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Self-reported pain scores are often used for pain assessments and require effective communication. 
On the other hand, observer-based assessments are resource-intensive and require training. We 
developed an automated system to assess pain intensity in adult patients based on changes in facial 
expression. We recruited adult patients undergoing surgery or interventional pain procedures in two 
public healthcare institutions in Singapore. The patients’ facial expressions were videotaped from 
a frontal view with varying body poses using a customized mobile application. The collected videos 
were trimmed into multiple 1 s clips and categorized into three levels of pain: no pain, mild pain, or 
significant pain. A total of 468 facial key points were extracted from each video frame. A customized 
spatial temporal attention long short-term memory (STA-LSTM) deep learning network was trained 
and validated using the extracted keypoints to detect pain levels by analyzing facial expressions in 
both the spatial and temporal domains. Model performance was evaluated using accuracy, sensitivity, 
recall, and F1-score. Two hundred patients were recruited, with 2008 videos collected for further 
clipping into 10,274 1 s clips. Videos from 160 patients (7599 clips) were used for STA-LSTM training, 
while the remaining 40 patients’ videos (2675 clips) were set aside for validation. By differentiating 
the polychromous levels of pain (no pain versus mild pain versus significant pain requiring clinical 
intervention), we reported the optimal performance of STA-LSTM model, with accuracy, sensitivity, 
recall, and F1-score all at 0.8660. Our proposed solution has the potential to facilitate objective 
pain assessment in clinical settings through the developed STA-LSTM model, enabling healthcare 
professionals and caregivers to perform pain assessments effectively in both inpatient and outpatient 
settings.
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Pain is an unpleasant sensory and emotional experience associated with, or resembling that associated with, 
actual or potential tissue damage. Poorly controlled pain after surgery is associated with both short- and long-
term adverse impacts on patient outcomes, including delayed recovery and an increased risk of chronic pain1.

Conversely, excessive opioid dosing may lead to adverse effects such as sedation and respiratory depression 
which may increase the risk of patient morbidity. Hence, optimal pain management requires regular, timely, and 
accurate assessment of pain intensity to ensure that the appropriate amount of analgesia is administered2.

Currently, the reference standard for pain assessment is patient-reported pain scores, e.g., numerical rating 
scale (NRS) or visual analogue scale (VAS)3. However, self-reporting of pain can be challenging for patients 
with cognitive dysfunction or those who are non-communicative. Observer-based pain assessment serves as an 
alternative method, where the observer estimates pain intensity using visual and physical cues. Nevertheless, this 
method is often associated with several limitations: (1) assessments are resource-intensive and increase workload 
and cost4; (2) the accuracy and reproducibility of pain assessments may be affected by observers’ cognitive biases, 
as well as by the patients’ demographic and psychological factors, and previous pain experiences; and (3) some 
pain scales are complex and involve live measurements/calculations, requiring specific training and precluding 
their use in non-clinical settings5. Common facial expressions associated with pain include the combination of 
the following facial movements: facial grimacing, brow furrowing, eye squeezing or closing, cheek raising, open 
mouth or clenched teeth and nasal flaring or wrinkling4,6,7. As a result, there could be significant variability in 
pain assessment by patient observation.

Machine learning and automated facial expression recognition (AFER) have been developed to provide 
objective and cost-effective pain assessment in several healthcare settings where patient-reported pain scores may 
not be feasible4. These modalities rely on facial expressions that signify pain and adopt a framework comprising 
four modules: face detection, alignment, feature extraction, and classification8. For instance, PainChek, an AFER 
system, is used in Australian hospitals to assist with pain assessments in patients with dementia9,10. However, 
PainChek has been validated only in Caucasian patients with dementia, which may limit its applicability to the 
local Asian population and other clinical settings. Due to ethical concerns, the development of AFER systems 
often begins with videotaping cognitively healthy adults experiencing acute pain or other distressing states, 
as this provides a better controlled experimental setting11. Hence, we aimed to develop an automated system 
using machine learning to assess the pain intensity through changes in facial expression in Asian adult patients 
undergoing surgery or interventional pain procedures.

Methods
Study setting
This study was conducted at two healthcare institutions in Singapore: KK Women’s and Children’s Hospital 
(KKH) and Singapore General Hospital (SGH) between May 2022 and December 2023. The study received 
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approval from the SingHealth Centralized Institutional Review Board (Reference Number: 2019/2293) on 26 
Apr 2019 and was registered on Clinicaltrials.gov (NCT04011189) on 8 Jul 2019. Written informed consent 
was obtained from all participants and the study is conducted in accordance with the Declaration of Helsinki. 
This article conforms to the relevant transparent reporting of a multivariable prediction model for individual 
prognosis or diagnosis (TRIPOD) guidelines12.

The study population included adult patients undergoing surgery or interventional pain procedures in 
both inpatient and outpatient clinic settings, with an American Society of Anesthesiologists (ASA) physical 
status I-III, and aged between 21 and 70 years old. Pregnant patients, as well as those with medical conditions, 
including psychiatric disorders (e.g., anxiety, depression), neurological disorders (e.g., cerebrovascular accident, 
Parkinson’s disease) and musculoskeletal resulting in facial abnormalities or restrictions, were excluded from 
the study.

Demographic data was collected upon recruitment (Fig. 1), and the recruited patients were asked to complete 
a questionnaire on general health status (EQ-5D-3L) and to rate their NRS pain score (0 being no pain, 10 being 
worst pain imaginable)13. Their facial expressions and body pose from a frontal view were videotaped by a trained 
study team member using a customized mobile application that utilized a dialog tree to guide the videotaping 
based on five specific actions: sitting, taking a deep breath (holding for three counts before exhaling), sitting-to-
standing, standing, and standing-to-sitting (Fig. 2). All videos were recorded in high definition (2160 × 3840) in 
MPEG-4 format with H.264 coding at 30 frames per second (fps). The video duration depended on the individual 
performing the specific actions. The videotaping session took about 10–20 min, including pain-related questions 
where patients were asked to rate their pain score after performing the specific actions.

Patients underwent surgery or procedures performed as per routine clinical practice. After surgery, they were 
reviewed at post-operative day -1 and/or -2 before discharge, and asked to rate their pain scores and have their 
facial expressions and body pose videotaped from a frontal view. Similarly, those who underwent interventional 
pain procedures received routine clinical care and were asked to rate their pain scores and undergo videotaping 
either after the procedure or during their next consultation visit.

Data processing
The collected videos were trimmed into multiple 1-s clips and categorized based on observer pain ratings, 
with the criteria modified from critical-care pain observation tool (CPOT) to focus on the changes in facial 
expression14,15. Three levels of pain were defined as follows: i) no pain if the patient was in a relaxed, natural 
manner with no muscle tension observed in the facial features; ii) mild pain if the patient was tensed, with facial 
features such as levator contraction, frowning, orbit tightening etc.; and iii) significant pain if the patient was 
grimacing and exhibited all the features in ii), along with tightly closed eyelids. This definition is considered 
clinically relevant as these levels typically correspond to NRS 0 (no pain), 1–3 (mild pain), and 4–10 (significant 
pain). Patients who score 4 and above would typically require additional intervention to relieve pain as per 
clinical practice including the study sites16.

We further processed the videos by extracting the facial key points from each frame to maintain patient 
confidentiality, ensuring no identifiable parameters were linked during the analysis. A total of 468 facial key 

Fig. 1.  Study workflow. STA-LSTM, spatial temporal attention long short-term memory.
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points were extracted from each frame using MediaPipe, covering critical facial regions such as eyebrows, eyes, 
nose, lips, and jawline. Hence, a 1-s video with a frame rate of 30 fps would contain 14,040 key points. In 
addition, the patients’ videos were taken at different location, angle, and scale, which may affect the quality of the 
extracted facial key points. Therefore, we implemented a 3D normalization algorithm to account for variations 
in video recordings caused by differences in camera setups, distances, head dimension and positioning. This 
algorithm ensured consistency in the positioning, scaling, orientation of 468 facial landmarks, and the isolation 
of facial expression movements for analysis17,18. The process began with similarity transformations comprising 
rotation, translation, and scaling using facial landmarks that are more stable and resistant to deformation: left 
lateral canthus (point 226), right lateral canthus (point 446), and subnasale (point 2), all of which were mapped 
to fixed target points to ensure uniform scale and a front-facing orientation19. The similarity transformation was 
then determined by aligning the source and target points around their centroids, computing a scaling factor 
based on the average distances between corresponding points, and applying this factor to the source data. Next, 
a covariance matrix was generated from the centered points, with Singular Value Decomposition (SVD) utilized 
to extract the rotation matrix while accounting for possible reflections20. The final translation vector was derived 
using the computed rotation, scaling factor, and centroid positions. Once these transformation parameters were 
established, they were applied uniformly to all 468 facial landmarks in each frame. The final normalized X and Y 
coordinates of the keypoints across frames attributed to a 1-D array, the input features for the subsequent model. 
Further data cleaning also involved removing any video clips that were not exactly 1 s, as the supervised artificial 
intelligence (AI) model would require input data with a fixed format (size) of 28,080 × 1, which included the x 
and y coordinates of the 14,040 key points.

Spatial-temporal-attention long-short-term-memory (STA-LSTM) model training and 
validation
We designed and trained a customized spatial temporal attention long short-term memory (STA-LSTM) deep 
learning network to detect pain levels through analyzing the dynamic facial expressions in both spatial and 
temporal domains (Fig. 1)21. Long short-term memory (LSTM) is a type of recurrent neural network (RNN) 
architecture designed to capture and remember information over long sequences, which is crucial in pain 
detection involving time-series analysis22. In addition to LSTM, a spatial temporal attention (STA) mechanism 
was incorporated, allowing the model to focus on specific regions of interest (e.g., eye, mouth, brow) within 
each frame while considering the temporal evolution of these regions across multiple frames. This can enhance 
the model’s ability to recognize facial expressions of pain that unfold over time. The input to the STA-LSTM 
model consisted solely of the x, y coordinates of 468 facial keypoints extracted from video data. Importantly, no 
predefined or handcrafted facial features (e.g., specific action units or geometric features) were used as inputs.

Fig. 2.  User interface of customized mobile application for videotaping, and the keypoints extracted from the 
video.
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The model was trained on a desktop workstation running a 64-bit Windows operating system (Windows 10) 
with an Intel Xeon Silver 4208 processor (8 cores, 3.2 GHz), 64 GB of random-access memory (RAM), and two 
Nvidia RTX 2080 Ti graphics processing units (GPUs). The training and validation processes were conducted 
using Python 3.6, PyTorch, Mediapipe, and OpenCV. Among the 10,274 1 s clips, videos from 160 patients (7599 
clips) were used for STA-LSTM training, while the remaining 40 patients’ videos (2675 clips) were set aside for 
validation. A personalized training mechanism was also employed to further improve the accuracy of the model. 
The following hyperparameters were used after fine-tuning: 64 LSTM hidden layers, a learning rate of 0.025, 
weight decay set of 0.000001, and a batch size of 1000.

Statistical analysis
In our previous pilot study, 26 patients were recruited with 119 videos (~ 1:5) collected that showed a pain 
score > 0 on the NRS23. We tested the proposed model using the existing University of Northern British 
Columbia (UNBC)-McMaster Shoulder Pain Expression Archive Database, which contains a larger dataset 
(> 1,000) and has an accuracy rate of > 95%24. By collecting videos from 200 patients in the current study, we 
retrieved at least 5 videos per patient with a pain score > 0, indicating that at least 1,000 videos could be used for 
training and validation. Patient demographics and pain outcomes were summarized using number (proportion), 
mean (standard deviation (SD)), or median (interquartile range (IQR)), as appropriate. Model performance was 
assessed using accuracy, sensitivity, recall, and F1-score (Table 1)25. All analyses were performed using SAS® 
version 9.4.

Results
A total of 200 participants were recruited for the study. The demographic and clinical characteristics are 
reported in Table 2. Of note, female adult patients comprised the majority of the recruited cohort (70%) from 
KKH Women’s services. The patients recruited from KKH (n = 100) underwent gynecological surgery, with 
the majority undergoing hysterectomy (n = 43), myomectomy (n = 32), and cystectomy (n = 17). At the SGH 
site, almost half of the patients were recruited during their pain clinic consultation (91 or 45.5%), while the 
remaining patients underwent steroid injection and/or radiofrequency ablation interventional pain procedures 
during their visit. Existing pain prior to surgery or interventional pain procedures was reported by 89 patients, 
with a median (IQR) score of 3 (2–6) in this group of patients with pain. Pain scores were similar after surgery 
or interventional pain procedures, with 92 patients reporting pain with a median (IQR) score of 3 (2–4). Post-
operative analgesia was provided to KKH patients, with the majority being prescribed on paracetamol (n = 91), 
morphine (n = 50), etoricoxib (n = 41), mefenamic acid (n = 20), and parecoxib (n = 10).

We collected 2,008 videos (of varying duration) for the categorization of pain levels, of which 90.4% (in terms 
of duration) were labelled as no pain, and only 3.4 and 6.3% were labelled as significant pain and mild pain, 
respectively (Table 3). If such an imbalanced dataset was directly used for training the deep learning network, 
it could lead to a model that is biased toward the majority class (no pain), resulting in poor performance on the 
minority classes (mild pain and significant pain). Therefore, we adopted a balancing approach to the dataset 
prior to the model training. This was achieved using an adaptive stride resampling technique, where the dataset 
was balanced as follows: for the class of no pain, a larger stride was used to select the frames less frequently and 
reduce redundant data from this dominant class; while for the class of significant pain, a smaller stride (closer 
frame interval) was used to extract more feature vectors from the available data26. After balancing, the number 
of instances in each class became approximately equivalent, as shown in (Table 3).

By differentiating the polychromous levels of pain (no pain versus mild pain versus significant pain requiring 
clinical intervention), we reported optimal performance of STA-LSTM model, with the accuracy, sensitivity, 
recall, and F1-score all at 0.8660 (Table 4). The performance of the dichotomous levels of pain (no pain versus 
significant pain) was higher than for the polychromous categorization, with accuracy, sensitivity, recall, and 
F1-score at 0.9384, 0.9952, 0.7836, and 0.8778, respectively. Similarly, dichotomous categorization of no pain 
and mild pain versus significant pain yielded higher performance than polychromous categorization, having 
0.9087, 0.9917, 0.8210, and 0.8983 in the accuracy, sensitivity, recall, and F1-score respectively. The area under 
the receiver-operating curve (ROC) for each comparison is shown in (Fig. 3). The developed STA-LSTM model 
was also integrated as personal computer (PC) software where patients could have their pain levels detected in 

Performance metrics Description

True positive (TP) The instance of correct prediction(s) as a positive class

True negative (TN) The instance of correct prediction(s) as a negative class

False positive (FP) The instance of incorrect prediction(s) as a positive class, with the actual class being negative

False negative (FN) The instance of incorrect prediction(s) as a negative class, with the actual class being positive

Accuracy The proportion of correctly predicted instance(s) (TP + TN) out of all instances (TP + TN + FP + FN)

Precision The proportion of the instance(s) of correct prediction(s) as a positive class (TP) out of all predicted positive instances 
(TP + FP)

Recall The proportion of the instance(s) of correct prediction(s) as a positive class (TP) out of all actual positive instances (TP + FN)

F1 A harmonic mean of precision and recall, and is calculated as 2 × precision x recall/(precision + recall). An F1 score of 1 
indicates its best in quality classification whereas 0 refers to the worst

Table 1.  The performance metrics and their descriptions25.
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No pain vs mild pain vs significant pain No pain vs significant pain No pain and mild pain vs significant pain

True positive – 413 1078

True negative – 1353 1353

False positive – 114 235

False negative – 2 9

Accuracy 0.8660 0.9384 0.9087

Precision 0.8660 0.9952 0.9917

Recall 0.8660 0.7836 0.8210

F1 0.8660 0.8778 0.8983

Table 4.  The categorization of pain level, with no pain as the reference in different comparisons.

 

Before balancing After balancing

No. of clips Duration of videos (HH:MM:SS) Duration of videos (%) No. of 1 s clips Duration of videos (HH:MM:SS) Duration of videos (%)

Significant pain 111 0:17:28 3.4 3562 0:59:22 34.6

Mild pain 180 0:32:37 6.3 3640 1:00:40 35.4

No pain 1,717 7:50:13 90.4 3072 0:51:12 29.9

Table 3.  Distribution of the pain videos. HH:MM:SS refers to hours:minutes:seconds.

 

Parameter Training cohort n = 160 Validation cohort n = 40 Overall n = 200

Age, y 47.4 (11.8) 45.1 (12.8) 46.9 (12.0)

Gender

 Female 108 (67.5%) 32 (80.0%) 140 (70.0%)

 Male 52 (32.5%) 8 (20.0%) 60 (30.0%)

Race

 Chinese 96 (60.0%) 26 (65.0%) 122 (61.0%)

 Malay 28 (17.5%) 6 (15.0%) 34 (17.0%)

 Indian 20 (12.5%) 3 (7.5%) 23 (11.5%)

 Others 16 (10.0%)a 5 (12.5%)b 21 (10.5%)

 Weight, kg 68.9 (17.0) 70.8 (15.6) 69.3 (16.7)

 BMI, kg.m−2 26.1 (5.4) 27.0 (5.1) 26.3 (5.3)

ASA status

 I 42 (26.3%) 11 (27.5%) 53 (26.5%)

 II 106 (66.3%) 26 (65.0%) 132 (66.0%)

 III 12 (7.4%) 3 (7.5%) 15 (7.5%)

Purpose of visit

 Pain consultation 72 (45.0%) 19 (47.5%) 91 (45.5%)

 Gynecological surgery 80 20 (50.0%) 20 (50.0%) 100 (50.0%)

 Procedure 7 (4.4%) 1 (2.5%) 8 (4.0%)

 Pre-procedure 1 (0.6%) 0 1 (0.5%)

Pre-surgical/procedural pain score (at rest) 0 (3 [0–9]) 0 (3 [0–7.5]) 0 (3 [0–9])

Pre-surgical/procedural EQ-5D-3L health VAS score 72.9 (16.8) 73.0 (18.5) 72.9 (17.1)

Post-surgical/procedural pain score (at rest) 2 (3 [0–10]) 2 (3 [0–7]) 2 (3 [0–10])

Table 2.  Demographic and clinical characteristics. Values are mean (SD), median (IQR [range]) or number 
(proportion). ASA American society of anesthesiologists, BMI body mass index, VAS visual analog scale. 
aOthers included Filipino (n = 8), Indonesian (n = 4), Burmese (n = 1), Bangladeshi (n = 1), and Myanmese 
(n = 1). bOthers included Filipino (n = 2), Burmese (n = 1), Eurasian (n = 1), and Pakistani (n = 1).

 

Scientific Reports |        2025 15:13429 6| https://doi.org/10.1038/s41598-025-97885-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 3.  The area under the receiver-operating curve (ROC) for (A) no pain versus mild pain and significant 
pain; (B) mild pain versus no pain and significant pain; and (C) significant pain versus no pain and mild pain.
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various front-facing postures (sitting, standing, and movement) in real-time manner, with pain level distribution 
and time graphs displayed on the same PC user interface (Fig. 4).

Discussion
We developed a pain recognition model using a dataset from patients undergoing surgery or interventional pain 
procedures collected from two hospitals in Singapore. By differentiating the polychromous levels of pain (no 
pain, mild pain, significant pain) and training a customized STA-LSTM deep learning network with a balanced 
dataset, we achieved high accuracy (> 85%) in the model validation.

During the data collection and analysis, several study approaches were considered. As compared with the 
conventional pain scoring systems such as the 0 to 10 NRS or VAS, we utilized a three-level pain categorization and 
defined a NRS cut-off of 4 as significant pain. We successfully addressed the uneven distribution of pain severity 
across the dataset; however, we did not explore the gender differences in the cohort due to the imbalanced sample 
size between male and female patients. Additionally, we acknowledge that pain self-reporting is considered the 
gold standard in clinical pain assessment due to the subjective nature of pain. However, we employed an observer 
rating scale to annotate the 1-s clips to mimic observer based visual assessment, which is in contrast to the 
conventional self-reported pain assessments in other studies27,28. Given that our developed model replicates the 
observer training process by assessing pain solely through facial expressions, it inherently aligns with observer 
ratings rather than subjective patient reporting, while at the same time avoids misinterpretations that could 
arise from labeling the entire videos based solely on patient single pain reporting. Previous report showed that 
the training model on assessing pain intensity based on facial expression performs better than those based on 
self-reporting pain29. This difference may be attributed to varying facial expressions and social motives (e.g., 
seeking social support, confronting social threat) during pain stimuli, which can lead to significant variations 
even across a small sample size30,31. Further work should address the subjective nature of pain experience by 
validating the model against the conventional pain scoring systems to assess its ability to discriminate between 
different pain levels. During the model development, we also employed an adaptive stride sampling approach 
to increase the number of training instances for these pain categories without artificially generating data26. 
Unlike synthetic oversampling techniques (e.g., synthetic minority over-sampling technique (SMOTE)), our 
method preserved natural variations in facial expressions and maintained time-series consistency by avoiding 
random frame shuffling and ensuring that temporal dependencies within each 1-s clip remained intact31,32. 
Most importantly, this approach reduced bias toward the majority class, enabling the model to equally prioritize 
different pain levels and improve accuracy in detecting mild and severe pain cases. Nevertheless, this method 
may also introduce over-detection of pain and increase the risk of false positives and unnecessary interventions, 
hence a closer monitoring is warranted during clinical applications.

To the best of our knowledge, this is the first study that utilizes STA-LSTM model in facial pain recognition. 
We tested several deep learning (DL) models for training, including STA-LSTM, LSTM, Convolution-Neural-
Network (CNN)-LSTM and 3D CNN; and STA-LSTM exhibited the best performance among all. It has been 
previously reported that facial recognition is more reliable when analyzing a sequence of video frames rather than 

Fig. 4.  The developed STA-LSTM model integrated into a PC software with real-time pain level distribution 
and time graph.
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a single frame33. In our study, the input to our AI model consists solely of facial keypoint coordinates rather than 
raw video or image data due to confidentiality constraints. CNNs are primarily designed for image analysis and 
hence we selected LSTM instead given the time-series nature of our data. Besides, LSTM incorporates feedback 
connections that can process not only single frames but also an entire video, which is ideal for learning the 
order dependence in sequence prediction problems34. We also incorporated a spatial temporal attention module 
into the LSTM model, as not all 468 facial keypoints are equally important for pain detection. The addition of 
spatial attention module allows the network to focus on pain-related keypoints (i.e., facial features that are most 
relevant to pain), while the temporal attention module helps the network to prioritize the most pertinent frames 
within the video. These enhancements improve the model’s ability to capture subtle pain-related expressions 
more effectively compared to a basic LSTM.

Various state-of-the-art deep learning models, such as CNN and CNN-RNN architectures, have been 
employed in the field of pain detection. The STA-LSTM model stands out by integrating spatial and temporal 
attention mechanisms, allowing it to focus on the most informative features over time35. This approach is 
particularly beneficial for analyzing complex, time-dependent data, such as facial expressions associated with 
pain36. CNNs excel at extracting spatial features from static images and are commonly used to analyze individual 
frames for facial expressions indicative of pain. Since CNNs process each frame independently, they lack the 
ability to capture the temporal dynamics inherent in pain expressions and hence crucial contextual information 
may be missed for accurate pain assessment37. In view of the temporal shortcomings of standalone CNNs, hybrid 
models combining CNNs with RNN such as LSTM networks have been developed by extracting spatial features 
from each frame, followed by feeding into LSTMs to model temporal dependencies. CNN-LSTM models could 
outperform standalone CNNs in pain detection, reaching an accuracy of 91.2% in classifying pain types38. The 
STA-LSTM model further enhances the hybrid CNN-RNN approach by incorporating attention mechanisms 
that assign varying importance to different spatial features and time steps. This enables the model to focus on 
critical facial regions and key moments that are most indicative of pain, thereby improving detection accuracy. 
By dynamically adjusting its focus, STA-LSTM effectively captures subtle and transient pain expressions that 
other models might overlook35,36. Overall, the STA-LSTM model enhances the hybrid CNN-RNN approach 
by incorporating attention mechanisms that weigh the importance of different spatial features and time steps. 
This allows the model to focus on critical facial regions and specific instances that are most indicative of pain 
to improve detection accuracy. By dynamically adjusting its focus, STA-LSTM can effectively handle subtle 
and transient pain expressions that other models might overlook. Despite its strengths, STA-LSTM has certain 
limitations. Its complexity can lead to increased computational requirements, making real-time applications 
challenging without adequate resources. Additionally, while attention mechanisms enhance focus on relevant 
features, they can also introduce biases if not properly calibrated, potentially affecting the model’s generalizability 
across diverse populations35,36.

Previous studies have highlighted the use of computer vision and machine learning methods for automatic 
pain detection via facial expressions. However, there are recent research advances on employing DL models to 
recognize facial pain expressions. Rodriguez et al. introduced the combination of CNN and LSTM networks to 
analyze the video-level temporal dynamics in the facial features from both the UNBC-McMaster shoulder pain 
expression archive and cohn Kanade + facial expression databases, with the area under the curve (AUC) scores 
ranging from 89.6 to 93.339. Similarly, Bargshady et al. developed an ensemble deep learning framework (EDLM) 
model that integrates three independent CNN-RNN for pain detection via facial expressions, and evaluated using 
UNBC-McMaster shoulder pain expression archive and multimodal intensity pain (MIntPAIN) databases40. 
Their results were promising, with an AUC of 93.7 compared to single hybrid DL models. Nevertheless, most 
of these studies were used existing databases from either healthy volunteers or subjects with minimal pain or 
evoked pain; and rarely explore the model’s application beyond controlled settings, which may not be applicable 
in the real-life clinical scenarios. Our developed STA-LSTM model demonstrated competitive performance with 
an AUC of > 96.0. In this context, it is noteworthy that a high AUC does not guarantee clinical relevance nor 
the optimal threshold during decision making41. Hence, we also looked at other performance metrics including 
accuracy and recall that further showed that our model indeed outperformed other models from previous 
studies to achieve the start-of-the-art results in clinical settings25. Nevertheless, other metrics such as the clinical 
utility index, risk-benefit analysis, and model calibration, should be considered in future prospective validation 
to better address the clinical impact of the model in pain assessment42. In addition, we also acknowledge the 
concern regarding the potential overfitting due to the increased number of frames from the same individuals in 
the mild and significant pain groups. To mitigate such risk, we utilized a balanced sampling approach to ensure 
that the frames were not consecutively selected but were rather extracted at different time points to reduce the 
likelihood of overfitting to specific facial patterns from particular individuals43. Apart from applying dropout 
layers and weight regularization, we also ensured no overlapping patients between the training and validation 
cohorts44,45. Lastly, we also considered the temporal variations of facial expressions with each frame representing 
a unique variation of pain expression. This ensures that the model learns from diverse facial movements rather 
than memorizing specific identities46.

To date, automated pain score reporting and visualization are not present in existing clinical practices. A 
survey of anesthetists and nursing staff found that more than 80% of the respondents indicated they would 
be likely or willing to use an automated pain recognition platform, and this application could benefit patients 
with limited communicative abilities by preventing analgesic overdose or underdose47. Reliability and usability 
were also identified as the most important factors for successful implementation47. The use of an automated 
pain assessment platform would potentially offer a more accurate, robust, and timely pain assessment and 
improve reporting, compliance, and monitoring of pain management in various clinical settings, particularly 
for non-communicative populations. For instance, this platform could enable the caregivers of elderly or non-
communicative patients (stroke, cognitive deficit, dementia etc.) to facilitate pain assessment in outpatient 
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settings. Similarly, future telehealth applications could utilize facial recognition to diagnose pain-related 
conditions, including immobility or dysfunction which may not be evident during a telehealth consultation. This 
may in turn improve the pain management and care, including but not limited to better prognosis for recovery, 
accurate titration of pain medication, reduced overall opioid analgesics consumption and opioid-associated 
adverse effects. Subsequently, these will translate to improved pain experience following discharge from hospital, 
and subsequently reduce psychological and social sequelae of both patients and caregivers. Notably, this AI-
based technology may also raise challenges regarding accountability in cases of pain misclassification that lead 
to under- or overtreatment. Currently, AI-driven software is categorized as software as a medical device (SaMD) 
under the international medical device regulators forum (IMDRF) and the U.S. Food and Drug Administration 
(FDA); and must comply with regulations such as the EU medical device regulation (MDR) 2017/74548,49. Subject 
to different liabilities under malpractice, product liability, and negligence theories, multiple stakeholders—
including developers, healthcare institutions, and attending clinicians—should collaborate to identify systemic 
flaws and validate outputs through clinical judgment and training before implementation50. Nonetheless, it 
is important to note that such AI-based technology should complement clinical decision-making rather than 
replace human judgment. It should provide explainable reasoning for the generated pain scores, with the final 
decision-making authority retained by clinicians, including overriding AI recommendations when necessary51.

At this stage, we have successfully integrated the developed STA-LSTM model as a PC software, with real-
time pain level distribution displayed in the user interface (Fig. 4). However, we acknowledge that the model was 
developed based on the data from individuals who would not the typical primary candidates of the proposed 
model as they were able to self-report pain. Conversely, the model should be further validated in non-verbal 
patients especially those with neurological conditions that may affect the facial expression and the subsequent 
idiosyncratic pain expressions that may affect the pain predictions. Future work will continue to prospectively 
validate the model in diverse clinical and community settings especially in the non-verbal populations, such 
as Parkinson’s disease, cerebral palsy, and dementia52. We are also liaising with the relevant parties on the local 
and international regulatory and cybersecurity guidelines, risk management and mitigation before driving the 
development for integration into existing clinical workflows. This includes corporate electronic medical record 
(EMR) applications to convey the pain results intuitively to clinicians alongside other clinical data, and evaluate 
its impact upon clinical decision making and patient care. We note that many official EMR systems impose 
security and operational protocols that do not allow feature integration from third-party developer systems53. 
Hence, we are also exploring ways to integrate the model into our customized mobile application either as a 
commercial product or medical device that complies with international standards (e.g., European Committee for 
Standardization (CEN)-International organization for standardization (ISO)/technical specification (TS) 82304-
2), which could serve as a community-based healthcare platform to enhance accessibility and convenience for 
patients in outpatient settings54. Lastly, we are also aware of the sensitivity and privacy issues brought by the 
patient facial features, and the possible patient discomfort and distrust on the automated pain assessment. 
The keypoint extraction will continue to be implemented as real-time encryption and anonymization for data 
protection, with patient consent and education process further refined to allow opting in/out options and non-
intrusiveness during recording.

We acknowledge several limitations in this study. Our study utilized dataset from a predominantly multi-
ethnic Asian population residing in Singapore, consisting of individuals with either chronic pain issues, 
or undergoing surgical procedures. It was previously reported that Asians had a lower pain threshold and 
perceptions as compared to other ethnicities, thus the generalizability of the findings should be cautiously 
considered55. Notably, almost half of our study cohort were attended for issues relating to chronic pain, which 
may significantly alter pain perception and result in differences in facial pain expression and reporting56. A more 
diverse population representing different sociocultural settings (e.g., age, gender, ethnicities, clinical profile) 
could help enhance the generalizability of the findings. AI model development often involves large datasets, 
however the dataset collected in this study is limited by the small sample size and number of videos representing 
significant and mild pain, which may potentially reduce the sensitivity of these groups of pain. This limitation 
is attributed to the ethical study design, where patients could decline to perform an action (and associated pain 
rating) at their discretion, which resulted in the loss of video(s) and a reduced number of clips for training. 
Expanding similar studies in patients undergoing surgeries that yield more intense nociception (e.g., thoracic, 
major abdominal surgeries), with different pain conditions, or including post-operative assessment through 
actions that may invoke more pain (e.g., incentive spirometry, cough), may help improve the dataset for significant 
pain. We also discussed the use of observer rating in this study, which could introduce potential limitation on the 
model training based on observers’ interpretations rather than the patients’ actual pain experiences.

Additionally, we were unable to perform subgroup analyses based on gender, surgical type, and chronic 
pain status due to the limited sample size. Among the validation set, there were 116 videos (4.3%) having pain 
mismatches, i.e., pain levels not at the adjacent level (e.g., significant versus no pain, or vice versa). Nevertheless, 
we did not trace the raw videos to investigate the cause due to the nature of facial keypoint extraction, nor 
perform any statistical inference testing between the subsamples as the individual-level identifiers were not 
retained during the processing of anonymized data. We employed such random selection process to ensure an 
even distribution of the pain levels and clinical conditions, but tagging would be necessary in the future to regain 
such traceability for further inference testing. Additional analysis on the breakdown of facial characteristics that 
correspond to the pain levels, as well as other data (e.g., body pose, substance and analgesia used, psychological 
measures, pain perception and thresholds) could improve the performance of the model. Further data collection 
on these factors will be useful to refine the model complexity for future applications, such as physiotherapy and 
telehealth settings. AI-generated models are commonly known to struggle with generalization, as the developed 
model may inherit biases from the training data, leading to unfair or inequitable outcomes57. Besides, the data 
distribution during training may differ from that of other demographic groups or contexts, which can result in a 
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drop in performance. Thus, approaches such as fairness-aware training and domain adaptation may be required 
to improve our model and mitigate such issues58.

Conclusions
We developed a model that could serve as an automated pain assessment platform with high accuracy in patients 
undergoing surgery or interventional pain procedures. Further validation and refinement are warranted to 
extend the application of this model in both inpatient and outpatient healthcare settings, enabling healthcare 
professionals and caregivers to perform pain assessments effectively.

Data availability
The datasets generated and/or analyzed during this study are not publicly available due to institutional policy on 
data confidentiality but are available from the corresponding author on reasonable request.
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