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A key challenge for unmanned aerial vehicle (UAV) swarms is achieving inter-aircraft relative direction 
of arrival (DOA) estimation in global navigation satellite system (GNSS) denied environments without 
relying on fixed base stations. This paper proposes a Ultra-wide Bandwidth (UWB) based method 
where each UAV acts as both a transmitter and receiver, effectively functioning as a mobile base 
station. A theoretical framework for all-directional DOA estimation using a regular tetrahedral array is 
derived, resolving phase ambiguities via a genetic algorithm (GA) with phase difference information. 
Simulation results demonstrate that GA-UWB algorithm has a better performance than WP-UWB. 
When considering noise both in time difference and phase difference information, the algorithm 
proposed in this paper has a higher success rate.
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At present, the common methods of UAV swarms’ mutual localization depend on GNSS technology. However, 
under the GNSS-denied environment, such as battlefield, tunnel and other environments, it is difficult to ensure 
that UAV can obtain the continuous and accurate positioning information. Compared with traditional signals, 
UWB signals have the advantages of low cost, insensitivity to channel fading, low power consumption, high 
security, and high positioning accuracy1. This technology has been applied to indoor positioning2, deep wells 
and harsh environment portable equipment3. Currently, antenna arrays for UWB positioning, such as Uniform 
Circular Array (UCA)4,5, are widely used in 2D direction estimation6. Most scholars carry out research on UWB 
indoor positioning algorithms based on basic positioning algorithms, such as time direction of arrival (TDoA) 
and angle of arrival (AoA) algorithm. Zhao et al.7 approached the UWB TDoA localization from a system-level 
perspective, integrating sensor placement as a key component and conducting practical evaluation in real-world 
scenarios. Margiani et al.8 presents an in-depth study and assessment of angle of arrival UWB measurements 
using a compact, low-power solution integrating a novel commercial module with phase difference of arrival 
estimation as integrated feature. Pan et al.9 proposed a coplanar localization method for one-side-open areas, 
which is easy for deploying. In this method, the coordinates of the inside node can be estimated by the coplanar 
outside anchors that are attached to an outside window. Zhang et al.10 presented a cost-effective UWB SL model 
utilizing the angle of arrival and double-sided two-way ranging. To improve localization accuracy, they proposed 
a self-localization algorithm based on constrained weighted least squares, integrating a weighted matrix derived 
from a measured noise model. Feng et al.11 proposed one base station-based distance and angle positioning 
algorithm with extended Kalman filter in NLOS environment. Ge et al.12 developed a single-anchor localization 
system which achieved 3D high-accuracy localization using time and wrapped phase measurements of UWB 
signals. Han et al.13 introduced a methodology for refining ranging outcomes through a combination of UWB, 
inertial navigation and environmental adjustments to achieve high-precision spatial positioning. Krishnaveni 
et al.14 come up with an incorporated positioning system in indoor by joining IMU and the UWB over the 
Unscented Kalman Filter and the Extended Kalman Filter to enhance the precision. Zhang et al.15 advanced 
the UWB positioning system of the highway tunnel construction solution. Nevertheless, the implementation of 
these algorithms requires the installation of multiple fixed UWB base stations to ensure accurate positioning. 
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The deployment range of fixed UWB base stations is limited in large-scale environments, such as battlefields or 
wilderness areas. Hence, the scope of UAV swarms’ tasks will be restricted.

To solve these problems, Luo et al.16 designed a regular tetrahedral array (RTA) direction estimation 
sensor with UWB technology. A RTA consists with 4 UWB transceivers. These transceivers were installed on 
the vertices of a regular tetrahedron. As the distance between any two antennas in a RTA is greater than half 
of the signal wavelength, the phenomenon of phase ambiguity is existed during the process of estimating the 
source direction. Phase Ambiguity refers to the uncertainty in determining the true phase difference of a signal 
when the measured phase wraps around due to its periodic nature (typically modulo 2π). This occurs because 
phase measurements (e.g., in carrier-based systems like UWB) are cyclical, meaning a phase difference greater 
than π or less than −π will “wrap” into the range (−π, π]. To solve the problem of phase ambiguity, a variable 
neighborhood search strategy using time difference information was proposed. However, the time difference 
measurement noises can be approximately 1600 times larger than phase difference measurement noises17. This 
can potentially lead to the initial solution provided by the above-mentioned method being significantly biased 
away from the correct solution, with the scanning range not covering the range of the correct solution, thus 
resulting in the inability to find the correct solution. Hence, it is important to reduce the noise impact caused by 
time difference information and use higher-precision phase difference information for localization calculations. 
Xu et al.2 proposed a UWB-assisted positioning method using mobile nodes, optimizing phase ambiguity 
resolution in dynamic environments. Santos et al.18 explored bearing-based estimation for distributed UAV 
swarms, validating the robustness of phase-difference information. This study provided theoretical validation for 
the phase difference information-based DOA estimation framework proposed in this paper. Li et al.19 introduced 
deep learning for UWB phase ambiguity resolution, significantly improving performance under complex noise. 
Park et al.20 systematically analyzed GA efficiency in sparse UWB array ambiguity resolution. This study directly 
supported the parameter design and performance validation of the GA-UWB algorithm.

In this paper, we derive the theoretical method of all-directional DOA estimation for regular tetrahedral 
array with phase difference signals only. Meanwhile, we will take use of GA to identify phase ambiguity integers 
with phase difference signals either. In conclusion, during the process of estimating the all-directional DoA of 
the signal source, we use phase difference information only which avoid the noises caused by time difference 
information.

Estimation of remote signal source for RTA using phase difference information
UWB transceiver can measure carrier phase more precisely than time-of-flight, the typical error value is less 
than 3°, which corresponds to 0.06 cm at fc = 3.9936 GHz. Time difference measurements error is about 1600 
times higher than phase difference measurements error17. For higher accuracy, we estimate the remote signal 
source with phase difference information only to avoid the impact of time difference measurement errors.

Spatial subarray decompose of RTA
As mentioned above, UCA can estimate the directional angle estimation in 2D space. To estimate the pitch angle, 
we can add a transceiver to a UCA and form a 3D antenna array. As equilateral triangle is the smallest unit in 
UCA, we can add a UWB transceiver to form a regular tetrahedral antenna array to estimate the signal source.

A RTA consists of four equilateral triangle subarrays, which can be treated as phased UCAs for solving 
2D-AoA problems independently. Figure 1 depicts the decomposition of a tetrahedral and the spatial relationship 
between UCA subarrays and RTA.

In Fig.  1, O∆BCD, O∆ABD, O∆ADC , O∆ACB  are the circumcenter of ∆BCD, ∆ABD, ∆ADC , ∆ACB

, which are shortened to ∆1 , ∆2, ∆3, ∆4. OC = [O; x, y, z] is the global coordinate system located at the 
original point O. O∆ C = [O∆; e1, e2, e3] is the local coordinate system located at the centroid of a triangle. The 
transform matrix from O∆ C  to OC  is OO∆ R = [e1, e2, e3].

Fig. 1.  Tetrahedral decomposition and spatial relationship16.
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We can estimate a signal direction vector (SDV) in each triangle. The SDVs estimated by four 
subarrays are recorded as vP DoA,∆1 = vP DoA,∆2 = vP DoA,∆3 = vP DoA,∆4 . In theory, the 
SDVs estimated by four subarrays are identical with a remote signal source hypothesis, which means 
vP DoA,∆1 = vP DoA,∆2 = vP DoA,∆3 = vP DoA,∆4 .

As shown in Fig. 1, we can design a tetrahedral source estimation sensor. Install a UWB signal transceiver 
at point A and install UWB signal receivers at points B, C and D. If we install the sensor on a UAV, the signal 
transceiver at point A can send its own signal to other UAVs. At the same time, according to the theory derived 
above, the source direction of other UAVs can be estimated through the phase difference signals received by the 
four points of A, B, C, D. In this way, each UAV equipped with a tetrahedral sensor can be used as a moving UWB 
base station to estimate all-directional DoA. This method can help the UAV swarm extending its applications as 
it is not necessary to install fixed UWB base stations.

Solve phased UCA
To avoid consuming computing resources in eigenvalues calculation, we solve the DoA estimation of any UCA 
subarray by Fourier analysis of the phase around the circular aperture2,15. Consider any UCA subarray which has 
N identical receivers and a remote signal source.

As shown in Fig. 2, the circular aperture is located at (r, π/2, φ) and the remote source direction is located at 
(r, θ, φ). ϕ̃ (φ) represents the continuous curve of actual phase difference ϕ (i, 1). The period of ϕ̃ (φ) is 2π. The 
purple ellipse ES,ϕ is the projection of the aperture circle O∆ on wave front plane S. ϕ̃ (φ) λ/2π is the distance 
between any point on the aperture of circle O∆ and its corresponding projection on ES,ϕ. The blue dashed line 
represents the intersection of ES,ϕ and plane S. The normal vector of ES,ϕ is nS = vP DoA,∆.

The phase of the electromagnetic field of an incident wave from (θ, φ) can be written as

	
Φ (φi) =

2π

λ
r sin θ cos (φ − φi) + Φ0� (1)

Where the azimuth φ ∈ [0, 2π) and the elevation θ ∈ [0, π). λ is the wavelength. Antennas are located 
counter-clockwise around the circular, and numbered 1 to 3. The azimuth position of antenna i is written as 
φi = π(i−1)

3 , i = 1, 2, 3. Φ0 is the initial phase of the incident wave and can be removed by the phase difference.
Taking antenna A1 as a reference, the actual phase difference between antenna Ai and A1 can be written as,

	
ϕ (i, 1) = Φ (φi) − Φ (φ1) = 4πr

λ
sin θ sin

(
π (i − 1)

M

)
sin

(
φ − π (i − 1)

M

)
� (2)

The range of phase may exceed 2π as r > λ/2. Hence, the actual phase difference ϕ (i, 1) is consisted of 
measured phase difference ϕ0 (i, 1) and ambiguities 2πNi,1,

	 ϕ (i, 1) = ϕ0 (i, 1) + 2πNi,1, (ϕ0 (i, 1) ∈ (−π, π]) � (3)

The phase ambiguity integers Ni,1 ∈ Z need to be solved. The first order Fourier series coefficient of ϕ (i, 1) 
is[16],

	
Ψ1 = 2π

M

M∑
i=1

ϕ (i, 1) exp
(

j
2π (i − 1)

M

)
� (4)

The elevation θ and azimuth φ can be derived as follows,

	
θ = sin−1

(
λ

2π2r
|Ψ1|

)
� (5)

Fig. 2.  The visualization of actual phase differenceϕ (i, 1)16.
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	 φ = arg (Ψ1)� (6)

,
Where |Ψ1| is the modulus of a complex number Ψ1 and arg (Ψ1) is the angle of Ψ1.
Then we can obtain the SDV in coordinate O∆ C16,

	
O∆ vP DoA = [cos φ sin θ, sin φ sin θ, cos θ]T � (7)

A direction vector in coordinate OC  is derived by coordinate transform16.

	
OvP DoA = O

O∆ RO∆ vP DoA� (8)

Direction vector Estimation by genetic algorithm
Large aperture can improve the accuracy of AoA estimation. However, when the aperture radius is larger than 
λ/2, the phase ambiguity problem occurs. In previous work16, we computed a coarse SDV estimation using 
time difference information initially. Then, we used the cost function based on geometric identical and variable 
neighborhood search strategy with time difference information to solve ambiguity resolution. As mentioned 
above, Ultra-wideband transceivers measured the information of carrier phases more accurately than the 
information of time of flight. The method of reducing noise impact caused by time difference information and 
using the higher-precision phase difference information for phase ambiguity is a worthwhile research direction. 
To solve this problem, this paper uses GA to solve the phase ambiguity integers with phase difference signal.

Geometric identical cost function
We proposed a cost function for ambiguity resolution based on the geometric identical of subarrays’ SDVs. As 
Fig. 1 shows, SDVs estimated by four different subarrays are identical for a remote signal source. Without loss of 
generality, any two adjacent subarrays, such as, ∆2 and ∆3, they have common antennas A and D, and common 
reference antenna A. OvP DoA,∆2  and OvP DoA,∆3  are SDVs estimated in subarrays ∆2 and ∆3, respectively. The 
cost function consists of the noise between OvP DoA,∆2  and OvP DoA,∆3 , which can be written as:

	
M23 =

∣∣∣1 − (◦vP DoA,∆2)T ◦
vP DoA,∆3

∣∣∣� (9)

where the footnote 23 of M23 means subarray ∆2 versus subarray ∆3. Distinguishing from current cost function 
based on Fourier inverse transform or mapping tetrahedral volume21, which estimating ambiguity integers 
firstly and then calculating DoA subsequently, unavoidable large rounding noises, our cost function is based on 
examining SDVs directly.

M23 is a scalar filed with 6 independent variables. Given phase difference information 
ϕ0(B, A), ϕ0(C, A), ϕ0(D, A)  as a priori knowledge. M23 can be reduced as discrete three 
dimensions, that is M23(NBA, NCA, NDA). Based on the above analysis, there are a total of 6 cost function 
values in an ultra-wideband regular tetrahedral array, which are related to the ambiguous integer array 
N = {NBA, NCA, NDA, NCB , NDB}. The ambiguity resolution problem transforms into an optimization 
problem on discrete feasible set N = {NBA, NCA, NDA, NCB , NDB}.

Ambiguity integers’ calculations by genetic algorithm
In previous work, we used time difference information to obtain an initial ambiguous integer solution and 
scanned its neighbors to solve the phase ambiguity integers. But the measured noises of time difference 
information are huge. In this section, we will take use of GA to identify phase ambiguity integers with phase 
difference information only which avoid the noises caused by time difference information.

The specific steps of calculate ambiguity integers with phase difference information only by GA algorithm 
are as follows:

Step1: Determine the size of population P, generations G, crossover and mutation probabilities.
Step 2: Determine the parameters that will be optimized and encode these parameters with decimal integer.
Step 3: Determine the initial reference vector.
Step 4: Calculate the values of cost function M and the number of votes D.
Step 5: Propose the fitness function and calculate the fitness values of each individual.
Affected from phase difference measured noises, the number of votes may less than 6 even if Pi is the optimal 

individual. We propose a fitness function which consider the number of votes D and the maximum cost function 
value M that complies with ϵ comprehensively.

	 F = M · 10−D, (M = max(Mij < ε))� (10)

where Fstands for the fitness function.
Step 6: Rank the population by fitness values and retain the best individual.
Step 7: Execute the step of crossover.
Step 8: Execute the step of mutation.
A new population has been created by combining the offspring from crossovers and mutated individuals. 

To avoid the premature convergence, we reinitialize 30% individuals with higher fitness values. If the fitness 
values of the best individual Pi satisfy the termination conditions in generation G, we will stop the parameter 
optimization. Otherwise, we will execute step 9.
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Step 9: Repeat steps 4–8 with the opposite reference direction in step 3.
Step 10: Repeat step.
If the fitness values of the best individual satisfy the termination conditions in generation G, we will stop the 

parameter optimization. Otherwise, we will go back to step 3 and continue the following processes. The flow 
chart is shown in Fig. 3.

According to the geometric characteristics of a regular tetrahedral antenna, there are a certain number of 
wavelengths between any two antennas: N ∈ [ −N_max, N_max ], N_max = ceil(

√
3r

/
λ + 0.5)

, where 
√

3r is the length of the regular tetrahedron and λ is the wavelength. To distinguish the algorithm 
proposed in this paper from the algorithm proposed in previous work, the algorithm mentioned in this paper 
will be referred to as “GA-UWB” in the following sections, and the algorithm introduced in the previous work 
will be abbreviated as “WP-UWB.”

The time complexity of GA-UWB primarily depends on the population size P, generations G, and chromosome 
length L. As optimized three parameters are encoded with decimal integers, we define the chromosome length 
L = 3. The overall complexity O(P · G · L)max = P × G × L. In contrast, WP-UWB relies on time difference 
-based initial guesses and local neighborhood scanning. Let K denote the number of candidate solutions explored 
per iteration. With N ambiguity integers to resolve, WP-UWB’s complexity approximates O(K · N), where K 
grows exponentially with N in noisy scenarios.

GA-UWB employs global stochastic optimization, allowing it to escape local minima caused by time 
difference information noise. However, this requires larger P and G, increasing runtime. WP-UWB, while faster 
per iteration (linear in K), risks early convergence to suboptimal solutions due to time difference information 
noise sensitivity. In simulations, GA-UWB’s runtime scales quadratically with G, whereas WP-UWB’s runtime 
depends on the noise-induced expansion of K. Empirical tests show GA-UWB achieves stable convergence at 
SNR > 10 dB with G = 50, while WP-UWB fails consistently under high time difference information noise 
even with K = 103.This trade-off highlights GA-UWB’s robustness in noisy environments at the cost of higher 
computational load, making it suitable for offline or high-performance UAV platforms.

Fig. 3.  Flow chart of GA-UWB algorithm.

 

Scientific Reports |        (2025) 15:14394 5| https://doi.org/10.1038/s41598-025-97961-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Simulation
To demonstrate the effectiveness and performance of the proposed algorithm, simulation and numerical 
experiments were conducted. Using GA-UWB and WP-UWB algorithm, respectively, we predict the source 
direction for multiple location points and evaluate the two algorithms by calculation accuracy and success rate 
of source identification.

Assuming that the noise in time difference and phase difference measurements follows Gaussian white noise 
characteristics: nτ ∼ N (0, στ ) and nϕ ∼ N (0, σϕ), where στ  is the time difference measurement noise and 
σϕ is the phase difference measurement noise. Meanwhile, the noises of each receiver are independent. For 
examining the accuracy of GA-UWB and WP-UWB, a series numerical experiments were conducted.

The radius of the regular tetrahedral antenna array’s circumscribed sphere is about 12 cm, with the center 
point coordinates at (0, 0, 0). In order to meet the characteristics of a far-field signal source, 92 test points are 
uniformly selected on the surface of a sphere with a radius of 150 m, shown in Fig. 4.

Utilizing GA-UWB and WP-UWB separately, source direction estimation is conducted on these 92 points 
with the influence of different noise levels. Estimation error analysis is performed on the two sets of algorithms, 
as expressed in Eq. (5).

	 err = abs(1 − vtrue
T · vpre) × 100%� (11)

Where vtrue is the true far-field signal direction vector and vpre is the estimated far-field signal direction vector. 
While err ⩾ 0.0873 (the angle between the true far-field signal direction vector and the estimated far-field 
signal direction vector is greater than 5 degrees), it is considered that the estimation vector is wrong.

In simulations, GA-UWB’s runtime scales quadratically with population size G. However, the accuracy does 
not increase with the increase of G. Ultimately, we chose G = 70. Additionally, since the mutation probability 
should be small and the crossover probability should be large, the crossover probability Pc = 0.75 and mutation 
probability Pm = 0.03 were selected after a series of simulation analyses.

Taking the source direction with coordinates (0, 0, 150) as an example, the integer ambiguity is solved by 
using genetic algorithm.The curve of the fitness function value changing with the number of iterations during 
the optimization process is shown in Fig. 5. It can be seen that this algorithm has good convergence. When the 
calculation reaches the 12th generation, the fitness of the population reaches the minimum value, indicating that 
the optimization process has ended.

Influence of time difference measurement noises
Firstly, four random white noises are added to time difference signals received by the four antennas separately. 
The signal-to-noise ratio (SNR) ranges from 0dB to 50dB with 2dB increment and from 50dB to 100dB 
with 5dB increment, with a total of 36 groups. Each point undergoes 50 direction estimations at each SNR 
level. Figure 6 shows the variation of the average number of failure points as SNR level changes when using two 
algorithms for source direction estimation.

The result shows that as the time difference signal noise increases, WP-UWB algorithm fails to estimate the 
direction of each test point more frequently. This is because WP-UWB algorithm uses initial values determined 
from the noisy time difference signals when solving for the ambiguous integers.

Influence of phase difference measurement noise
Four random white noises are added to phase signals received by the four antennas separately. Figure 7 represents 
the variation of the average number of failure points as SNR level changes when using two algorithms for source 
direction estimation.

Fig. 4.  Simulated test points.
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Fig. 7.  Average number of failure points with phase difference measurement noises.

 

Fig. 6.  Average number of failure points with time difference measurement noises.

 

Fig. 5.  Optimal fitness curves of genetic algorithm.
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The result shows that as the phase difference signal noise increases, GA-UWB algorithm fails to estimate the 
direction of each test point more frequently. When SNR exceeds 18dB, the influence of noises on signals become 
almost negligible.

Influence of time difference measurement noise and phase difference measurement noise
To simulate time difference and phase difference signals that are more representative of real conditions, series 
of random white noises are added to time difference signals and phase signals received by the four antennas 
separately. Figure 8 represents the variation of the average number of failure points.

The result shows that as the signal noise increases, both WP-UWB and GA-UWB algorithms experience a 
higher number of failures in estimating the direction vectors at various test points. However, when using the 
GA-UWB algorithm, it performs better than WP-UWB algorithm in both the number of estimation failures and 
the degree of angular deviation.

Influence of Laplace noise
Three conditions with Laplace noises have been analyzed in this paper. The noises shown in Fig. 9 will be added 
on time difference information separately, phase difference information separately, time difference and phase 
difference information synthetically.

Figure 10 shows the errors between estimated directions and true directions with 92 points by WP-UWB 
algorithm. Figure 11 shows the errors between estimated directions and true directions with 92 points by GA-

Fig. 9.  Laplace noises.

 

Fig. 8.  Average number of failure points.
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UWB algorithm. The results show that GA-UWB algorithm can obtain more estimated direction with the 
state of phase difference information with Laplace noise separately and the state of phase and time difference 
information with Laplace noise synthetically.

Influence of impulse noise
Three conditions with impulse noises have been analyzed in this paper. The noises shown in Fig. 12 will be added 
on time difference information separately, phase difference information separately, time difference and phase 
difference information synthetically.

Figure 13 shows the errors between estimated directions and true directions with 92 points by WP-UWB 
algorithm. Figure 14 shows the errors between estimated directions and true directions with 92 points by GA-
UWB algorithm. The results show that GA-UWB algorithm can obtain more estimated direction with the 
state of phase difference information with impulse noise separately and the state of phase and time difference 
information with impulse noise synthetically.

Combined with Sects.  "Influence of phase difference measurement noise", "Influence of time difference 
measurement noise and phase difference measurement noise", "Influence of Laplace noise" and "Influence of 
Impulse noise", the GA-UWB algorithm has a better performance to the WP-UWB algorithm in estimating 
direction vectors.

Fig. 11.  Error between estimated direction and true direction with GA-UWB algorithm.

 

Fig. 10.  Error between estimated direction and true direction with WP-UWB algorithm.
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Conclusions
In this paper, we derived the remote source direction with a tetrahedral array by phase difference signals. In this 
process, we have taken use of phase difference signals only, which reduced the probability of source direction 
identification failure caused by time difference measurement error. When considering noise both in time 
difference and phase difference signals, the algorithm proposed in this paper achieves an average success rate of 
approximately 50.35% in estimating the source direction when SNR = 0dB. In contrast, the WP-UWB algorithm 
achieves only 11.02% success on average. As the SNR increases, the success rate of the algorithm proposed in 
this paper increases to an average of 92.76% when SNR = 10dB, while the WP-UWB success rate increases to 
43.80% only.

The proposed GA-UWB algorithm significantly reduces failure rates and angular deviations compared to 
WP-UWB under noisy conditions, as demonstrated by simulations. However, these results are specific to the 
tested scenarios, where Gaussian white noise models were assumed for both time difference and phase difference 
measurements. While the algorithm shows robustness in these controlled environments, its performance may 
vary under non-Gaussian noise, correlated interference, or hardware calibration errors. Future work will validate 
the method in real-world conditions, including multipath propagation and dynamic swarm topologies. Despite 
these limitations, the GA-UWB framework provides a promising solution for UAV swarm localization in GNSS-
denied settings.

Meanwhile, it is not necessary to install fixed UWB base stations in the process of UAV positioning, which 
extends the scope of the UAV swarm. Subsequently, according to the method proposed in this paper, we will 

Fig. 13.  Error between estimated direction and true direction with WP-UWB algorithm.

 

Fig. 12.  Impulse noises.
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study the hardware and software development of mutual positioning sensor without fixed base stations between 
UAV swarms based on UWB technology, sensor networking, flight test of UAV swarm without fixed base stations 
independent of GNSS system, etc. to promote the practical development of UAV swarms.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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