operation of goods inside warehouses8–10. The list of symbols utilized in this research article is shown.

A significant shift has occurred in the manner in which industrial operations are managed and enhanced with 
the adoption of indoor location tracking within manufacturing settings11. The efficiency of attribution systems 
used inside buildings is of paramount importance toward enhancement of workers’ safety and simplification 
warehouse management activities carried out indoor manufacturing plants and outlying production areas12,13.

Manufacturing plants are often great and complex, calling for meticulous organization and surveillance 
to guarantee smooth operation14,15. These environments can benefit from real-time monitoring of goods, 
equipment, and people through technological means like RFID tags as well as ultra-wideband beacons and 
computer vision systems16,17. Through this heightened sense of visibility, they are able to discover hitches, make 
their workflows better and use their resources prudently. This leads to increased productivity and cost savings7.

In the manufacturing environment, indoor positioning systems help improve worker safety. Real-time 
tracking and employee and machinery movement tracking helps IPS to receive warning that risks are likely 
to occur risk early in advance and that safety measures are maintained and risks avoided which would reduce 
mishappening and injury possibilities18. For instance, proximity sensors placed on portable gadgets or machines 
can alert workers about their proximity to dangerous equipment.

In addition, ensuring employee safety in various manufacturing scenarios cannot be achieved without precise 
indoor localization19. This means that indoor positioning system allows for tracing the movement of people 
and machines thus identifying possible hazards before they cause harm while verifying compliance with safety 
regulations that ultimately lead to reduced number of accidents and injuries19. At the same time integrating 
with the already installed industrial automation systems also needs special attention because it is experts who 
must carry it out6. The proposed deep spatial–temporal attention network (Deep-STAN)'s advanced indoor 
positioning capabilities can be applied in various fields, including retail and logistics. This can enhance customer 
engagement and increase sales. In logistics, Deep-STAN can be used for inventory management by accurately 
tracking the location of goods within large warehouses, helping optimize item retrieval, streamline warehouse 
operations, and reducing the time spent searching for products.

The major contributions of this study are as follows:

•	 Applies robust signal processing and noise reduction techniques such as moving average filtering and outlier 
removal for purposes of cleaning and normalizing data.

•	 The DBSCAN clustering method is used for identifying different indoor locations that have distinct groups.
•	 Extract signal-based, spatial–temporal, motion, environmental, and statistical features. These various charac-

teristics are helpful for greater understanding of intricate indoor environmental dynamics.
•	 The model presented here combines long short-term memory (LSTM), visual transformers, attention mech-

anisms, and Convolutional Neural Networks (CNNs) to effectively capture spatial, temporal, and global de-
pendencies in indoor fingerprint data.

•	 The model’s performance is optimized using hybrid optimization techniques, including hyperparameter tun-
ing and methods to overcome local minima.

The paper has been organized as follows, Sect  “Introduction” of the paper provides an introduction, and 
Sect “Literature review” encloses recent literature related to the study. Moreover, the suggested approach has 
been discussed in Sect  “Proposed methodology” and the result of the suggested model has been given in 
Sect “Experimental results”. Finally, the research has been concluded with a conclusion in Sect “Conclusions”.
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Literature review
The summary of the literature works is manifested in Table 1. Liu et al.20 designed a visible light indoor positioning 
system which uses one LED, and a rotatable photo detector based on machine learning. This system applies 
to two major steps stored in what they call area classification and precise positioning. Nabati and Ghorashi21 
introduced a novel indoor positioning system which depends on fingerprinting of the environment, deep 
learning technology as well as historical data. The purpose of developing KD-CNN algorithm by Mazlan et al.22 
was to localize the objects within indoor spaces faster by exploiting information derived from a huge amount 
of convolutional neural network (CNN) models and using it for training less expensive models in which tasks 
are performed more quickly albeit at higher accuracies. A technique for indoor localization has been developed 
by Zhang et al.23 with the help of attention-augmented Residual CNN (RCNN) and Channel State Information 
(CSI) fingerprints which are utilized for tracking objects inside buildings. Liu et al.24 recommended using 
a Clustering-based Noise Elimination Scheme (CNES) that is suited to RSSI-based datasets. This technique 
employs density-based spatial clustering of applications with noise for clustering RSSIs in regions so as to 
eliminate noisy samples from the dataset. Laska and Blankenbach25 came up with a groundbreaking method for 
estimating position in wide and large indoor spaces. They presented a unified approach making use of just one 
neural network for training. A study on indoor 3D positioning algorithms was performed by Wang et al.26 using 
WiFi fingerprinting. Spatiotemporal features including a Temporal Convolutional Networks (TCN) which has 
been armed through dilated convolution, causal convolution, and residual connection were taken off by them 
using deep learning techniques.

Sammy, F., & Vigila, S. M. C27 suggested a distributed blockchain-based Ciphertext-Policy Attribute-Based 
Encryption (CP-ABE) approach is introduced to secure patient health records (PHRs) in cloud computing. 
Umran et al.28 blockchain-based private network is proposed for securing the circuit breaker system in the Al-
Kufa/Iraq power plant. The system utilizes a multi-chain proof of rapid authentication (McPoRA) as a consensus 
mechanism to enhance computational performance and reduce latency. Shaikh, J. R., & Iliev, G29 developed a 
blockchain-based transaction processing system (TPS) to enhance security in E-commerce transactions. The 
system incorporates zero-knowledge proof (ZKP) and modified ECC to ensure privacy, authentication, integrity, 
and non-repudiation.

Proposed methodology
Figure 1 outlines the architecture of a proposed methodology for indoor positioning, utilizing a combination of 
data collection, pre-processing, data augmentation, and machine learning techniques. The process begins with 
data collection using mobile devices in an indoor environment, with the collected data stored in a database. 
During the pre-processing phase, the data undergoes moving average filtering, outlier removal, and Min–Max 
normalization to prepare it for further analysis. Data augmentation methods including rotation, translation, 
and synthetic noise addition are then applied. In indoor positioning systems (IPS), transformations such as 
rotation, translation, and noise addition significantly impact the model’s learning process and results. Rotation 
affects signal orientation, ensuring the model can accurately interpret data from various angles by exposing it to 
multiple orientations during training, which enhances robustness and generalization. Translation mimics user 
movement through different areas, allowing the model to associate specific signal patterns with varying locations, 
thereby improving localization accuracy as it learns to recognize similar patterns across spatial configurations.

Noise addition simulates real-world conditions where signals are distorted by environmental interference, 
helping the model become resilient to variations and enabling it to identify underlying patterns despite noise. 
The online phase involves feature extraction, where signal-based features, spatial and temporal features, motion 

Author(s) Proposed technique Advantages Limitations

Liu et al.20 Visible Light Positioning with LED & Rotatable Photo Detector High accuracy in walls and corners Limited to environments with 
proper lighting conditions

Nabati & Ghorashi21 DNN-based Fingerprinting with RSS samples Real-time, high-speed, and precise positioning Performance depends on RSS 
stability

Mazlan et al.22 KD-CNN for Indoor Object Localization Faster positioning with high accuracy Requires large pre-trained CNN 
models for training

Zhang et al.23 Attention-augmented Residual CNN (RCNN) with CSI 
fingerprints Improves tracking and localization accuracy Requires a large CSI dataset for 

training

Liu et al.24 Clustering-based Noise Elimination Scheme (CNES) for RSSI Enhances data quality and improves classifier 
performance

Sensitive to incorrect clustering 
parameters

Laska & 
Blankenbach25 Unified Neural Network for Floor & Position Estimation Reduce errors using Multi-Cell Encoding Learning 

(multi-CEL)
Performance varies with building 
layout complexity

Wang et al.26 WiFi Fingerprinting with Temporal Convolutional Networks 
(TCN) Better depth perception in indoor 3D localization Requires extensive spatiotemporal 

data for accuracy

Sammy & Vigila27 A blockchain method to keep patient records safe in the cloud Keeps data private and removes the need for a third 
party

Can be hard to use and may slow 
things down

Umran et al.28 A blockchain system to protect power plant equipment Uses less power, works fast, and keeps data safe Hard to set up and may not work 
with old systems

Shaikh & Iliev29 A blockchain system to make online payments safe Protect payments, stop hackers, and keep data private Can make payments slow and may 
not work well for big websites

Table 1.  Summary of the reviewed literature.
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features, environmental features, and statistical features are derived from the data. These features are input into 
the Deep-STAN positioning model, which predicts the location based on the processed and augmented data, 
resulting in accurate indoor positioning. Finally, S-box cryptography, blockchain integration, and QR code-
based security for an accurate indoor positioning system. Integrating security components like Galois Field-
based Elliptic Curve Cryptography (ECC), blockchain technology, and the S-box cryptographic transformations 
into the Deep-STAN model involve several key steps. First, ECC is applied to encrypt and decrypt signal data 
collected during the positioning process. This ensures that data transmitted between devices and servers is 
secure, preventing unauthorized access. The ECC’s low computational complexity enables real-time encryption 
without affecting the system’s latency, preserving performance.

Fig. 1.  Architecture of the proposed methodology.
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Phase 1: offline phase
Data acquisition
The WiFi RSS Fingerprint Localization Dataset is commonly used for indoor positioning systems, leveraging 
Received Signal Strength (RSS) values from multiple WiFi access points to estimate a device’s location. The 
dataset is typically collected in controlled indoor environments such as university buildings, shopping malls, 
or office spaces, where signal strength varies due to walls, furniture, and human movement. Data collection 
usually spans multiple days, often ranging from a few days to several weeks, to capture variations in signal due 
to environmental dynamics. The amount of data collected depends on factors such as the number of reference 
points, access points, and time intervals between measurements, but many datasets contain thousands to 
hundreds of thousands of RSS readings across different locations. The size of Wi-Fi RSS Fingerprint Localization 
datasets varies significantly based on the scope and methodology of data collection. For instance, the WiSig 
dataset comprises approximately 10 million packets captured from 174 WiFi transmitters over a month-long 
period. In contrast, a dataset from Tampere University includes 446 reference points and 489 access points, 
resulting in a more modest dataset. Moreover, the Wi-Fi RSSI Dataset for Fingerprint-based Localization, which 
contains data from 250 locations with 27 detected Wi-Fi access points. Therefore, the dataset size can range from 
hundreds of data points in smaller-scale studies to millions in extensive collections.

Pre-processing
Signal processing and noise reduction are essential steps to assure the data collected is precise and dependable. 
It has various techniques to clean the data and standardize it for consistency.

Moving average filtering
The moving average output helps to reduce the short term “noise” in the data by smoothening out unrelated 
short-term fluctuations. This is very useful in improving the accuracy of many measurements carried out on 
wireless devices. It can be arithmetically given in Eq. (1),

	
RSSIi = 1

N

N−1∑
j=0

RSSIi−j � (1)

where RSSIi represents the smoothed RSSI value at position i, RSSIi−j  signifies the RSSI values within the 
window, and N  indicates the number of points in the moving window.

Outlier removal
Outliers in RSSI data can significantly affect the accuracy of indoor positioning. These outliers can be identified 
and removed using the Z-score method and it can be arithmetically given in Eq. (2),

	
Zi = RSSIi − µ

σ
� (2)

Algorithm 1.  Hybrid reptile tuna optimization algorithm.
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where Zi denotes the Z-score of RSSIi, µ signifies the mean of the RSSI values, and σ denotes standard 
deviation. An RSSI value is considered an outlier if |Zi| > k, where k is typically set to 2 or 3.

Min–max normalization
Normalization scales the RSSI values to a common range, mitigating device-specific variations and ensuring 
consistency across different devices and environments it can be arithmetically given in Eq. (3),

	
RSSI ′ = RSSI − RSSImin

RSSImax − RSSImax
� (3)

where RSSImin and RSSImax are the min and max RSSI values in the dataset, respectively. This normalization 
scales the RSSI values to the range [0, 1].

Clustering and fingerprinting
Fingerprint classification involves organizing the preprocessed fingerprint data into distinct groups representing 
different indoor locations.

DBSCAN is a robust clustering algorithm well-suited for data with noise and clusters of varying shapes 
and sizes. The algorithm utilizes two key parameters: min P ts and epsilon (ε). The notion of epsilon is used 
to denote the maximum distance that lies between two points which can still make them neighbors, whereas 
min P ts is the minimum number of points needed to be regarded as a solid area identified with clusters.

DBSCAN iterates through the dataset to form clusters of density-reachable points and identify noise points 
that do not belong to any cluster.

Mathematically, let D be the dataset of RSSI fingerprints. For each point p in D and it can be arithmetically 
given in Eq. (4),

	 Nε (p) = {q ∈ D |dis tan ce (p, q) ≤ ε}� (4)

A point p is a core point if |Nε (p)| ≥ min P ts. A point p is directly density-reachable from q it p ∈ Nε (p) and 
q is a core point. The distance metric used is often Euclidean distance.

Labeling clusters with location coordinates
Once the clusters are identified using DBSCAN, the next step is to label each cluster with corresponding location 
coordinates. This involves determining a representative point, usually the centroid, for each cluster. The centroid 
can be calculated by averaging the coordinates of all points in the cluster.

For Ci containing points p1, p2, . . . , pn,where each point pj  has coordinates (xj , yj), the centroid is 
computed in Eq. (5)

	
Ci =

(
1
n

n∑
j=1

xj ,
1
n

n∑
j=1

yj

)
� (5)

Every point in cluster Ci is then labeled with the coordinates of this centroid and it is given in Eq. (6),

	 label of pj ∈ Ci = (Centroidx, Centroidy)� (6)

Each data point is assigned to its location coordinates based on the cluster it belongs to in the process of marking. 
This labeled dataset will establish a strong base for deep learning models that are being trained to solve indoor 
positioning issues.

Phase 2: online phase
Feature extraction
Building an indoor positioning system requires one to gather beneficial data from raw data. How this is done 
is by getting useful features that machine learning models can use for predicting the position of a device in a 
building. Positioning models use the derived attributes to evaluate accurately the location of a device using 
observed data.

(i) Signal-Based Features: Received Signal Strength Indicator (RSSI), Signal-to-Noise Ratio (SNR), Channel 
Information and Signal Stability.

(ii) Spatial and Temporal Features: Location Coordinates and Time-Based Features.
(iii) Motion features: Motion State.
(iv) Environmental Features: Room and Floor Identification.
(v) Statistical Features: Histogram of RSSI Values.

Hybrid optimization for deep CNN
A Hybrid Optimization algorithm is employed for hyperparameter tuning (weight optimization) and to escape 
local minima, ensuring the model achieves optimal performance. Here the exploration phase from reptile search 
is employed and the exploitation phase from tuna optimization is employed.
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Reptile search algorithm
The algorithm of reptile search is metaphorically depicted through the hunting habits of crocodiles that exist in 
the jungles. With two primary processes, it is about surroundings and hunting. These two sequences change by 
dividing the number of iterations into four.

Initialization  The search method of the reptile starts by randomly forming an initial set of potential solutions 
and it is shown in Eq. (7),

	 zjl = rand × (UB − LB) + LB, l = 1, 2, . . . , n� (7)

The initiating matrix is referred to as zjl, where j varies from 1, 2, . . . , P . P  here is the size of the population 
(rows of the initiating matrix), while n represents the dimensions (columns of the initiating matrix) of the 
current optimization problem. LB is the short form for lower bound, UB for the upper limit, whereas rand for 
randomly generated values.

The fitness is computed as

	 F itness = min (Error)

Encircling (exploration)  The encircling phase is about exploring a high-density area. This phase requires walk-
ing and belly movements that copy crocodile movements which are so critical. These are not meant to catch prey 
but just to move long distances. Moreover, it can be arithmetically given in Eq. (8),

	
zjl (χ + 1) = Bestl (χ) × (−ηjl (χ)) × α − (Tjl (χ) × rand) , χ ≤ χmax

4
zjl (χ + 1) = Bestl (χ) × z(s1,l) × EV (χ) × rand, χ ≤ 2 χmax

4 andχ > χmax
4

� (8)

At lth position, Bestl (χ) depicts the finest solution identified as well as χ represents the ongoing iteration while 
rand is an arbitrary number while χmax is the maximum iterations. Hunting service’s amount to solution j in 
position  is reflected upon by ηjl. The value of m ηjl is obtained by means of the following Eq. (9),

	
η(ηj,l) = Bestl (χ) × Q(j,l)� (9)

The sensitivity of parameter α shows how accurate the exploration is, while G(j.l) represents a different function, 
through which the exploration area is reduced in the following Eq. (10),

	
G(j.l) =

Bestl (χ) × Q(s2,l)

Bestl (χ) + τ
� (10)

In this case, s1 is to be taken as a random integer between 1 and N , where N  is the total number of candidate 
solutions. The random position for the lth solution is given as z(s1,l). On the other hand, s2 is a random integer 
in the interval between 1 and N  but τ  is assumed to be a small positive value. The mathematical expression of 
Evolutionary Sense EV (χ) is denoted as given in Eq. (11).

	
EV (χ) = 2 × s3 ×

(
1 − 1

χmax

)
� (11)

where s3 is any random number. Q(j,l) can be calculated using Eq. (12),

	
Q(j,l) = β +

z(j,l)−AP(zj)
Bestl (χ) z

(
UB(l) − LB(l)

)
+ φ

� (12)

where β is the sensitivity limit that determines exploration accuracy. AP (zj) represents the average position of 
the jth solution and can be determined using Eq. (13),

	
AP (zj) = 1

n

∑n

l=1
z(j,l)� (13)

Hunting (exploitation)  Hunting is divided into two stages which is hunting coordination for cases when iter-
ates lie in χ ≤ 3 χmax

4 and χ > 2 χmax
4 , while hunting cooperation happens when χ ≤ χmaxand χ > 3 χmax

4
. Stochastic coefficients are used to search the local search space in order to generate optimal solutions. In 
Eqs. (14), (15), exploitative operations are applied:

	
z(j,l) (χ + 1) = Bestl (χ) ×

(
Q(j,l)

)
× rand, χ ≤ 3χmax

4 and χ > 2χmax

4 � (14)

	
z(j,l) (χ + 1) = Bestl (χ) − η(ηj.l) (χ) × φ − (χ) × rand, χ ≤ χmaxand χ > 3χmax

4 � (15)

Bestl (χ) in this case denotes the lth position attained in the top solution during this iteration, whereas η(ηj,l) 
signifies the hunting operator.
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Tuna optimization algorithm
Parabolic foraging  Tuna love herrings and eels more than any other kind of fish, they use their power of con-
tra-directional movement while being pursued by enemies so that it becomes impossible for them to be caught 
and eaten. Whenever they attack, the prey’s motion provides a blueprint pattern which the hunters use by cover-
ing it in a curved line and it can be given in Eqs. (16), (17),

	
Zt+1

i =
{

Zt
best + rand ·

(
Zt

best − Zt
i

)
+ RV · q2 ·

(
Zt

best − Zt
i

)
, if rand < 0.5

RV · q2 · Zt
i , if rand ≥ 0.5 � (16)

	
q =

(
1 − χ

χmax

)(χ/ χmax)

� (17)

where χ represents the current iteration, χmax represents predefined maximum. RV  is randomly chosen at − 1 
or 1.

Spiral foraging  Apart from the parabolic foraging strategy, there is an alternate effective cooperative approach 
known as the spiral foraging strategy. This approach is described mathematically in Eq. (18),

	

Zt+1
i =




β1 ·
(
Zt

rand + ρ ·
∣∣Zt

rand − Zt
i

∣∣ + β2 · Zt
i

)
, i = 1

β1 ·
(
Zt

rand + ρ ·
∣∣Zt

rand − Zt
i

∣∣ + β2 · Zt
i−1

)
, if rand < t

tmax
, i = 2, 3, . . . , P

β1 ·
(
Zt

best + ρ ·
∣∣Zt

rand − Zt
i

∣∣ + β2 · Zt
i

)
, if rand ≥ t

tmax
, i = 1

β1 ·
(
Zt

rand + ρ ·
∣∣Zt

best − Zt
i

∣∣ + β2 · Zt
i−1

)
, i = 2, 3, . . . .P

� (18)

where Zt+1
i  is one of the tunas in the t + 1 round and refer to it as the ith fish at this point. Zt

best is a way to 
denote the current top best solution while Zt

rand stands for an arbitrary reference one from the shoal of fish. 
The amount of pull each member has towards tips or neighbors respectively is directed by coefficient β1 whereas 
other tunas’ movement is determined by β2. On top of that, parameter ρ plays a role in determining the gap 
between individual tunas as well as optimal or randomly selected points of reference. This model’s expression is 
as given in Eq. (19), (21), (22),

	
β1 = b + (1 − b) · t

tmax
� (19)

	
β2 = (1 − b) − (1 − b) · t

tmax
� (20)

	 ρ = ecu · cos (2πc)� (21)

	 u = e
3 cos

(((
tmax+1/t

)
−1

)
π

)
� (22)

where A is a constant, which shows how much tuna fish attracts, while b is a random number from 0 to 1 evenly 
spread across the spectrum.

 

Positioning
The Deep Spatial–Temporal Attention Network proposed is a hybrid classification model that blends CNN, 
Visual Transformers, LSTM, and attention mechanisms.

CNN
A CNN is a type of deep learning network that is designed for grid-like data, such as images. One reason for their 
popularity is that CNNs can detect spatial patterns as well as relationships between various parts of the data by 
using special convolutional and pooling layers in addition to conventional fully connected layers.

LSTM
In indoor positioning, LSTM is illustrated in Fig. 2 is used to extract temporal features from the collected signal 
data, such as RSSI sequences, device motion patterns, and other time-dependent contextual information. By 
capturing these temporal dynamics, LSTMs contribute to more accurate and reliable location estimation.

The features extracted by CNNs capture spatial dependencies, while the features extracted by LSTMs capture 
temporal dependencies. The final output from the ViT is used for precise location prediction is given in Eq. (23).

	 fconcat = [fCNN , fLST M ]� (23)

Vision transformer (ViT)
The concatenated feature vector is input into the Vision Transformer as illustrated in Fig. 3.

The concatenated feature vector fconcat is input into the Vision Transformer.

Input embedding  Moreover, the following Eq. (24) shows the mathematical deliberation for input embedding.
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	 z0 = Linear (fconcat) + Epos� (24)

where fconcat denotes the concatenated feature vector. Linear (.) represents a linear transformation (fully 
connected layer). Epos represents positional embeddings that encode the position information of the input 
sequence.

Self-attention mechanism  ViT applies self-attention to the input embeddings to capture relationships between 
diverse portions of the sequence and it can be mathematically given in Eqs. (25), (26), (27), (28)

	 Q = WQX � (25)

Fig. 3.  Architecture of ViT.

 

Fig. 2.  Architecture of LSTM.
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	 K = WKX � (26)

	 V = WV X � (27)

	
A = soft max

(
QKT

√
dk

)
V � (28)

where X  is the input sequence, Q, K , and V  are the query, key, and value matrices, correspondingly. WQ, WK , 
and WV  are learnable weight matrices. dk  signifies the dimensionality of the key vectors.

Phase 3: security enhancement with Galois field-based cryptographic primitives
A key innovation of Deep-STAN is its use of Galois Field-based Elliptic Curve Cryptography (ECC) for securing 
signal data at various stages of the IPS. This cryptographic method operates within finite fields, offering:

Elliptic Curve Diffie-Hellman (ECDH): Secure exchange of keys between devices collecting and analyzing 
signal data.

Elliptic Curve Diffie-Hellman or ECDH, is a type of cryptographic protocol that makes possible a safe key 
exchange between two entities. This fact makes it appropriate for applications with sensitive data in transmission. 
The mathematical properties underlying this protocol are characteristics related to the elliptic curves, which may 
be defined by the following Eq. (29),

	 E : y2 = x3 + ax + b� (29)

Here, a and b ensure the curve is non-singular. ECDH operates over finite fields, typically Fp.

Process for key exchange

	1.	 Parameter Selection: Select an elliptic curve E and a base point G.
	2.	 Generation of Key:

•	 Sensor 1 selects a private key a and computes the public key:

	 PA = a · G

•	 Sensor 1 selects a private key a and computes the public key:

	 PA = a · G

3.	   Exchange of Public Key: Sensor 1 and Sensor 2 exchange their public key PA and PB…

4.   Shared Secret Computation:

•	 Sensor 1:

	 SA = a · PB

•	 Sensor 2:

	 SB = b.PA

They both arrive to the same mutual secret:

	 SA = SB = ab · G

ECDH is one of the key exchange mechanisms and relies on elliptic curves in safeguarding the information 
exchanged during communication. In these applications where sensitive information needs to be transferred, it 
becomes a necessary tool. Its efficiency coupled with strong security suggests its preference in modern systems 
of cryptography.

Elliptic curve digital signature algorithm (ECDSA)30

Elliptic Curve Digital Signature Algorithm is a cryptographic protocol. Its purpose is a version of the Digital Signature 
Algorithm. It employs elliptic curve scalar multiplication instead of modular exponentiation for implementation 
purposes. An elliptic curve E over a prime field Fp is determined as Ep (a, b) : y2 = x3 + ax + bmodp, where 
p > 3, a, b ∈ Fp and the condition 4a3 + 27b2modp ̸= 0 is satisfied. The elliptic curve group E(Ep) contains 
all such points (x, y) which satisfy the elliptic curve Ep (a, b) and point at the infinity O∞.

Scientific Reports |        (2025) 15:15064 10| https://doi.org/10.1038/s41598-025-97715-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Galois field arithmetic (GF(2n))31

A Galois field GF (2m) is a finite field of size 2m, where m is the number of bits per element. For each element 
aϵGF (2m) also the addition and multiplication in the Galois field are determined as Eqs. (30), (31), (32). The 
Galios field variations and their parameters are manifested in Table 2.

	 a = am−1xm−1 + am−2xm−2 + · · · + a1x + a0� (30)

	 a + b = (am−1 ⊕ bm−1) xm−1 + · · · + (a0 ⊕ b0)� (31)

	 a × b = (a (x) · b (x)) modP (x)� (32)

where aiϵGF (2) = {0,1} and ⊕ denotes XOR. In the encryption process, plain text block P  is divided into 
blocks P1, P2, · · · , andP N  of length L (in bits), where Pi is of size mi, such that PiϵGF (2mi ) . Then, apply the 
arithmetic and multiplication operations for each block to correct the data. After the block Pi of the encryption 
is performed, then field size mi is performed for the next block Pi+1.

Phase 4: system security with QR codes and blockchain integration
Blockchain integration
It makes use of blockchain to maintain decentralized ledgers of location fingerprints and QR code data. The 
projected blockchain incorporated architecture is manifested in Fig. 4.

This will record all the scans and updates made by the respective QR codes so that there is an immutable 
history of location tags. Blockchain technology is integrated into the proposed indoor positioning system 
(IPS) to enhance the security, integrity, and immutability of the positioning data. In this system, blockchain 
plays a crucial role in ensuring that the location data, once recorded, cannot be tampered with or altered, 
providing a secure and transparent history of the user’s movement. When users’ positions are tracked in indoor 
environments using Wi-Fi, Bluetooth, and magnetometers, the system records and stores positioning data in 
the form of encrypted transactions. These transactions are then logged into a blockchain, where each new entry 
is linked to the previous one, creating a secure and unchangeable record of the user’s movement. The novel 
application of blockchain in this indoor positioning system (IPS) lies in its combination with cryptographic 
methods such as Error Correction Codes (ECC) and Secure Box (S-box) for enhanced security. By incorporating 
ECC, a cryptographic technique based on Galois fields, the system ensures that the signal data, transmitted 
over potentially insecure networks, remains protected against potential interference or attacks. ECC provides 
low-latency encryption and decryption, which is essential for real-time positioning applications, ensuring that 
security measures do not impede system performance. Moreover, the use of S-box further strengthens the 
system’s resilience by introducing a mechanism for obfuscating the data, adding an additional layer of protection 
against unauthorized access or manipulation.

Phase 5: blockchain-based storage and security
In modern IPS, security, integrity, and authenticity of location data become the core issues of maintaining and 
processing.

Immutability: Once a signal fingerprint has been recorded, it becomes part of a permanent ledger. This means 
prior location data can always be referenced or verified without the possibility of tampering.

Verifiability: Since every block is cryptographically coupled to the previous block, any method that could alter 
the information will be detected immediately.

Cryptographic security: Metadata is cryptographically signed before being written to the blockchain. Strong 
digital signatures ensure that a given piece of information really comes from where it claims to originate, and 
that information is not tampered with after the fact. Should anyone try to tamper with or alter the data, their 
signature would be invalidated and their crime easily detected by the recipient.

This S-box is essential for ensuring that patterns in the plain text are obscured in the ciphertext. The main 
source of nonlinearity in symmetric-key algorithms is substitution boxes or S-boxes. S-boxes are vectorial 
Boolean functions that map a predetermined number of input bits to a predetermined number of output bits. A 
formal definition of a n × m S-box is determined in Eq. (33)

	 S : F n
2 → F m

2 � (33)

where, F n
2  and F m

2  represents vector spaces over the Galois field GF (2) with dimensions n and m. The 
cryptographic strength of an S-box is defined through various critical properties.

Galois field (GF) type Notation Order (q) Prime/extension field Common applications

Prime field GF(p) p (Prime Number) Prime Field Cryptography (RSA, ECC), error detection

Binary field GF(2ⁿ) 2n Extension field Error correction (BCH, Reed-Solomon), cryptography

Extension field GF (qⁿ) qn(q is Prime) Extension field Coding theory, cryptography

Finite field with composite order GF (pm) pm Extension field Secure communications, polynomial arithmetic

Galois rings GR (pn , m) pn Ring-based field Signal processing, algebraic coding

Table 2.  Galois field (GF) variations and their parameters.
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Non-linearity: The measure of the distance between the S-box and the set of entire affine functions. For an 
n × n S-box, the nonlinearity is determined in Eq. (34),

	
NL (S) = 2n−1 − 1

2a ∈ F n
2 , b ∈ F n

2

/
0 max

∣∣∣∣
∑

x∈F n
2

(−1)b·S(x)⊕a·x � (34)

Were. represents the dot product and ⊕ denotes bitwise XOR.

Fig. 4.  Proposed blockchain integration architecture.
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Differential uniformity: When the input is changed it enumerates the uniformity of output changes. The 
differential uniformity is determined in Eq. (35),

	 δ = a ̸= 0, b max |x ∈ F n
2 : S (x) ⊕ S (x ⊕ a) = b|� (35)

Algebraic degree: The highest degree between the component Boolean functions of S. The algebraic degree for an 
n × m is defined in Eq. (36),

	 deg deg (S) = v ∈ F m
2 \0 max deg (v · S)� (36)

Balancedness: An S-box is balanced if each output occurs with equal probability when the input is uniformly 
distributed.

Algebraic immunity: A measure of resistance against algebraic attacks. For an S-box S : F n
2 → F m

2 , the 
algebraic immunity is determined in Eq. (37),

	 AI (S) = min{degdeg (P ) , P ϵI(S)}� (37)

where, I (S) is the ideal generated through the polynomials representing the S-box in Eq. (38),

	 I (S) = (y1 − f1 (x1, x2, · · · , xn) , y2 − f2 (x1, x2, · · · , xn) , · · · , ym − fm(x1, x2, · · · , xn))� (38)

S-boxes provide algebraic immunity, which is essential to their defense against cryptanalytic attacks. It is 
computed by building the ideal’s smallest reduced Gröbner basis and identifying the lowest degree polynomial. 
This idea of measuring cipher resistance was first presented by Faugère and Perret. Consider a Boolean function 
fs : F n+m

2 → F2 is defined in Eq. (39),

	 fs (x1, x2, · · · , xn, y1,y2, · · · , ym) = {1, if∀i, j : fi (x1, x2, · · · , xn) = yj ; 0, if∃i, j : fi (x1, x2, · · · , xn) ̸= yj .� (39)

The algebraic immunity of the S-box S is equivalent to the minimum degree of non-zero polynomials in the 
annihilator of fs is determined in Eq. (40),

	 AI (S) = degdeg (g) |g ∈ Ann(fs)� (40)

RF20 DNN21 CNN22 TCN26 Deep_STAN

Accuracy 0.8429 0.8865 0.9009 0.8557 0.9937

Precision 0.8006 0.907 0.9109 0.8111 0.987

Sensitivity 0.7476 0.8302 0.8846 0.869 0.9898

Specificity 0.8145 0.902 0.9167 0.8455 0.9878

F-measure 0.837 0.8934 0.8976 0.8391 0.9935

MCC 0.7082 0.7838 0.8020 0.7099 0.9874

NPV 0.7636 0.8085 0.8919 0.8942 0.99876

FPR 0.0855 0.098 0.0833 0.1545 0.0122

FNR 0.2524 0.1698 0.1154 0.131 0.0100

Table 4.  Performance analysis with 70% training data.

 

Metric Description Formula

Accuracy Measures the overall correctness of the model A = tp+tn
tp+tn+fp+fn

Precision Indicates how many predicted positives are actually correct P = tp
tp+fp

Sensitivity (recall) Measures the ability to correctly identify positives R = tp
tp+fn

Specificity Measures the ability to correctly identify negatives Specificity = tn
tn+fp

F-measure (F1-score) The harmonic mean of precision and sensitivity F 1 − score = 2 × precision×sensitivity
precision+sensitivity

MCC (Matthews correlation coefficient) Evaluates overall prediction quality, even for imbalanced data MCC = (tp×tn−fp×fn)√
(tp+fp)(tp+fn)(tn+fp)(tn+fn)

NPV (negative predictive value) The probability that a predicted negative is negative NP V = tn
tn+fn

FPR (false positive rate) Percentage of false positives out of total actual negatives F P R = fp
fp+tn

FNR (false negative rate) Percentage of false negatives out of total actual positives F NR = fn
tp+fn

Table 3.  Metrics evaluation.
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In indoor positioning systems (IPS), the algebraic properties of cryptographic algorithms—nonlinearity, 
differential uniformity, and algebraic immunity—are essential for enhancing security against various attack 
vectors.

Tamper-resistance: Since blockchain is a decentralized ledger of sorts that, through its consensus mechanisms, 
relies on getting power over the majority of the network, any attempt to alter the underlying data would be highly 
impractical in most blockchain systems.

Fig. 5.  Graphic representation of (a) accuracy, (b) precision, (c) sensitivity, (d) specificity, (e) F-measure, (f) 
MCC, (g) NPV, (h) FPR, (i) FNR for proposed and other existing models.
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Cryptographic verification
Data integrity: When a QR code is generated for a location, the data is encrypted using Galois Field-based ECC. 
This means that the location data, once written to the blockchain, cannot be read, or modified without the 
appropriate decryption keys, ensuring that only authorized users can access or alter the data.

Verification process: When the QR code is scanned, the system retrieves the associated data from the 
blockchain. To verify its integrity, the system checks the cryptographic hash of the retrieved data against the 
hash stored in the blockchain. If the hashes match, it confirms that the data has not been tampered with since it 
was recorded.

Access control: Users can be granted specific permission to read or write data to the blockchain. When a QR 
code is scanned, the system verifies the user’s credentials through cryptographic signatures.

Experimental results
The suggested approach has been implemented in Python for a precise indoor positioning system. The proposed 
Deep-STAN method is tested along with existing techniques such as RF20, DNN21, CNN22, and TCN26 on the 
dataset available WiFi RSS Fingerprint Localization Dataset (​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​t​​a​r​e​q​a​l​​h​m​i​e​​d​​a​t​/​
w​​i​​f​i​​-​r​s​s​​-​f​i​n​g​e​​r​p​​r​i​n​​t​-​d​a​​t​​a​s​e​t​?​s​​​e​l​e​c​t​​=​R​S​S​I​S​​​e​n​s​o​r​s​​_​L​a​r​g​e​.​c​s​v). Here, 70% and 80% of data are utilized for training 
the model and the remaining data is utilized for assessing the performance. The analysis is based on the metrics 
such as precision, NPV, FNR, sensitivity, accuracy, MCC, FPR, specificity, and F-measure.

Metrics analysis
The metrics utilized for validating the proposed model are shown in Table 3.

Analysis of the suggested model for 70% training data
The comparison of the proposed approach with the existing models such as RF20, DNN21, CNN22, and TCN26 
with 70% of the database used for training. To compare the results of each approach, accuracy, sensitivity, MCC, 
and FNR metrics were used. The findings (shown in Table 4 and Fig. 5) also show that the newly proposed 
system is more efficient than the existing techniques.

As for the accuracy, the proposed system yields 99.37% which is significantly higher than RF20 with 84.29% 
and all the other models, and this is evident from Table 5 and Fig. 6, respectively. This high accuracy is due to the 
incorporation of the DBSCAN clustering method that increases the accuracy of the indoor positioning system. 
For sensitivity, the proposed model yields 98.98%, which is significantly higher than the competitors, indicating 
the model’s capability of identifying correct instances. Furthermore, the proposed system yields an MCC of 
98.74% which is higher than RF at 70.82%20, DNN at 78.38%21, CNN at 80.20%22 and TCN at 70.99%26. It is 
important to note that the incorporation of the Galois Field cryptography enhanced the sensitivity of the system 
and the MCC rate.

Analysis of the suggested model for 80% training data
A comparison of the proposed approach with related methods like RF20, DNN21, CNN22, and TCN26 has been 
done, and the results acquired are manifested in Table 5 and Fig. 6, respectively. The comparison is based on 
evaluation metrics like accuracy, precision, Negative Predictive Value (NPV), and False Positive Rate (FPR). The 
findings also demonstrate that the proposed method has improved performance than the existing models in 
terms of all the evaluated measures.

Concerning the accuracy, the proposed approach obtains 98.04% which is higher than the RF20 with 88.02%, 
CNN22 with 91.12%, and all other models. Furthermore, in precision, the proposed method achieves 97.22%, 
which is higher than those of the methods compared. This higher precision, which is essential for the stability 
and security of the indoor positioning system (IPS), is made possible by the use of QR codes and blockchain 
technology. For NPV, the proposed approach achieved 98.77%, which is higher than the NPV of TCN26 at 
93.62% and other related models. The addition of the Deep-STAN is also helpful in improving the performance 
of the system in NPV, and other measures. Also, the proposed approach has the lowest FPR of 0.0244, while the 
DNN21 model has the highest FPR of 0.1875.

These findings substantiate the fact that the proposed method enhances the accuracy and reliability of the 
indoor positioning system than the existing methods.

RF20 DNN21 CNN22 TCN26 Deep_STAN

Accuracy 0.8802 0.8308 0.9112 0.9408 0.9804

Precision 0.8269 0.7835 0.9287 0.9167 0.9722

Sensitivity 0.8951 0.8539 0.8706 0.9221 0.9859

Specificity 0.8218 0.8125 0.9224 0.9265 0.9756

F-measure 0.8821 0.8172 0.908 0.9342 0.979

MCC 0.7685 0.6625 0.8254 0.8807 0.9607

NPV 0.8932 0.875 0.8791 0.9362 0.9877

FPR 0.1782 0.1875 0.0976 0.0635 0.0244

FNR 0.0949 0.1461 0.1294 0.0779 0.0141

Table 5.  Performance analysis with 80% training data.

 

Scientific Reports |        (2025) 15:15064 15| https://doi.org/10.1038/s41598-025-97715-8

www.nature.com/scientificreports/

https://www.kaggle.com/datasets/tareqalhmiedat/wifi-rss-fingerprint-dataset?select=RSSISensors_Large.csv
https://www.kaggle.com/datasets/tareqalhmiedat/wifi-rss-fingerprint-dataset?select=RSSISensors_Large.csv
http://www.nature.com/scientificreports


Rank-based analysis on cryptographic techniques
Ranked analysis on cryptographic techniques has performance metrics evaluation in Table 6. The Key Size is 
defined as the length of key which is needed for 128-bit security purposes. Security Level can be translated as 
encryption strength against attacks, higher values imply tougher security. Efficiency is measured in computational 
speed or how it uses the resources, the higher the measure the faster the processing. Latency is the time spent 
doing either encryption or decryption. Complexity of Implementation refers to the difficulty in implementing 
the encryption algorithm into hardware or software. Hardware support is the degree of optimization achieved 
for running on specialized hardware like FPGA or ASIC. Resistance to Side Channel Attacks is denoting the 
ability of the algorithm to resist hardware-level vulnerabilities like power consumption or timing analysis. 

Fig. 6.  Graphic representation of (a) accuracy, (b) precision, (c) sensitivity, (d) specificity, (e) F-measure, (f) 
MCC, (g) NPV, (h) FPR, (i) FNR for proposed and other existing models.
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Finally, Scalability means that an algorithm is able to adapt well to support very large applications or growing 
data loads so that it would still be possible to fit its operations to different environments.

In Table 7, the suggested cryptographic technique, namely Galois Field-Based ECC, is evaluated with the 
current cryptographic techniques such as RSA and AES. They are compared based on performance metrics 
like security level, efficiency, latency, implementation complexity, hardware support, resistance to side-channel 
attacks, scalability, and applications in IPS suitability.

Fig. 7.  Comparative analysis on cryptographic techniques.

 

Metric Galois field-based ECC RSA AES

Key Size (for ~ 128-bit security) 3 (256 bits) 8 (3072 bits) N/A

Security level 9 5 7

Efficiency 9 4 9

Latency 9 5 9

Implementation complexity 6 5 8

Hardware support 5 6 9

Resistance to side-channel attacks 7 4 7

Scalability 9 3 9

Applications in IPS suitability 10 6 10

Table 7.  Rank based comparative analysis on cryptographic techniques.

 

Metric Description

Key size (for ~ 128-bit security) The length of the cryptographic key required to achieve 128-bit security

Security level The strength of encryption against attacks. Higher values indicate stronger security

Efficiency The computational speed and resource usage of the encryption algorithm. Higher efficiency means faster processing

Latency The time required to perform encryption or decryption

Implementation complexity The difficulty of integrating the encryption algorithm in hardware or software

Hardware support The level of optimization for running specialized hardware (e.g., FPGA, ASIC)

Resistance to side-channel attacks The ability to withstand attacks that exploit hardware-level vulnerabilities like power consumption or timing analysis

Scalability The ability to efficiently support large-scale applications or increasing data loads. Higher scalability ensures 
adaptability to different environments

Table 6.  Performance metrics evaluation for rank-based analysis on cryptographic techniques.
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Figure 7 shows the comparison of Galois Field-Based ECC, RSA, and AES across multiple metrics highlights 
ECC’s superiority in security, efficiency, and scalability, making it highly suitable for Indoor Positioning Systems 
(IPS). ECC achieves a higher security level (9) than RSA (5) and AES (7) due to its reliance on elliptical curve 
mathematics, which provides robust encryption with smaller key sizes. It also exhibits higher efficiency (9), and 
lower latency (9) compared to RSA (5), making it ideal for real-time applications like IPS. While AES matches 
ECC in efficiency and latency, ECC outperforms in scalability (9 vs. 3 for RSA), enabling seamless expansion in 
large-scale IPS environments. Although its implementation complexity (6) is slightly higher than RSA (5) and 
AES (5), its enhanced resistance to side-channel attacks (7 vs. 6 for RSA and 9 for AES) ensures data security in 
dynamic indoor settings. However, ECC’s hardware support (5) is lower than AES (9), indicating that specialized 
hardware may be required for optimized performance. Given its perfect suitability score (10) for IPS, ECC stands 
out as the most secure, efficient, and scalable encryption method for safeguarding positioning data in smart 
manufacturing, logistics, and other indoor applications.

SHapley additive exPlanations (SHAP) analysis
In Fig. 8(a–l), SHAP analysis between the proposed Galois Field-Based ECC with the RSA and AES is graphically 
represented.

The integration of cryptography into indoor positioning systems (IPS) significantly enhances security, which 
in turn influences various performance metrics such as sensitivity, Matthews Correlation Coefficient (MCC), 
and others. By utilizing Galois Field-based ECC, the system encrypts signal data, ensuring data integrity and 
preventing unauthorized modifications, which enhances sensitivity by providing accurate and reliable input for 
location classification.

Figures  9, 10 indicates that the performance of various methods in indoor positioning systems varies 
significantly, as reflected in their Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) metrics.

Comparison of Laska and Blankenbach Method Models Random Forest (RF), Deep Neural Networks (DNN), 
Convolutional Neural Networks (CNN), and Temporal Convolutional Networks (TCN) is shown in Table 8 for 
that method. Laska & Blankenbach’s method has the lowest MAE of 1.10, and all others show values higher, 
with TCN performing best among them at 1.45. RMSE is measured in the same manner; Laska & Blankenbach’s 
method returns a performance of 1.70, while TCN has the least RMSE (2.35) from the rest of the alternatives.

Fig. 8.  (a–l): SHAP analysis between the proposed Galois field-based ECC with the RSA and AES.
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Laska and Blankenbach’s method demonstrates superior performance in indoor positioning with a Mean 
Absolute Error (MAE) of 1.10 and a Root Mean Squared Error (RMSE) of 1.70, significantly lower than traditional 
methods. It achieves an impressive accuracy of 98.5% and an F1-score of 0.95, indicating high reliability and 
precision.

The comparison emphasizes that the model suggested, based on ECC with Galois Field, has the minimum 
latency (5.2 ms) and maximum computational efficiency (92%) and is hence appropriate for real-time indoor 
positioning. KD-CNN with AES-256 performs moderately with 12.5 ms latency and 85% efficiency, whereas 
CNN with RSA-2048 exhibits much greater latency (18.3 ms) and reduced efficiency (78%) and hence is less 
suitable for real-time purposes. RCNN with normal ECC achieves an optimum trade-off of 9.7 ms latency and 
88% efficiency, showing excellent security with acceptable performance. TCN with DES-3 has the highest latency 
(22.1 ms) and lowest efficiency (72%) and is not suitable for real-time implementation. The proposed approach 
surpasses others by guaranteeing negligible latency, maximum security, and efficiency in computation. Thus, the 
Comparison of Cryptographic Enhancements in Different Models for Real-Time Indoor Positioning is added in 
the following Table 9.

Conclusions
The proposed deep spatial–temporal attention network is a new hybrid model that is a combination of CNNs, 
vision transformers, attention mechanisms, and LSTM networks to capture spatial–temporal patterns for 
better location classification. The application of hybrid optimization also improves performance in multiple 
indoor environments. One of the major contributions of the work is the incorporation of the Galois Field-based 
Elliptic Curve Cryptography (ECC) with an S-box for data security during positioning. But the outcomes also 
demonstrated that system performance depends on the similarity between the training data and the test data, 
which means that more attention should be paid to data collection in the future. Experimental results on the 
WiFi RSS Fingerprint Localization Dataset show robust performance. When 70% of data was used the model 
had an accuracy of 0.9937, precision of 0.987, sensitivity of 0.9898, and specificity of 0.9878, while when 80% of 
data were used it had an accuracy of 0.9804, precision of 0.9722, sensitivity of 0.9859, and specificity of 0.9756. 

Figure 8.  (continued)
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Figure 8.  (continued)

Fig. 9.  Comparison of MAE and RMSE.
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Metric Laska & Blankenbach’s method RF DNN CNN TCN

MAE 1.10 2.15 1.85 1.65 1.45

RMSE 1.70 3.05 2.75 2.55 2.35

Accuracy 98.5 82.0 88.0 90 92

F1-score 0.95 0.70 0.75 0.80 0.85

Execution time 150 200 300 250 230

Table 8.  Comparative analysis based on Laska and Blankenbach’s method.

 

Fig. 10.  Comparative analysis (a) MAE (b) RMSE (c) accuracy (d) F1-score (e) execution time.

 

Scientific Reports |        (2025) 15:15064 21| https://doi.org/10.1038/s41598-025-97715-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


These outcomes prove that the proposed system is stable and flexible enough to be used in indoor positioning 
applications.

Data availability
The data that support the findings of this study are available on request from the corresponding author.
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