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The cathode channel of air-cooled open-cathode proton exchange membrane fuel cell (AO-PEMFC) is 
both a reactant supply channel and a cooling and heat dissipation channel, and its structural design is 
a key factor affecting its output performance. Firstly, the numerical study of AO-PEMFC with different 
cathode channel bending angles was carried out, and the results showed that the output performance 
of a single cell with a cathode bending angle of 2.5° was improved by 3.88% compared with that of a 
single cell with a cathode straight channel at rated point-density electricity, and the cathode voltage 
drop increased by only 1.5%. In addition, in order to further improve the power density of the fuel 
cell, two agent models, support vector regression and Gaussian process regression, are constructed 
and trained, and a genetic algorithm is used to find the parameter optimization for the bending 
angle, width and height of the cathode channel. Finally, the proposed ranges of width, height and 
bending angle of the optimal flow channel are obtained, which are w = 1.1–1.2 mm, d = 1.3–1.5 mm and 
θ = 2.23°–2.99°, respectively, and the output power density of a single cell within this range will be no 
less than 0.489 W/cm2.

Keywords  Air-cooled open-cathode proton exchange membrane fuel cell, Structure optimization, Genetic 
algorithm, Power density

Fuel cell is the core direction of efficient utilization of hydrogen energy, and AO-PEMFC is even more compact, 
lightweight, environmentally friendly, efficient, low operating temperature, etc., which has a broad application 
prospect in various scenarios such as power supply for unmanned aerial vehicles and mobile power generation 
equipment1–4. However, it still faces many problems in its commercialization phase. For example, it is important 
to quickly predict the response of cell output performance after changes in cell boundaries (meaning operating 
conditions, membrane electrode physical property parameters, polar plate structure parameters, etc.). With the 
continuous development of the machine learning field in recent years, it has become a new research hotspot 
to take a data-driven approach to the parameter optimization study of fuel cells5–8. Therefore, the prediction 
and optimization of target parameters such as cell power density under different boundary conditions through 
numerical simulation combined with artificial intelligence methods can save a large number of experiments 
and give the suggested values of cell parameters for obtaining optimal output performance faster without loss 
of accuracy9–11.

There have been many studies on the optimization of proton exchange membrane fuel cell parameters. 
Mohamed et al.12 optimized the number of single cells and surface area of the stack based on Genetic Algorithm 
(GA) and thus obtained the maximum power density of the stack under working load. Peng et al.13 applied 
support vector machines to the optimization of battery parameters. They proposed a GA for model structure 
identification, and the resulting model can be successfully generalized to different fuel cells and different 
operating conditions. Li et al.14 combined GA and CFD to optimize the structural parameters of PEMFC 
with lumped flow channels, and considered the effects of output power and pressure drop. Hao et al.15 used 
an artificial neural network approach combined with response surface analysis and NSGA-II algorithm to 
obtain the optimal configuration of a double inverted trapezoidal tapered channel structure and its associated 
dimensional parameters. In the research of proton exchange membrane fuel cells, data-driven machine learning 
methods play a crucial role in optimizing cell performance. Among them, support vector regression (SVR) and 
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Gaussian process regression (GPR) stand out, yet their performances vary depending on different conditions. 
When compared with commonly used regression models, linear regression struggles to handle the complex 
nonlinear relationships within fuel cells; polynomial regression can deal with certain nonlinearity, but it is prone 
to overfitting due to high-degree terms; neural network-based regression models are highly flexible but require a 
large amount of data and computing resources and lack interpretability. In contrast, SVR, based on the principle 
of structural risk minimization, has advantages when dealing with data following a normal distribution and 
in small sample sizes, and can maintain a certain level of interpretability. GPR, based on Bayesian theory, has 
excellent adaptability to various data distributions and can quantify uncertainties. Considering the complex 
nonlinearities, limited data availability, and the requirement for model interpretability in fuel cell research, SVR 
and GPR are reasonable choices for optimizing the cathode flow channel structure in this study due to their own 
advantages and complementary nature.

Recent research on air-cooled open cathode proton exchange membrane fuel cells (AO-PEMFC) has made 
breakthroughs in key areas. In terms of structural design, the annular flow channel and cathode channel bending 
design (e.g., optimized to a bending angle of 2.5°–5°) significantly improve the mass transfer efficiency and 
thermal management capability, and the annular structure improves the temperature uniformity by 3 times and 
increases the power by 15% while reducing the volume and weight. In the optimization of flow field topology, 
3D wave channel, bionic flow field and vertical flow design promote the power density to increase by 8.5% by 
strengthening oxygen transfer and water discharge, but the high manufacturing complexity needs to be solved. 
In the process parameter study, the optimization of bolt preload, the synergistic application of “dual-stack 
configuration” and fan suction mode enhance the current density (1.12 V at 0.6 A/cm2), while the fine tuning of 
anode channel depth and width further balances the gas pressure and humidity risk. At the level of environmental 
adaptability, research on high-temperature dehydration (95% power degradation at humidity < 10%), low-
temperature freezing, and air pollutants provides a direction for improvement in extreme scenarios. Future 
trends focus on three major directions: intelligent algorithm-driven multi-objective optimization, durability 
breakthroughs in extreme conditions, and low-cost mass production processes for complex flow channels. 
In addition, such high-efficiency lightweight technology is particularly suitable for long endurance power for 
UAVs, high-efficiency integration of portable power supplies and reliable energy supply scenarios for automotive 
auxiliary systems, and shows a broad engineering prospect16–22.

On the other hand, during the operation of AO-PEMFC, the cathode flow channel of the cell is the supply 
channel for the reactants and the discharge channel for the reaction-generated water and the reaction-
generated heat, so its structure has a greater impact on the heat and mass transfer, hydrothermal management, 
the uniformity of the gas and current distributions and the electrochemical reactions inside the cell. A larger 
bending angle can disrupt the smooth flow of reactant gases, leading to local turbulence. This turbulence affects 
the gas distribution within the cell, increasing the mass transfer resistance in some regions. As a result, the 
availability of reactants for electrochemical reactions becomes uneven, reducing the overall electrochemical 
reaction rate. A wider channel allows for a greater flow cross-section, which can enhance the gas flow rate and 
improve the supply of reactants. However, if the width is too large, it may cause a decrease in the gas velocity in 
some areas, resulting in poor mixing of reactants and a negative impact on the uniformity of gas distribution. 
This, in turn, affects the heat and mass transfer processes and the efficiency of electrochemical reactions. An 
appropriate height can ensure a proper balance between gas flow and heat dissipation. A taller channel may 
increase the residence time of gases, which is beneficial for full-fledged electrochemical reactions. But an overly 
high channel may also lead to excessive heat accumulation due to slower heat dissipation, affecting the stability 
of the membrane-electrode assembly and ultimately reducing the cell performance. Zhao et al.23 investigated 
the optimal channel size by adjusting the structural parameters of the cathode side channel, and experimentally 
investigated the effects of different cathode widths and channel angles on the battery performance, and found 
that different structural parameters of the cathode channel directly affect the contact resistance, cathode oxygen 
transport partial pressure, and ultimately have a significant impact on the output performance of the stack. 
Jang et al.24 investigated the effect of cathode side channel openings on performance. The experimental results 
showed that single cells with larger openings of cathode side channels and slit-type open cathode channels have 
higher cell output performance. Thomas et al.25 compared the air mass transfer synergies of different cathode-
side channel widths, depths, and grooves, and found that the addition of grooves inside the channels directly 
affects the gas transport and temperature distribution, which ultimately affects the performance of the battery. 
Although these studies can find the optimal cathode channel structure parameters within the design range, they 
often fall into the local error range, and there are problems such as long cycle time and low efficiency.

In summary, the cathode channel structure of AO-PEMFC has a typical nonlinear, multiparameter, and 
strongly coupled relationship with the complex physical problems inside the cell. Performance prediction and 
optimization of cathode channel parameters based on experimental and numerical simulations have been widely 
used in scientific research and engineering practice of AO-PEMFC. On the other hand, data-driven machine 
learning methods tend to converge to a local optimum by gradient descent, which has obvious advantages in the 
study of optimization of channel structure parameters. The Kernel Based Extreme Learning Machine (KELM) 
has rarely been applied in the optimization modeling of cathode channel structure in AO-PEMFC. Therefore, 
this study will focus on the key scientific problem of simulation analysis and multi-objective optimization of 
AO-PEMFC channel modeling containing different cathode flow structures, so as to give the optimal parameters 
of cathode flow channels of fuel cells more efficiently and accurately. A three-dimensional, non-isothermal 
PEMFC simulation model was firstly developed by Computational Fluid Dynamics (CFD) method and the 
model accuracy was verified. The 360 sets of data obtained from the CFD simulations were then used as a dataset 
to input and train two agent models, Support Vector Regression (SVR) and Gaussian Process Regression (GPR). 
Finally, the agent models are optimized using GA to obtain the respective maximum power densities of the 
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models as well as the corresponding optimal channel parameters, which are further analyzed to give a range of 
engineering recommendations for the width, height, and bending angle of the channels.

Physical models and numerical methods
The physical model of the AO-PEMFC is shown in Fig. 1. It consists of identical serpentine anode channels 
(Fig.  1a), and cathode channels with different bending angles (Fig.  1b) Set the angle between the tangent 
direction of the bend avoidance at the entrance of the cathode channel and the horizontal direction as the bend 
angle, as shown in Fig. 1b. Between the cathode and anode flow channels is a Microelectrode Array (MEA), 
which specifically contains a gas diffusion layer (GDL), a catalytic layer (CL) and a PEM. The cathode and anode 
reactants enter the cathode and anode flow channel, and then uniformly diffuse through the GDL to the reaction 
surface of the CL to participate in the electrochemical reaction under the effect of pressure and concentration 
gradient. The water generated by the reaction is also discharged into the cathode channel and carried away by 
air under the effect of cathode and anode osmotic pressure. The cathode flow channel with different bending 
angles can further increase the velocity component perpendicular to the MEA, enhance the vertical diffusion 
of reactants, and improve the reaction efficiency. However, the bending angle varies along the direction of the 
channel, which may lead to uneven gas distribution in the channel and reduce the output performance. At the 
same time, the gas flow in the bent cathode channel also leads to certain turbulent kinetic energy and friction 
losses due to localized turns, which is not conducive to the reduction of parasitic loads. Therefore, there must 
exist a suitable range of cathode flow channel bending angles for AO-PEMFC to make the fuel cell output 
performance optimal. In this numerical study, the physical model of the fuel cell at four bending angles of 0°, 
2.5°, 5° and 10° is established, and the parameters of other components in the model are consistent.

Optimization methods
There exists an intrinsic correlation between the different structural parameters of the bipolar plate, so the 
model optimized by the single-variable method adopted may not necessarily be the optimal model. Therefore, 
the multi-objective optimization algorithm is introduced into the development of fuel cell system performance 
model. In this study, the AO-PEMFC cathode channel structure was optimized, including the six-channel 

Fig. 1.  (a) Anode plate design for experimental. (b) Different configurations of experimental cathode plate 
design. (c) Simulated configurations of AO-PEMFC for different cathode channel18.
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bending angle, single channel width and height. The optimization objective was higher output current density. 
Subsequently, multiple scale-free optimization of specific structural parameters was performed to obtain the best 
output performance.

Objective optimization methods and processes
In this study, we will choose to optimize the three parameters of cathode channel width (0.9–1.5 mm), depth 
(1.1–1.5 mm), and bending angle (0°-10°) on the geometrical parameters of the above single-cell numerical 
model and divide the data set according to the ratio of the training set to the test set of 7:3, as detailed in Table 
1. By combining the full factorial design for the range of working conditions of the variables in the table, then 
the data set used for the agent model can be obtained through simulation, a total of 360 sets, in which the 
training set and test set are divided in the ratio of 7:3. GA optimization is also carried out with the main claim of 
improving fuel cell performance, i.e. maximum output power. Specifically, two proxy models, SVR and GPR, are 
constructed and trained to investigate the feasibility, advantages and disadvantages of both models when used 
to predict the power density of the battery in engineering practice. Then, the proxy models are used as fitness 
functions for GA optimization to obtain the maximum power density and the corresponding channel structure 
parameters of each of the two models, and are further analyzed to give the engineering recommendation ranges 
of the channel structure parameters.

Agent model
In this study, two agent models were constructed using SVR and GPR, respectively. Meanwhile, three different 
evaluation indexes are introduced to evaluate the prediction performance of the two proxy models in this paper. 
The three metrics are Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Goodness of Fit R2. 
The formulas for each of the three indicators are

	
MAE = 1

n

n∑
i=1

|Pi− ′Pi|� (1)
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√√√√ 1
n

n∑
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)2 � (3)

where Pi is the power density value in the dataset; Pi′ is the power density value predicted by the model; and Pi̇ 
is the average of the power density values in the dataset.

SVR is an extension of Support Vector Machine (SVM). Similar to the traditional regression model, the 
model formula for linear SVR is as follows:

	 y = f (X) = ωT X + b� (4)

In the formula: y is a vector of predicted values of size 1 × N; X is an input matrix of size Din × N with components 
of the form [x1, x2, …, xN]; ω is a vector of coefficients of size Din × 1; and b is a bias term. The model also has 
an explicit geometric meaning, which indicates that a spacing band of width 2εis constructed on both sides of 
the hyperplane centered on the hyperplane and all samples falling within this spacing band are considered to be 
predicted correctly, as shown in Fig. 2. In the SVR model of this paper, the interval band half-width ε is taken 
as 0.01.

GPR is a nonparametric probabilistic model that takes the Gaussian process as the prior, calculates the 
posterior distribution of the Gaussian process for new observations based on learning samples and certain 
assumptions, and outputs its mean as the predicted value.

Radial Basis Function (RBF) kernel is selected for the GPR model in this study and its expression is

	 σf2 exp
[
− |xi, xj |2 /

(
2l2)]

σf2 exp
[
− |xi, xj |2 /

(
2l2)]

� (5)

where σf2 and l are the coefficient and length hyperparameters of the RBF kernel, respectively. The Marton kernel 
is a generalization of the RBF kernel with the expression

Input variable Variable parameter values

Cathode channel width (mm) 0.5, 0.75, 1.0, 1.25, 1.5, 1.7

Cathode channel depth (mm) 0.5, 0.75, 1.0, 1.25, 1.5, 1.7

Cathode channel bending angle (°) 0, 2.5, 3, 4, 5, 6, 7, 8, 9, 10

Table 1.  Parameter ranges for input variables.
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where Kν is the modified Bessel function and ν is the smoothing degree parameter, which commonly takes the 
values of 1.5 and 2.5.

In this paper, we choose the Marton kernel with the smoothing degree parameter ν of 2.5 as the kernel 
function of the GPR model, and the hyperparameters σf2 and l are set to 1.12 and 2.01, respectively.

Genetic algorithm optimization
GA is a population-based meta-heuristic algorithm, which simulates the genetic process of organisms in nature 
and the evolutionary process of natural selection, and contains three modules, namely, decoding encoding, 
individual fitness evaluation, and genetic operations, which generally include selection, crossover, and mutation, 
etc. The general flow of GA is shown in Fig. 3.

One bit of code represents a gene on a chromosome, one chromosome represents an individual organism, 
and all individuals make up a population, as shown in Fig. 4. The fitness function is used to evaluate the size of 
an individual’s fitness, or how good the solution is; the larger the fitness, the better the individual, and the more 
the corresponding solution conforms to the optimal solution.

The purpose of GA is to identify the best individuals through the process of population evolution, which 
is achieved by genetic operations such as selection, crossover, and mutation. The selected best individuals can 
be directly inherited to the next generation, or pairwise crossover can produce new individuals and then be 
inherited to the next generation. The crossover and mutation operations are shown schematically in Fig. 5.

In this paper, we use the above two agent models as the fitness function, which is optimized by the GA 
to obtain the maximum output power of the fuel cell as well as the corresponding channel width, depth, and 
bending angle. In order to balance the solving efficiency and solving accuracy, the population size of GA is set 
to 20, and the maximum number of iterations of the population is 50. To strengthen the robustness of its genetic 
algorithm, the stochastic uniform operator is chosen. The specific parameters are detailed in Table 2.

Fig. 2.  Schematic of a one-dimensional linear SVR (samples within the error band are not counted as losses).
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Results and discussion
After training, the predicted values of the resulting model on the dataset are compared with the simulated values 
of the CFD. Figure 6 shows the correlation between the predicted and simulated values of the model on the 
training and test sets, respectively. The x-axis coordinates of the red dots in the figure represent the real values of 
the power density, i.e., the values calculated by the simulation of the CFD model; the y-axis coordinates represent 
the predicted values of the power density by the model; the blue solid line is a straight line with slope 1, and the 
closer the distribution of the red dots on both sides of the line, the better the prediction effect of the network.

It is evident from Table 3 that the true power density and the current density predicted by the two agent 
models have a better fit both in the training set and the test set. In particular, the model fit of GPR is slightly 
better than that of SVR, with R2 of 0.99887 and 0.99988 in the test set and 0.99926 and 0.99958 in the training 
set, respectively. In addition, in terms of training time, GPR’s training time is significantly shorter than SVR’s 
under the same conditions, which is due to the fact that the GPR has fewer training parameters while the SVR 
spends most of its training time on hyperparameter search. SVR spends most of its training time on hyper-
parameter optimization, i.e., lattice search with cross-validation, which is one of the more time-consuming tasks 
in machine learning, and thus its training time is much longer than that of GPR.

Taking SVR as an example, Fig. 7 shows the variation of individual fitness of the population, where the best 
fitness corresponds to the best individual in the population, and the average fitness corresponds to the average 
value of fitness in the contemporary population. From Fig. 7, it can be clearly seen that after 50 computational 
iterations, the computational results converge, i.e., the average fitness value is equal to the best fitness value, 
indicating that the genetic algorithm optimization procedure has found the global optimal solution. The dashed 
line in Fig. 7 is obtained by fitting the scatter results. After continuous evolution, so that the final optimization 

Fig. 3.  Flowchart of the genetic algorithm.
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result is basically unchanged because of the number of executions, at this time the optimization results obtained 
are shown in Table 4.

We had designed and fabricated single cells with different cathode channel widths (0.9–1.5 mm), and depths 
(1.1–1.5 mm) in previous studies to optimize the cell performance and temperature distributions under 2-mm-
thick electrode plates in order to determine the ideal design parameters. It was concluded at that time that the 
optimal design parameters for the cathode channel were 1.1 mm as the optimal width at current densities less 
than 0.2 A/cm2. Although 1.5 mm depth has the best performance, 1.3 mm depth is more suitable considering 
the strength of bipolar plate structure23.

From the optimization results in Table 4, it can be seen that there are some differences in the optimization 
results of different models, but they are basically consistent with the CFD simulation results in the previous 
section, i.e., the maximum power density occurs in the bending angle results are near 2.5° and in the interval 
of the channel width of w = 1.05–1.2 mm, and in the interval of the channel height of d = 1.3–1.5 mm, and the 
maximum power density is 0.5012  W-cm−2 obtained. This is consistent with the results we have previously 
obtained through experimental testing.

It should be noted that the results in Table 4 cannot be directly used as suggested values in engineering practice 
for a number of reasons. In practice, due to the cost of actual fabrication and the different basic parameters of the 
bipolar plate for each model, and the fact that there will always be a certain deviation between the proxy model 
and the real value, i.e., the specific value of the optimization result is affected by certain random and subjective 
factors. However, although the specific values of the optimization results have a certain degree of variability, the 
range of variability can be regarded as limited, and there is no problem in using this range as a recommended 
range in the engineering practice of such fuel cells.

Implementing the optimized cathode channel structure in the actual manufacturing process presents both 
feasibility and challenges. In terms of manufacturing precision, although it is necessary to precisely control the 
channel width within the range of 1.05–1.2 mm, the height within 1.3–1.5 mm, and the bending angle within 
2.23–2.99°, advanced manufacturing technologies currently available, such as micro-nano processing, are capable 
of meeting such precision requirements. Regarding cost, while high-precision manufacturing may lead to an 
increase in equipment and labor costs, these costs can be effectively controlled with the maturation of the process 
and large-scale production. When it comes to material selection, the materials need to possess good chemical 
stability, electrical conductivity, and thermal conductivity. Although common materials like graphite and metal 
alloys have their own advantages and disadvantages, new composite materials are currently under research 
and application, which are expected to balance performance and cost. In conclusion, when implementing the 
optimized cathode channel structure in practice, although it is necessary to comprehensively consider aspects 
such as manufacturing precision, cost, and material selection, these challenges are not insurmountable, and 
the overall difficulty is not overly high. The conclusions presented in this paper are feasible within the scope of 
engineering practice recommendations and can provide a reliable guiding basis for actual production.

Conclusions
The main conclusions obtained in this study include: extending the single-cell study variables as channel width, 
channel height and channel bending angle. The 360 sets of simulation results data obtained by full factorial design 
were also used as a dataset to input and train two proxy models, SVR and GPR. Finally, the agent models were 

Fig. 4.  Biological correspondence of codes.
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optimized using a GA to obtain the models’ respective maximum power densities and the corresponding optimal 
channel parameter ranges, which were w = 1.05–1.2 mm, d = 1.3–1.5 mm, and θ = 2.23–2.99°, respectively. The 
single-cell output power density in this range will be no less than 0.489W/cm2.

Model Maximum power density

Population size 20

Number of iterations 50

Selection operator Randomly distributed

Crossover probability 0.8

Probability of variation 0.005

Definition domain of fitness function
w ∈ [0.9 mm, 1.5 mm] ,
d ∈ [1.1, 1.5 mm] , θ ∈ [0◦, 6◦]
θ ∈ [0◦10◦]

Table 2.  Genetic algorithm parameters.

 

Fig. 5.  Schematic representation of crossover and variation. (a) One-point crossover; (b) multi-point 
crossover; (c) mutation.
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Evaluation metrics

Training set Test set

SVR GPR SVR GPR

MAE/W cm−2 0.006859 0.001389 0.005963 0.003216

RMSE/W cm−2 0.008654 0.003577 0.007856 0.00602

R2 0.99887 0.99988 0.99926 0.99958

Table 3.  Evaluation metrics for predictive performance of proxy models.

 

Fig. 6.  SVR model predicted values versus CFD simulated values: (a) training set; (b) test set. GPR model 
predicted values versus CFD simulated values: (c) training set; (d) test set.

 

Scientific Reports |        (2025) 15:15487 9| https://doi.org/10.1038/s41598-025-97892-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability
Relevant data and modeling code in the article can be requested by contacting the corresponding author.
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