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The current work examines journal bearings with axial geometrical configurations that are lubricated 
with nanofluids. Because of recent advancements in numerically controlled machine tools, accurate 
machining of complex shapes is now a realistic operation. A theoretical prediction of bearing 
characteristics for different complicated geometries with varying bearing length to shaft diameter 
ratios at varying eccentricity ratios is required prior to any experimental effort. The Reynolds like 
equation that governs the pressure distribution inside the bearing is provided. Four various bearing 
geometries with conical (wedge), concave, convex, and wavy surfaces are chosen to investigate the 
bearing characteristics while taking into account the impact of increasing nanoparticle concentrations 
and aggregate particle sizes. The modified Krieger–Dougherty viscosity model was used to investigate 
the influence of TiO2 nanoparticle lubricant additives on the performance of the chosen journal 
bearings. The results show that the chosen shapes improve the bearing’s performance over the plain 
cylindrical bearing. The concave design is also shown to be better than the others; however the 
findings show that an optimization method may be required to acquire the geometry that provides the 
optimum bearing characteristics.
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List of symbols
a	� Radii of primary nanoparticles, nm
aa	� Radii of aggregate nanoparticles, nm
c	� Clearance in radial direction, m
Cf 	� Friction parameter, Cf = f (R/c)
D	� Journal minimum diameter, m
D*	� Fractal index
e	� Eccentricity, m
f	� Coefficient of friction of the bearing
F	� Frictional drag force, N
Fn	� Force acting normal to the journal surface, N
F f 	� Friction force in dimensionless form, F f = F c

/
µbf ωR2 So

F n	� Normal force in dimensionless form, F n = Fn

/
(µbf ωR3 So/c2)

h	� Fluid film thickness in direction normal to journal axis, m
h	� Fluid film thickness in dimensionless form, h = h/c
p	� Dimensionless film pressure, p = p

/(
µbf ω R2/

c2)
R	� Journal minimum radius, m

Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt. email: saber@aast.edu

OPEN

Scientific Reports |        (2025) 15:15701 1| https://doi.org/10.1038/s41598-025-97948-7

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-97948-7&domain=pdf&date_stamp=2025-5-4


So	� Bearing curvilinear length, m
t	� Time, s
to	� Characteristic time (to = 1/ω), s
t	� Time in dimensionless form, t = t/ to = ω t
u, v′, w′	� Velocity components in directions x, y′, z′ respectively
W	� Radial load normal to the journal axis, N
Wg 	� Load carrying capacity, with surface variation scenario, N
Wn	� Load carrying capacity, with the use of a nanofluid lubricant, N
Wg n	� Load carrying capacity, with combination of a nanofluid lubricant and surface variation, N
W 	� Load-carrying capacity in dimensionless form, W = W

/(
µbf ω R3 So/c2)

W r , W t	� Radial and transverse load components in dimensionless form with respect to (
µbf ω R3 So/c2)

(x, y, z)	� Cartesian co-ordinate system
x, y′, z′	� Coordinates along journal surface, normal and along journal axis respectively, m
Y, S	� Coordinates normal to journal axis and along one side of the bearing surface respectively, m
Greek symbols
β	� Aggregate packing fraction, β = aa/a
ε	� Eccentricity ratio, ε = e/c

δ	� Maximum axial variation of the bearing geometry, m
∆	� Dimensionless axial variation, ∆ = δ/So

µbf 	� Viscosity of plain engine oil, Pa s
µnf 	� Viscosity of the nanolubricant, Pa s
ρ	� Fluid density, kg/m3

φ	� Attitude angle, rad
Φ	� Nanoparticle volume fraction
Φm	� Maximum packing volume fraction
θ	� Coordinate in tangential direction, rad
ω	� Rotational angular velocity, rad/s

Hydrodynamic journal bearings are in high demand nowadays because of their excellent characteristics such 
as long-term performance, low friction, and nearly no wear. There are two types of research articles: numerical 
studies and experimental studies. Numerical investigations are further characterized as isothermal studies with 
cavitation, isothermal studies without cavitation, and investigations that include thermal effects. More than 75% 
of the study is done theoretically utilizing numerical/computational approaches, while approximately 23% of the 
experiments have been carried out. In the literature, attempts to study the effect of geometrical variations on the 
performance of journal bearings have been reported in different manners. Some studies looked at non-circular 
geometrical shapes of the bearing bush, such as elliptical and multiple lobes1–8. Others investigated the influence 
of the unavoidable geometrical changes generated by either angular misalignment or journal deflection9–13. 
Leung et al.14 investigated journal bearings using spherical bushes. They concluded that the spherical journal 
bearing behaves similarly to a comparable cylindrical bearing. El-Gamal15 on the other hand, published a study 
for a cylindrical wedge-shaped bearing. His findings revealed that the wedge bearing at small wedge angles, 
particularly the long one, is better than the plain cylindrical bearing with the same side length. Pang et al.16 
used AG, a genetic algorithm, to optimize the shape of hydrodynamic journal bearings in circumferential and 
axial wavy configurations. The Fourier series coefficients and axial waviness serve as design parameters in both 
circumferential and axial directions. Their findings indicated that the load capacity may be increased by around 
10%. Green tribology aims to reduce friction and wear. Surface texturing on mating parts can minimize friction 
while increasing load capacity. Surface textures with various microgeometries, including dimples, grooves, and 
pits, have been proven to increase bearing performance. Textured bearing surfaces minimize friction while 
increasing load capacity. Researchers17–22 evaluated the influence of textural parameters such as the shape, 
depth, and dimensions of microgeometries, as well as their positions and distribution on the bearing surface, 
on journal bearing performance. Research results indicated that roughness characteristics and operating 
circumstances significantly impact journal bearing performance20–22. Currently, as computer technology 
advances, more researchers are attempting to use commercial computational fluid dynamics (CFD) applications 
in their researches. The CFD code differs from other comparable codes in that it uses all of the Navier–Stokes 
equations to solve complex flow problems, whereas finite difference systems depend on the Reynolds equation. 
Furthermore, the CFD packages are applicable in highly complicated geometries. Many authors employed 
various computer codes to examine the parametric influence of hydrodynamic journal bearing, and their results 
are listed in Table 1.

Furthermore, the viscosity of the lubricant used has a significant impact on the steady-state performance 
of hydrodynamic journal bearings. Nanofluids have higher viscosity than conventional fluids in the absence 
of nanoparticle additions. Nanofluids’ effective viscosity is determined by the concentration and size of 
nanoparticles. Many classical models of nanofluid viscosities have been constructed in Refs.39–47. There is also 
a scarcity of published data on how nanoparticle lubricant additives affect the dynamic responsiveness and 
stability of hydrodynamic lubrication. Many researchers investigated the steady-state characteristics of various 
hydrodynamic journal bearings operating with different nanoparticles as lubricant additives48–52. Several 
prior studies have investigated the characteristics of journal bearings lubricated by couple stress fluids53–60. 
They determined that friction causes a slight rise in lubricant temperature. There has been no mention of 
using nanolubricants to investigate bearing performance in advanced shapes. The current technology allows 
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for the precise machining of extremely complex shapes. The effects of TiO2 nanoparticle volume fraction and 
nanoparticle aggregate sizes on the steady state characteristics and stability limitations of plain journal bearings 
were investigated by Awad et al.61.

The current work is a continuation of Awad et al.61’s analysis to investigate the combined effects of axial 
changes in bearing geometrical shape and the use of nanoparticle additives with aggregation properties on 
bearing performance while keeping the radial clearance constant.

Materials and methods
Formulation
Figure 1 depicts the bearing arrangement and the suggested curvilinear coordinate system. When the Reynolds 
number is low, the fluid inertia forces may be ignored compared to the viscous forces, as is always the case with 
bearing problems. The research methodology used in the current study is depicted in Fig. 2, where a suggested 
work’s block diagram is presented in order to clarify and simplify the work description.

The equations governing the lubricant flow in the bearing, assuming that the flow is steady, laminar, and 
incompressible, are thus stated in Cartesian coordinates as,

Ref Technique Bearing type Parameter Analysis/Results

23 CFD
Journal bearing with 
smooth and textured 
surface

Surface texture, eccentricity ratio 
and friction force

Condition of light loading reduced frictional force and increased minimum film 
thickness; under heavy loading circumstances, a larger pressure zone reduces frictional 
force

24 CFD
Central circumferential 
groove of hydrodynamic 
journal bearing

Bearing carrying capacity, 
cavitation zone and vapor fraction

The depth of the groove influences the load zone, bearing carrying capacity, cavitation 
zone, and vapor fraction

25 CFD and FSI Hydrodynamic journal 
bearing

length to diameter ratio, 
eccentricity ratios, and pressure

The FSI technique is utilized to find the pressure, stress, and deformation of the 
hydrodynamic journal bearing

26 CFD Journal bearing with 
bingham fluid Eccentricity ratio, yield stress

Fluent software examined real and theoretical data for Newtonian and Bingham 
lubricants and found good agreement. The influence of yield stress on the journal 
bearing is similarly evaluated to be minor for low eccentricity ratios

27 CSD and CFD Full 360o  journal 
bearing

Deformation and stress 
distribution

According to the article, these strategies are helpful for The finite element method (FEM) 
was utilized to calculate the stress distribution. Determine the surface deformation of the 
bearing under static load. The effects of resulting forces are also examined. The modeling 
of elasto-hydrodynamic lubrication has been validated with standard lubrication results

28 CFD-FSI Journal bearing Deformation, eccentricity ratios 
and speeds

Develop models for various eccentricity ratios and speeds to investigate the relationship 
between the elastic behavior of the bearing and the fluid. This procedure produced 
accurate performance of the bearing

29 CFD and FSI

Thermo-hydrodynamic 
and thermo-
elastohydrodynamic 
analysis of full journal 
bearing

Pressure, temperature and 
velocity distribution in the 
fluid film, and bearing surface 
deformation

The characteristics under static load conditions are determined using the finite volume 
and finite element methods. The distortion caused by pressure is an essential variable in 
determining bearing behavior

30 COMSOL 
models Hydrodynamic bearing Pressure distribution, eccentricity 

ratio
Pressure distribution is determined on infinite (short and long) bearings under steady 
state conditions. It was expected that growing pressure is proportional to eccentricity 
ratio, and pressure increases in the direction of eccentricity

31
ANSYS, 
MATLAB 
software

Bush type journal 
bearing Temperature It is shown that there are approximately 12% differences between the two procedures. 

However, Ansys provided a more exact result than the numerical method.

32 CFD Journal bearing
Pressure, temperature viscosity, 
L/D ratio, rotational speed, 
Eccentricity ratio, pressure 
distribution

Software results were validated using numerical data obtained from the Raimondi and 
Boyd chart approach. It has been proposed that increasing temperature raises pressure 
while reducing attitude angle

33
CFD (Gambit 
and using 
fluent 6.3.26 )

Plain journal bearing Pressure distribution, temperature 
and viscosity

It is noticed that increasing frictional force increases the temperature, lowers viscosity, 
and the maximum pressure of the lubricant

34 CFD Circular journal bearing Pressure and temperature 
distribution When the viscosity is held constant, temperature and pressure increase

35 CFD and FSI Infinitely long journal 
bearing

Pressure and temperature 
variation

It was determined that maximum pressure occurred closer to the region of a minimum 
film thickness

36 CFD Journal bearing Pressure distribution, friction 
force, friction coefficient

It is observed that dimple is good for lubricating and minimizes friction force, but there 
is a loss of load capacity

37 CFD Journal bearing
3D transient flow simulation, load 
capacity and bearing dynamic 
coefficient

The CFD results were quite consistent with the experimental results obtained from the 
test rotor-bearing system

38 FEM Gas journal bearing Rotation speed, eccentricity ratio 
and supply pressure

Increasing the eccentricity ratio, supply pressure, and rotation speed at a small average 
gas film thickness can help improve load capacity and stiffness. The most effective way of 
reducing attitude angle is to increase supply pressure

Table 1.  Summary of articles employing commercial computer codes.
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In terms of the curvilinear coordinates employed, we may write:
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Ė

E

)
∂

∂ s
+ ∂2

∂ s2 + Ḣ2 ∂2
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With y′ = y + H , where H = H(s) is a function that defines the geometrical configuration of the bearing (see 
Fig. 1) and must be supplied prior to any numerical computations. E = E(s) =

√
1 − Ḣ2, the dot denotes 

differentiation with respect to s. Referring to Fig. 1, we may also write, w′ = E w and v′ = v + Ḣ w.
Using the relationships (2), Eqns. (1) can be expressed as follows:

Fig. 1.  Bearing geometry and curvilinear coordinate system.
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Fig. 2.  Steps of research methodology.
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Ḣ

Ė
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E
w (d)




� (3)

Dimensionless quantities are introduced, such as:
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Using the supplied dimensionless variables in (4) and assuming that c/R << 1 and c/So << 1, Eq. (3) can 
be reduced to,
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The velocity components boundary conditions are as follows:
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w (θ , s , 0) = 0

At y = h∗ : u (θ , s , h∗) = 1 + So

R

(
∆ − H

)

w (θ , s , h∗) = 0




� (6)

where h∗ is the dimensionless film thickness, h∗ = h/c = 1 + ε cos (θ), and the dimensionless maximum 
variation of the geometry is defined as ∆ = δ/So.

The velocity field can be obtained by integrating Eqs. (5a and c) twice with respect to y and applying the 
boundary conditions at y = 0 and y = h∗. The velocity components and velocity gradients are,
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Integrating Eq. (5d) with respect to y across the film yields,
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Equation (8) is a general form of Reynolds equation that governs the pressure inside a bearing with a variable 
axial shape. Axially, the radial clearance is always kept constant. Assuming steady state film operation, that is 

∂ h∗
/

∂
_
t = 0,and substituting ∂ h∗/∂ θ = −ε sin (θ) into Eq. (8) we have,
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The boundary conditions for the pressure variable p are,
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In a dimensionless form, the radial and tangential load components can be represented as,
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The dimensionless resultant load W  and the attitude angle ϕ may be calculated from,
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Integrating the shear stress around the journal surface yields the friction force, which may be expressed in 
dimensionless form as,
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In dimensionless form, the force acting normal to the journal surface is to be calculated from,
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The friction parameter (variable) Cf = f (R/c) may be calculated from f (R/c) = F f

/
F n, where 

f = Ff /Fn . In Fig. 3, four geometrical bearing configurations are considered for comparison with the plain 
cylindrical bearing.

The axial surface profile of the journal is supposed to vary, and four types are considered:

	

W edge bearing : H = 2∆ s
Concave axially curved surfaces : H = 4∆s2

Convex axially curved surfaces : H = 4∆ (1 − s) s
W avy surfaces : H = ∆

2 (1 − cos(2πs))




� (14)

Scientific Reports |        (2025) 15:15701 7| https://doi.org/10.1038/s41598-025-97948-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The coordinate s can be linked to the coordinate z = z′/So by,
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The common parameter for the geometries chosen is the greatest variation of the geometry Hmax = ∆, which 
should be practically <  < 1. In this paper, computations are conducted for ∆ = 0.01 , 0.05 , 0.1 , and 0.15.

Viscosity model (µ)
In the present study, the updated Krieger–Dougherty viscosity model may be used as19,

	
µ = µnf
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With Φa = Φ
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Where,aa and a, are the radii of aggregates and primary particles, D* is the fractional index, which has 
a standard value of 1.8 for nanofluids44. Φm is the maximum particle packing fraction, Φm = 0.605 at high 
shear stress rates44. Using the reported values of D* and Φm, the modified Kriegerr-Dougherty equation may be 
written as,
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where β = (aa/a) is the aggregate packing fraction, which depends on the type of the nanoparticles and their 
sizes. Binu et al.50 carried out experimental measurements on TiO2 nanoparticles of a < 100 nm and distributed 
in SAE30 engine oil at different volume fractions ranging from Φ = 0.0001 to 0.005. They used the DLS 
analysis and found that the mean aggregate particle size aa = 777 nm and the aggregate packing fraction was 
estimated to be β = 7.77. This means that the TiO2 nanoparticle aggregates are roughly 7.77 times the primary 
particle size of 100 nm. They documented that Eq. (16) has a fairly good agreement with the measured viscosities 
for different values of volume fraction. In the present analysis, for comparison purpose, the study is carried 
out for volume fraction ranging from 0.001 to 0.01 with various values of aggregate particle packing fraction 
β = 4 , 7.77 and 10.

Solution methodology
The Reynolds-like Eq.  (9) and boundary conditions (10) were numerically solved with the finite difference 
technique. To solve the sets of simultaneous equations, a FORTRAN-based computational algorithm62 is 
constructed in order to be used with the successive relaxation method. To consider a non-cavitating model, set all 
negative pressure variables to zero throughout the solution61. The iteration process continues until convergence 
with a relative tolerance of 0.01 is reached. The modified Krieger–Dougherty model (Eq. 16) is employed in the 
discretized Reynolds equations to calculate steady-state pressure distributions in the bearing lubricant film. The 
bearing properties of TiO2 nanoparticle volume fractions are studied for different aggregate size values.

Results and discussions
The steady state journal bearing characteristics is affected significantly by using the journal bearing with an axial 
variation in geometrical shape as well as the use of nanoparticles as lubricant additives. Four different shapes for 
the bearing having wedge, concave, convex and wavy surfaces are made. Based on the experimental work of Binu 
et al.26, the modified Krieger–Dougherty model, Eq. 16, is used to calculate the viscosity of the nanolubricant. In 
the formulation of nanolubricant, TiO2 nanoparticles (scale 100 nm) and SAE30 engine oil are employed, with 
volume fractions ranging from 0.001 to 0.01 at various nanoparticle aggregate sizes. According to the authors’ 
knowledge, there are no published studies on how nanoparticle concentrations and aggregate particle sizes affect 
journal bearing performance using axial geometrical variations. In Refs50,60, researchers examined the impact of 
titanium dioxide nanoparticles as lubricant additives on steady-state performance50,60 and stability limitations60. 

Fig. 3.  Selected bearing geometrical configurations. (a) Wedge; (b) Concave; (c) Convex; (d) Wavy.
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The current study found a high agreement between the model developed and data from the cited references for 
a cylindrical bearing operating under steady state conditions. El-Gamal15 provided an analysis of the steady state 
performance of a wedge-shaped hydrodynamic journal bearing, comparing the results of the dimensionless 
wedged-bearing load produced in the current work to the results obtained in15. A good qualitative agreement 
has been reached. The largest disparity in dimensionless load is 5.26% at eccentricity ratio 0.2, decreasing to 
1.125% at eccentricity ratio 0.9.

Bearing characteristics for different geometries
The pressure distribution inside the bearing at the mid-plane is depicted in Figs. 4, 5 and 6.

The findings reveal that a concave surface creates higher pressure levels inside the fluid film. The maximum 
geometric variation raises the pressure distribution values in the bearing oil film. Furthermore, the higher the 
eccentricity ratio, the higher the pressure values in the bearing fluid film. Figure 7 shows the results of the bearing 
characteristics W , F f , f (R/c)  and ϕ obtained for the wedge, concave, convex and wavy shaped geometries 
selected. The results are presented for  ∆ = 0.1 and So/D = 1 with Φ = 0. The plain cylindrical bearing 
characteristics are also shown in the same Fig. 7a–d for comparison. It is remarkable that all geometries appear 
to have better load carrying capacity than a plain cylindrical bearing. This is the case at any eccentricity ratio. For 
all geometries, the load carrying capacity increases with the increase in eccentricity ratio. When the geometries 
are compared with each other, the concave geometry is found to give the largest load carrying capacity W  at any 
eccentricity ratio ε. On the other hand, the convex shape is seen to give the smallest W  at any ε. Figure 7c shows 
that the friction parameter f(R/c) is seen to decrease for the geometries considered compared to the plain 

Fig. 5.  Effect of the maximum axial variation of the concave bearing geometry on pressure distribution along 
circumferential direction at bearing mid-plane with Φ = 0 and So/D = 1.

 

Fig. 4.  Effect of axial geometrical variations (bearing geometry) on pressure distribution along circumferential 
direction at bearing mid-plane at Φ = 0 and So/D = 1.
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cylindrical journal bearing at any ε.The geometries considered show a negligible differences in attitude angle 
when compared to the plain cylindrical bearing at any ε, see Fig. 7d.

The superiority of concave geometry over other shapes can be seen. The results in Fig. 8a show that increasing 
the largest variation of the geometry ∆ increases the bearing load capacity for concave axially curved surfaces. 
Furthermore, as shown in Fig. 8b, the largest change in the concave surface shape shows a significant reduction 
in the friction parameter at low eccentricity ratios.

Bearing characteristics using titanium dioxide nanoparticles as lubricant additive
The effect of TiO2 nanoparticles with Φ = 0.005 and aggregate packing fraction β = 7.77 on the pressure 
distribution in the oil film along the circumferential direction at the bearing mid-plane at ε = 0.6 is shown in 
Fig. 9. Figure 9 illustrates the pressure distribution along the circumferential direction at bearing mid-plane for 
all of the axial geometrical variations considered in the present investigation, namely wavy, concave, convex, and 
wavy. In comparison to the pressure distribution for plain bearings, the presence of any of the aforementioned 
axial variations causes an increase in the generated pressure inside the oil film. The findings reveal that the 
concave surface shape causes higher pressure distribution in the oil film than the other surface geometries.

Bearing characteristics (bearing load, friction force, friction parameter, and attitude angle) for various 
geometries using a TiO2 lubricant additive with a volume fraction Φ = 0.005 and aggregate packing fraction 
β = 7.77 are shown in Fig. 10. The bearing’s behavior is similar to that shown in Fig. 7, and the superiority 
of concave geometry over other shapes persists. For the concave surface geometry, the effect of TiO2 volume 
fractions; ranging from 0 to 0.01; on the pressure distributions inside the bearing is explored in Fig. 11. It can be 
seen that as the volume fraction increases, the pressure inside the bearing increases. At higher volume fractions, 
the rise in pressure is found to be more pronounced. As shown in Fig. 12, the maximum value of the bearing 
oil film pressure distribution increases as the aggregate packing fraction value (described in viscosity model) 
increases. With increasing aggregate packing fractions, the pressure distribution becomes more pronounced. 

As demonstrated in Figure  13a, the effect of various TiO2 volume fractions on bearing load capacity for 
concave surface bearing is analyzed and depicted. The findings show that the existence of TiO2 nanoparticle 
lubricant additives increases the bearing load carrying ability. The increase in bearing load is found to be more 
pronounced at higher TiO2 nanoparticle volume fraction values. According to Fig. 13b, increasing the volume 
fraction has no sensible effect on the bearing friction parameter.

The results in Fig. 14a show that increasing the largest variation of the geometry ∆ increases the bearing load 
capacity for concave axially curved surface. Furthermore, as shown in Fig. 14b, the largest change in the concave 
surface shape results in a significant reduction in the friction parameter. For a given volume fraction, the results 
show that increasing the aggregate packing fraction increases bearing load capacity (Fig. 15a) but has no sensible 
effect on friction parameter (Fig. 15b). Figure 16 shows the effect of bearing surface length to diameter ratio 
(So/D) on bearing characteristics. The bearing load capacity increases as the length to diameter ratio increases, 
while the friction parameter decreases only slightly.

The relative difference in bearing load carrying capacity as a result of surface geometry, nanofluid lubricant, 
and the combination of the two can be introduced as follows:

Fig. 6.  Effect of eccentricity ratio on pressure distribution along circumferential direction at bearing mid-
plane for concave axial variation of the bearing geometry at Φ = 0 and So/D = 1.
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Surface geometry : % Wg = Wg − W cyl

W cyl
× 100

Nanofluid lubricant : % W n = Wgn − Wg

Wg
× 100

Combination of the two : % W gn = Wgn − W cyl

W cyl
× 100

In the same manner, the relative difference in bearing friction parameter % Cf  can be estimated. Table 2 
shows the relative difference in bearing characteristics caused by using a concave bearing surface shape with a 
dimensionless maximum axial variation ∆ = 0.1 and a nanofluid lubricant with a volume fraction Φ = 0.005 
and an aggregate packing fraction β = 7.77.

Fig. 7.  Bearing characteristics (bearing load, friction force, friction parameter and attitude angle) for different 
geometries with Φ = 0 and So/D = 1.
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In comparison to plain cylindrical bearing, the results for the bearing geometries under consideration 
demonstrate that the presence of variations in the axial shape of the bearing increases the load carrying capacity 
and decreases the friction parameter (variable). Concave geometry surpasses other shapes. Furthermore, using 
TiO2 nanoparticles as a lubricant additive increases bearing load capacity while having no effect on friction 
parameters.

Conclusions
An axial geometrical configuration for hydrodynamic journal bearings lubricated with noanolubricant using 
titanium dioxide nanoparticles as lubricant additives is proposed here. The analysis assumed that the flow in 
the bearing was laminar incompressible and the lubricant was isoviscous. A curvilinear coordinate system is 
employed to develop the Reynolds-like equation that governs the pressure inside the bearing. A theoretical 

Fig. 9.  Effect of bearing geometry on pressure distribution along circumferential direction at bearing mid-
plane at Φ = 0.005 , β = 7.77 and So/D = 1.

 

Fig. 8.  Effect of maximum axial variation on bearing characteristics (bearing load W  and friction parameter 
f (R/c)) for concave bearing geometry at Φ = 0 and So/D = 1.
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investigation of the effects of increasing nanofluid aggregate sizes and nanoparticle concentrations on the static 
performance of journal bearings has been presented. Several conclusions are drawn:

	– Compared to a simple cylindrical bearing, variations in the bearing’s axial shape increase load carrying capac-
ity while decreasing the friction parameter. This is especially apparent with reasonably long bearings.

	– Concave geometry shows superiority over other forms.

Fig. 10.  Bearing characteristics (bearing load W , friction force F f , friction parameter f (R/c) and attitude 
angle ϕ) for different geometries with Φ = 0.005 , β = 7.77 and So/D = 1.
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	– The effect of TiO2 nanoparticle lubricant additives on the static characteristics of finite journal bearings is 
theoretically analyzed using the modified Krieger–Dougherty viscosity model. As the volume fraction and 
aggregate packing fraction increase, they cause a corresponding increase in the pressure distribution inside 
the bearing.

	– The bearing load capacity increases significantly at higher values of the nanoparticle volume fraction while 
the friction parameter decreases. The bearing load capacity increases as the aggregate packing fraction in-
creases with negligible effect on the friction parameter.

As a future work, it could be interesting to investigate the effect of axial geometrical variations on the stability 
limits of journal bearings lubricated by nanofluids.

Fig. 12.  Effect of aggregate packing fraction β on pressure distribution along circumferential direction for 
concave surface bearing geometry at mid-plane with Φ = 0.005 and So/D = 1.

 

Fig. 11.  Effect of volume fraction Φ on pressure distribution along circumferential direction for concave 
bearing geometry at mid-plane with So/D = 1.
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Fig. 14.  Effect of maximum axial variation on bearing characteristics (bearing load W  and friction parameter 
f (R/c)) for concave bearing geometry at Φ = 0.005 , β = 7.77 and So/D = 1.

 

Fig. 13.  Effect of nanoparticle volume fraction on bearing characteristics (bearing load and friction parameter 
f (R/c)) for concave bearing geometry at Φ = 0.005 , β = 7.77 and So/D = 1.
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Fig. 16.  Effect of So/D on bearing characteristics (bearing load W  and friction parameter f (R/c)) for 
different bearing geometries at Φ = 0.005 and β = 7.77.

 

Fig. 15.  Effect of packing volume fraction on bearing characteristics (bearing load W  and friction parameter 
f (R/c)) for concave bearing geometry at Φ = 0.005 and So/D = 1.
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