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The quintic perturbed Gerdjikov–Ivanov equation, a non-linear model in optics and quantum field 
theory, describes the propagation of optical pulses in nonlinear media with quintic nonlinearity and 
perturbation effects. This study aims to derive exact traveling wave solutions for the quintic perturbed 
Gerdjikov–Ivanov equation using the modified extended mapping method. The method efficiently 
generates a broad spectrum of solutions, including bright, dark, periodic, singular periodic, hyperbolic, 
plane, Weierstrass, and Jacobi elliptic forms, extending the known solution space. Compared 
to previous techniques, such as the generalized exponential rational function and Kudryashov’s 
methods, the modified extended mapping method provides a more diverse set of analytical 
solutions with improved computational efficiency. Graphical representations using Mathematica 
illustrate the physical properties and stability of these solutions, confirming their relevance to optical 
communication and nonlinear wave phenomena. This work advances the understanding of soliton 
dynamics in nonlinear media and demonstrates the potential of the modified EM method in solving 
complex non-linear partial differential equations.

Soliton pulse propagation is a fundamental concept in understanding various models within optics and 
metamaterials, particularly those characterized by intensity-dependent phase variations. These models are 
essential in developing technologies such as optical pulse compressors, fiber-optic amplifiers, and communication 
systems. The distinctive feature of solitons—their ability to maintain shape during propagation—has garnered 
significant scientific interest. As a result, considerable efforts were devoted to obtaining analytical solutions for 
non-linear partial differential equations (NPDEs) using advanced computational methods1–8. While extensively 
studied models like the non-linear Schrödinger equation (NLSE) have paved the way, other equations also 
received attention in recent literature. Those include the complex Ginzburg-Landau9, Sasa-Satsuma10, 
Lakshmanan-Porsezian-Daniel11, and longitudinal wave equation within the context of a Magneto-Electro-
Elastic annular bar12.

To meet the demands of modern telecommunication systems, this research focuses on the pGI equation, 
a crucial non-linear evolution equation13. The Gerdjikov-Ivanov (GI) equation, a cornerstone model in the 
study of non-linear optical fibers, especially in crystal fibers of photonic nature, has been extensively studied 
due to its intricate dynamics. Deriving exact analytical solutions for such partial differential equations remains 
a formidable challenge, often requiring numerical or approximate methods. Nonetheless, exact solutions are 
inherently preferred for their directness and unrestricted applicability. Previous research has explored the QpGI 
equation through various approaches: the generalized exponential rational function method14; the hyperbolic 
extended function and generalized Kudryashov’s methods15; the Nucci reduction method16; the conformable 
derivative has played a key role in exploring chirp soliton solutions with hyperbolic functional terms17; and 
the Riccati-Bernoulli sub-ODE method, combined with the Bäcklund transformation18. Collectively, these 
methodologies have significantly advanced our knowledge of the GI equation and its implications for non-linear 
phenomena.
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In recent times, a plethora of mathematical techniques have been explored for constructing solutions to non-
linear partial differential equations (NPDEs). Prominent among these are the Riemann-Hilbert method19,20, 
the Jacobi elliptic function method21,22, Lie symmetric analysis23,24, the auxiliary equation method25,26, the 
Sine-Gordon expansion method27,28, the tan-cot function method29, the Sardar-sub equation technique30, 
the simple equation method31, the modified simple equation method32, the first integral method33,34, Hirota’s 
bilinear method35,36, the homogeneous balance method37,38, the Darboux-Like transformation method39, and 
the exp(− ϕ (ξ )) method40.

The modified EM method has emerged as a powerful tool for uncovering diverse soliton solutions in 
various NPDEs. Studies have successfully employed the EM method to find bright, dark, and singular soliton 
solutions in complex systems like coupled non-linear Maccari systems41 and the (4 + 1)-dimensional Davey–
Stewartson–Kadomtsev–Petviashvili equation42. It has also been instrumental in discovering novel solutions 
beyond solitons, including singular periodic, rational, exponential, and Weierstrass elliptic forms in models 
like the concatenation model43 and the KP-BBME water wave model [44]. The method’s applicability extends 
to other contexts, as demonstrated in45 where it retrieved solutions for the Gilson-Pickering equation used in 
plasma physics. The applied method outperforms previous techniques by generating a more diverse set of exact 
solutions, extending beyond those mentioned before.

This research work treats the dynamics of soliton propagation through the (1 + 1)-dimensional QpGI equation. 
Unlike the commonly studied cubic non-linear Schrödinger equation, the QpGI equation incorporates quintic 
non-linearity. To carry out an investigation of the soliton solutions of this model, we employ the modified EM 
method. The derived solutions are visually represented through 2D and 3D and density plots to interpret their 
non-linear physical behavior. A comprehensive analysis of the obtained results, including their classification, is 
presented in subsequent sections, along with concluding remarks.

Description of the adopted QpGI model
The key contribution of this article is to employ a novel method in the derivation of various novel solutions to a 
variant form of an QpGI. In particular, the QpGI equation is given as in13 by:

	 iAt + a Axx + b
∣∣A4∣∣ A + i c A2A∗

x = i
[
a1Ax + b1

(
A|A|2n

)
x

+ c1
(
|A|2n

)
x
A

]
,� (1)

given that A (x, t) is the complex wave function that, when x and t are the spatial and temporal variables in 
turn, acts as the complex-valued wave structure representing optical solitons in polarization-preserving fibers. 
The first term, At, denotes the solitons’ linear temporal progression. The group velocity dispersion is denoted 
by Axx, the non-linear dispersion with coefficients a, b, and c, respectively, is represented by A2A∗

x, and 
the model’s current quintic non-linearity is shown by 

∣∣A4
∣∣ A. The imaginary unit “ i” is represented here as 

i =
√

−1. The complex conjugate of A (x, t) is A∗ (x, t). Real-valued constants make up each of the three 
associated parameters, a, b, and c. The full non-linearity effects are denoted by the parameter n; the inter-
modal dispersion coefficient is denoted by a1, and the higher-order dispersion and self-steepening coefficients 
for short pulse terms are represented by b1 and c1, respectively.

Functioning of modified EM method
In order to solve the QpGI model, it is supposed that Eq. (1) possesses a solution of the following form, resembling 
a traveling wave solution:

	 A (x, t) = U (ξ ) ei (y(x,t)),� (2)

where

	 y (x, t) = −κ x + ω t + θ and ξ = x − τ t.� (3)

It should be remembered that the phase component of the soliton is represented by y (x, t), and the amplitude 
function U (ξ ) indicates the shape properties of the wave pulse. Furthermore, κ , where θ  is the phase constant, 
ω  is the wave number, and τ  is the soliton velocity, determines the soliton frequency.

By substituting Eq.’s (2) and (3) into Eq. (1), the imaginary part, after integrating with respect to ξ , will be:

	
(−a1 − 2a κ − τ) U (ξ) + 1

3c U (ξ)3 − (b1 + 2mb1 + 2mc1)
1 + 2m

U (ξ)1+2m = 0.� (4)

After comparing the coefficients of the independent terms, we get the following results:

	
τ = −a1 − 2aκ, c = 0 and b1 = −4

5c1� (5)

On the other side, the following real component will arise:

	
(
−a1 κ − aκ2 − ω

)
U (ξ) − c κ U (ξ)3 + bU (ξ)5 − b1κU (ξ)1+2m + aU ′′ (ξ) = 0.� (6)

Now, applying the balance rule to the non-linear ordinary differential equation (Eq.  (6)), U ′ ′ (ξ ) and 
U2m+1 (ξ ) , will lead to the balance number n:
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n = 1

m
, m ≥ 2.� (7)

This is a fractional number, so a transformation function can be assumed in the form:

	 U (ξ ) = (G (ξ ))
1
m .� (8)

Letting m = 2 and substituting Eq. (8) with the aid of the obtained parameters in Eq. (5), Eq. (6) gets the form:

	 A1G (ξ )2 + A2G (ξ )4 − aG′ (ξ )2 + 2aG (ξ ) G′ ′ (ξ ) = 0,� (9)

where

	 A1 = 4(−a1κ − a κ 2 − ω ) and A2 = 4 (b − b1κ ) .� (10)

Currently, the goal is finding the analytical travelling wave solutions for the QpGI (Eq.  (1)) by applying the 
modified EM technique. In reference45, the applied steps are outlined in detail. To express the optical soliton 
solutions in terms of x and t, we will examine the solutions of Eq. (9). To achieve this, we propose the following 
form for the solution of Eq. (9):

	
G (ξ ) = α 0 +

∑
N
j=1

(
α jΩ j (ξ ) + α −j

Ω j (ξ )

)
+

∑
N
j=2

∼
β jΩ j−2 (ξ ) Ω ′ (ξ ) +

∑
N
j=−1β jΩ j (ξ ) Ω ′ (ξ ) ,� (11)

where α 0, α j , α −j , β j , and 
∼
β j  are constants, to be calculated subsequently in conjunction with Ω (ξ ) 

that fulfills the non-linear ODE (Eq. (9)).
Due to the scheme of the modified EM method45, Ω (ξ ) also satisfies

	

Ω′ (ξ) =∈

√√√√√√
6∑

l = 0
l ̸= 5

⟩l (Ω (ξ))l,
� (12)

where ∈= ±1. Now, in the supposed solution (Eq. (11)), N = 1 will be implied by the homogeneous balance 
for G (ξ ) G′ ′ (ξ ) in Eq.  (9) and any one of G′ (ξ )2 or G (ξ )4, and thus reaching the formal solution as 
follows13,18:

	
G (ξ ) = α 0 + α 1Ω (ξ ) + α −1

Ω (ξ ) + β 1
Ω (ξ ) ∗ Ω ′ (ξ ) .� (13)

Now, Eq.’s (12) and (13) will be substituted in Eq. (9). By equating to zero all coefficients containing the same 
order of Ω(ξ), a system of algebraic equations involving the parameters α 0, α 1, α −1 and β 1 is generated. The 
resulting algebraic system is solved to obtain these parameter values, which are then inserted into the solution 
form (Eq. 13) to construct the proposed analytical solutions.

Solitary wave solutions
Identification and classification
Sets of solutions 1
At ϱ 0 = ϱ 1 = ϱ 3 = ϱ 6 = 0, by solving a group of 16 non-linear algebraic equations the resulting sets of 
solutions will be:

	
Set 1.1 =

{
α 0 = α −1 = β 1 = 0, ϱ 2 = −A1

a
, α 1 =∈

√
−3aϱ 4

A2

}

	
Set 1.2 =

{
α 1 = β 1 = A2 = 0, α 0 =∈ α −1

√
aϱ 4
A1

, α −1 ̸= 0, ϱ 2 = −A1

a

}

It is worth mentioning that in Set 1.2, the parameter α 0 has been represented in terms of the parameter α −1. 
Now, the resulting soliton solutions will be:

	

A1 (x, t) =

√√√√∈
√

−3A1

A2
sech

(
(x − τt)

√
−A1

a

)
ei (y(x,t)) ,

1
a

(
−a1κ − a κ2 − ω

)
> 0,� (14)
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A2 (x, t) =

√√√√∈
√

−3A1

A2
sec

(
(x − τt)

√
A1

a

)
ei (y(x,t)) ,

1
a

(
a1κ + a κ2 + ω

)
< 0,� (15)

and

	

A3 (x, t) =

√√√√α−1

√
a⟩4

A1

(
∈ + cosh

(
(x − τt)

√
−A1

a

))
ei (y(x,t)) ,

1
a

(
a1κ + a κ2 + ω

)
> 0.� (16)

The solutions obtained in Eq.’s (14–16) are bright, singular periodic and hyperbolic soliton solutions, respectively.

Set of solutions 2
At ϱ 1 = ϱ 3 = ϱ 6 = 0, ϱ 0 = ϱ 2

2
4ϱ 4

, by solving a group of 21 non-linear algebraic equations the resulting sets 
of solutions will be:

	
Set 2.1 =

{
α 0 = β 1 = 0, α 1 = ϵ

√
3A1ϱ 4
2A2ϱ 2

, α −1 = ϵ

√
3A1ϱ 4
8A2ϱ 2

, a = A1

2ϱ 2

}

	
Set 2.2 =

{
α 0 = 0, α 1 = ϵ

√
3A1ϱ 4
8A2ϱ 2

, α −1 = ϵ

√
3A1ϱ 2
32A2ϱ 4

, β 1 = ϵ

√
3A1

8A2ϱ 2
, a = A1

2ϱ 2

}

	
Set 2.3 =

{
α 0 = α 1 = α −1 = 0, β 1 =

√
3A1

2A2ϱ 2
, a = A1

2ϱ 2

}

Now, the resulting solutions will be:

	

A4 (x, t) =

√√√√2 ∫ ⟩4

⟩2

√
−3A1

A2
coth

(
(x − τt)

√
−⟩2√

2

)
+ 1

2 ∫
√

−3A1

A2
tanh

(
(x − τt)

√
−⟩2√

2

)
ei (y(x,t));

a1κ + aκ2 + ω

b − b1κ
> 0, ⟩2 < 0

� (17)

	

A5 (x, t) =

√√√√∈
4

√
−3A1

A2

(
2csch

(
2 (x − τt)

√
−⟩2√

2

)
+ coth

(
(x − τt)

√
−⟩2√

2

)
+ tanh

(
(x − τt)

√
−⟩2√

2

))
ei (y(x,t));

a1κ + aκ2 + ω

b − b1κ
> 0, ⟩2 < 0

� (18)

	

A6 (x, t) =

√√√√∈
√

−3A1

A2
csch

(
2 (x − τt)

√
−⟩2√

2

)
ei (y(x,t));

a1κ + aκ2 + ω

b − b1κ
⟨0, ⟩2⟩ 0,

� (19)

	

A7 (x, t) =

√
1
2 ∈

√
3A1

A2

[
ϱ4

ϱ2
cot

(
(x − τt) √

ϱ2√
2

)
+ tan

(
(x − τt) √

ϱ2√
2

)]
ei (y(x,t));

a1κ + aκ2 + ω

b − b1κ
⟨0, ϱ2⟩ 0,

� (20)

	

A8 (x, t) =

√
∈
4

√
3A1

A2

[
2 csc

(
2 (x − τt) √

ϱ2√
2

)
+ cot

(
(x − τt) √

ϱ2√
2

)
+ tan

(
(x − τt) √

ϱ2√
2

)]
ei (y(x,t));

a1κ + aκ2 + ω

b − b1κ
⟨0, ϱ2⟩ 0

� (21)

and

	

A9 (x, t) =

√
1
2 ∈

√
3A1

A2
csc

(
2 (x − τt) √

ϱ2√
2

)
ei (y(x,t))

; a1κ + aκ2 + ω

b − b1κ
⟨0, ϱ2⟩ 0.

� (22)
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Equations (17) and (18) yield singular bright combo soliton solutions. Equation (19) represents a singular soliton 
solution. Similarly, Eqs. (20) and (21) correspond to singular periodic combo soliton solutions, while Eq. (22) 
describes a singular periodic soliton solution.

Set of solutions 3
At ϱ 3 = ϱ 4 = ϱ 6 = 0, by solving a group of 17 non-linear algebraic equations the resulting sets of solutions 
will be:

	
Set 3.1 =

{
α −1 = β 1 = A2 = 0, α 1 = −A1α 0

aϱ 1
, ϱ 2 = −A1

a

}

	
Set 3.2 =

{
α 0 = α 1 = β 1 = 0, A1 = −aϱ 2, ϱ 0 = −A2α 2

−1

3a

}

	
Set 3.3 =

{
α 1 = β 1 = 0, α 0 = ϵ

√
aϱ 2
A2

, α −1 = ϵ

√
−3aϱ 0

A2
, A1 = aϱ 2, ϱ 1 = ϵ

√
−4ϱ 2ϱ 0

3

}

Thus, the obtained solutions will be:

	

A10 (x, t) =

√√√√α 0

2

[
1 + sinh

(
2 (x − τ t)

√
−A1

a

)]
ei (y(x,t)) ; ϱ 2 > 0, ϱ 0 = 0,� (23)

	

A11 (x, t) =

√√√√α 0

2

[
1 + sin

(
2 (x − τ t)

√
−A1

a

)]
ei (y(x,t)) ; ϱ 2 < 0, ϱ 0 = 0,� (24)

	
A12 (x, t) =

√√
−3aϱ 2

A2
csch

(
(x − τ t) √

ϱ 2
)
ei (y(x,t)) ; ϱ 0 > 0, ϱ 2 > 0, ϱ 1 = 0,� (25)

and

	
A13 (x, t) =

√√
3aϱ2
A2

csc
(
(x − τ t)

√
−ϱ 2

)
ei (y(x,t)) ; ϱ 0 > 0, ϱ 2 < 0, ϱ 1 = 0.� (26)

The solutions derived from Set 3.1, A10 (x, t) and A11 (x, t) exhibit hyperbolic and periodic soliton 
characteristics, respectively. Equation (25) yields a singular soliton solution, A12 (x, t), while Eq. (26) produces 
a singular periodic soliton solution, A13 (x, t).

Set of solutions 4
At ϱ 0 = ϱ 1 = ϱ 2 = ϱ 6 = 0, by solving a group of 17 non-linear algebraic equations the resulting sets of 
solutions will be:

	
Set 4 =

{
α 0 = α −1 = 0, β 1 = ϵ

√
−3a

4A2
, ϱ 4 = −4A2α 2

1

3a
, A1 = 0

}

So, the resulting solutions will be:

	
A14 (x, t) =

√√
− 3a

A2

ϵϱ 3(2√−ϱ 4 − (x − τ t) ϱ 3)
(x − τ t)2ϱ 2

3 − 4ϱ 4
ei (y(x,t)); ϱ 4 < 0,

3a

A2
< 0,� (27)

which is a plane wave solution.

Set of solutions 5
At ϱ 0 = ϱ 1 = ϱ 6 = 0, by solving a group of 18 non-linear algebraic equations the resulting set of solutions 
will be:

	
Set 5 =

{
α −1 = β 1 = 0, α 0 = ϵ

√
−A1

A2
, α 1 = ϵ

√
3aϱ 3

16A1A2
, ϱ 2 = A1

a
, ϱ 4 = 3aϱ 2

3
16A1

}
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A15 (x, t) =

√√√√ϵ

√
−A1

A2

[
1 − 1

4

√
3

aϱ 3

(
1 + tanh

(
1
2 (x − τ t)

√
A1

a

))]
ei (y(x,t)),� (28)

	

A16 (x, t) =

√√√√ϵ

√
−A1

A2

[
1 +

√
−3

16aϱ 3

(
1 + coth

(
1
2 (x − τ t)

√
A1

a

))]
ei (y(x,t)),� (29)

and

	

A17 (x, t) =

√√√√√ϵ

√
−A1

A2


1 +

ϵ
√

−3aϱ 3sech
(

1
2 (x − τ t)

√
A1
a

)

4
(

−A1 + 1
2 a

√
3ϱ 2

3tanh
(

1
2 (x − τ t)

√
A1
a

))

ei (y(x,t)).� (30)

The solutions obtained in Eq.’s (28–30) are dark, singular and shock soliton solutions.

Set of solutions 6
When ϱ 2 = ϱ 4 = ϱ 6 = 0, ϱ 3 > 0, by solving a group of 19 non-linear algebraic equations, the resulting set 
of solutions will be:

	
Set 6 =

{
α 0 = ϵ

√
A1

2A2
, α 1 = β 1 = 0, α −1 = − ϵ

2aϱ 3

√
A3

1
2A2

, ϱ 0 = A3
1

24a3ϱ 2
3

, ϱ 1 = − A2
1

3a2ϱ 3

}

The results obtained by set 6 are:

	

A18 (x, t) =

√√√√√ϵ

√
A1

2A2


1 − A1

2aϱ 3

1

℘
(

1
2
√

ϱ 3 (x − τ t) ; − 4ϱ 1
ϱ 3

, − 4ϱ 0
ϱ 3

)

ei (y(x,t)),� (31)

where ℘
(

1
2
√

ϱ 3 (x − τ t) ; − 4ϱ 1
ϱ 3

, − 4ϱ 0
ϱ 3

)
 is the Weierstrass ℘-function.

Set of solutions 7
When ϱ 1 = ϱ 3 = ϱ 6 = 0, the resulting set of the solutions for the algebraic set of equations will be:

	
Set 7.1 =

{
α 0 = β 1 = 0, α −1 = ϵ

√
3aϱ0
A2

, α 1 = ϵA1

4

√
3

aA2ϱ 0
, ϱ 2 = A1

2a
, ϱ 4 = A2

1

16a2ϱ 0

}

	
Set 7.2 =

{
α 0 = 0, α −1 = ϵ

2

√
3aϱ0
A2

, β 1 = ϵ

2

√
3a

A2
, α 1 = ϵA1

8

√
3

aA2ϱ 0
, ϱ 2 = A1

2a
, ϱ 4 = A2

1

16a2ϱ 0

}

	
Set 7.3 =

{
α 0 = α 1 = α −1 = 0, β 1 =

√
3a

A2
, ϱ 2 = A1

2a
, ϱ 4 = A2

1

16a2ϱ 0

}

The solutions presented in Eqs.  (32–48) are expressed in terms of Jacobi elliptic functions 
dn (ξ , µ ) , sn (ξ , µ ) , nc (ξ , µ ) , sc (ξ , µ ) , nd (ξ , µ ) , cd (ξ , µ ) , sd (ξ , µ ) , cn (ξ , µ ) a n d 
dn (ξ , µ ). It is observed that variations in the parameters ϱ 0, ϱ 2 and ϱ 4 result in change of the solution 
forms.

At 
{

ϱ 0 = 1, ϱ 2 = −
(
1 + µ 2)

, ϱ 4 = µ 2 }
, the solutions will be:

	
A19 (x, t) =

√
ϵ

4 cd (x − τ t, µ )

[
A1

√
3

aA2ϱ 0
cd2 (x − τ t, µ ) + 4

√
3aϱ 0
A2

]
ei (y(x,t)),� (32)

	
A20 (x, t) =

√
ϵ

8 cd (x − τ t, µ )

[
4
√

3aϱ 0
A2

+ 4 (µ − 1) nd (x − τ t, µ ) sd (x − τ t, µ )
√

3a

A2
+ cd2 (x − τ t, µ ) A1

√
3

aA2ϱ 0

]
ei (y(x,t)),� (33)

and

	
A21 (x, t) =

√
(µ − 1)

√
3a

A2

nd (x − τ t, µ ) sd (x − τ t, µ )
cd (x − τ t, µ ) ei (y(x,t)).� (34)
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At 
{

ϱ 0 = µ 2 − 1, ϱ 2 = 2 − µ 2, ϱ 4 = −1
}

, the solutions will be:

	
A22 (x, t) =

√√√√
−

dn2 (x − τ t, µ ) A1

√
3

aA2ϱ 0
+ 4

√
3aϱ 0

A2

4 dn (x − τ t, µ ) ei (y(x,t)),
� (35)

	
A23 (x, t) =

√√√√4µ cn (x − τ t, µ ) sn (x − τ t, µ )
√

3a
A2

− 4
√

3aϱ 0
A2

− A1

√
3

aA2ϱ 0
dn2 (x − τ t, µ )

8 dn (x − τ t, µ ) ei (y(x,t)),
� (36)

and

	
A24 (x, t) =

√√√√ ϵ
(

A1

√
3

aA2ϱ 0
nc2 (x − τ t, µ ) + 4

√
3aϱ 0

A2

)

4 nc (x − τ t, µ ) ei (y(x,t)).
� (37)

At 
{

ϱ 0 = −µ 2, ϱ 2 = 2µ 2 − 1, ϱ 4 = −µ 2 + 1
}

, the solutions will be

	
A25 (x, t) =

√√√√ ϵ
(

4 dc (x − τ t, µ ) sc (x − τ t, µ )
√

3a
A2

+ A1

√
3

aA2ϱ 0
nc2 (x − τ t, µ ) + 4

√
3aϱ 0

A2

)

8 nc (x − τ t, µ ) ei (y(x,t)),
� (38)

and

	
A26 (x, t) =

√√
3a

A2

dc (x − τ t, µ ) sc (x − τ t, µ )
nc (x − τ t, µ ) ei (y(x,t)).� (39)

At 
{

ϱ 0 = −1, ϱ 2 = −µ 2 + 2, ϱ 4 = µ 2 − 1
}

, the solutions will be

	
A27 (x, t) =

√√√√ ϵ
(

nd2 (x − τ t, µ ) A1

√
3

aA2ϱ 0
+ 4

√
3aϱ 0

A2

)

4 nd (x − τ t, µ ) ei (y(x,t)),
� (40)

	
A28 (x, t) =

√√√√ ϵ
(

4 µ cd (x − τ t, µ ) sd (x − τ t, µ )
√

3a
A2

+ nd2 (x − τ t, µ ) A1

√
3

aA2ϱ 0
+ 4

√
3a ϱ 0

A2

)

8 nd (x − τ t, µ ) ei (y(x,t))� (41)

and

	
A29 (x, t) =

√
µ

√
3a

A2

cd (x − τ t, µ ) sd (x − τ t, µ )
nd (x − τ t, µ ) ei (y(x,t)).� (42)

At 
{

ϱ 0 = µ 2 − 2µ 3 + µ 4, ϱ 2 = − 4
µ

, ϱ 4 = −1 + 6µ + µ 2}
, the obtained solutions will be:

	
A30 (x, t) =

√
ϵ µ A1

√
3

aA2ϱ 0

cn (x − τ t, µ ) dn (x − τ t, µ )
4 (1 + µ sn (x − τ t, µ )) + ϵ

µ

√
3aϱ 0
A2

(1 + µ sn (x − τ t, µ ))
cn (x − τ t, µ ) dn (x − τ t, µ )ei (y(x,t)),� (43)

	
A31 (x, t) =

√
ϵ

2
∑

9
i=1s(i,1) (µ ) k(i,1) (ξ , µ )ei (y(x,t)),� (44)

where
s(1,1) (µ ) = −µ

√
3a
A2

; k(1,1) (ξ , µ ) = cn(x−τ t,µ ) dn(x−τ t,µ )
(1+µ sn(x−τ t,µ ))2

s(1,2) (µ ) = −µ 2
√

3a
A2

; k(1,2) (ξ , µ ) = cn(x−τ t,µ ) dn(x−τ t,µ ) sn(x−τ t,µ )
[1+µ sn(x−τ t,µ )]2

s(1,3) (µ ) = −µ
√

3a
A2

; k(1,3) (ξ , µ ) = cn(x−τ t,µ ) sn(x−τ t,µ )
dn(x−τ t,µ )[1+µ sn(x−τ t,µ )]

s(1,4) (µ ) = −
√

3a
A2

; k(1,4) (ξ , µ ) = dn(x−τ t,µ ) sn(x−τ t,µ )
cn(x−τ t,µ ) [1+µ sn(x−τ t,µ )]

s(1,5) (µ ) = −µ 2
√

3a
A2

; k(1,5) (ξ , µ ) = cn(x−τ t,µ ) sn2(x−τ t,µ )
dn(x−τ t,µ ) [1+µ sn(x−τ t,µ )]

s(1,6) (µ ) = −µ
√

3a
A2

; k(1,6) (ξ , µ ) = dn(x−τ t,µ ) sn2(x−τ t,µ )
cn(x−τ t,µ ) [1+µ sn(x−τ t,µ )]

s(1,7) (µ ) = 1
µ

√
3aϱ0
A2

; k(1,7) (ξ , µ ) = 1
cn(x−τ t,µ ) dn(x−τ t,µ )
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s(1,8) (µ ) =
√

3aϱ0
A2

; k(1,8) (ξ , µ ) = sn(x−τ t,µ )
cn(x−τ t,µ ) dn(x−τ t,µ )

s(1,9) (µ ) = µ A1
4

√
3

aA2ϱ 0
; k(1,9) (ξ , µ ) = cn(x−τ t,µ ) dn(x−τ t,µ )

1+µ sn(x−τ t,µ ) and

	
A32 (x, t) =

√∑
6
i=1s(i,1) (µ ) k(i,1) (ξ , µ )ei (y(x,t)).� (45)

At 
{

ϱ 0 = 1
4 , ϱ 2 = 1

2 µ 2 − 1, ϱ 4 = µ 4

4

}

	
A33 (x, t) =

√
ϵ A1

4

√
3

aA2ϱ 0

sn (x − τ t, µ )
1 + µ dn (x − τ t, µ ) + ϵ

√
3aϱ 0
A2

1 + µ dn (x − τ t, µ )
sn (x − τ t, µ ) ei (y(x,t)),� (46)

	
A34 (x, t) =

√
ϵ

2
∑

7
i=1s(2,i) (µ ) k(2,i) (ξ , µ )ei (y(x,t)),� (47)

where
s(2,1) (µ ) =

√
3a
A2

; k(2,1) (ξ , µ ) = cn(x−τ t,µ ) dn(x−τ t,µ )
[1+µ dn(x−τ t,µ )] sn(x−τ t,µ )

s(2,2) (µ ) = µ
√

3a
A2

; k(2,2) (ξ , µ ) = cn(x−τ t,µ ) dn2(x−τ t,µ )
[1+µ dn(x−τ t,µ )] sn(x−τ t,µ )

s(2,3) (µ ) = µ 2
√

3a
A2

; k(2,3) (ξ , µ ) = cn(x−τ t,µ ) sn(x−τ t,µ )
(1+µ dn(x−τ t,µ ))2

s(2,4) (µ ) = µ 3
√

3a
A2

; k(2,4) (ξ , µ ) = cn(x−τ t,µ ) dn(x−τ t,µ ) sn(x−τ t,µ )
(1+µ dn(x−τ t,µ ))2

s(2,5) (µ ) =
√

3aϱ0
A2

; k(2,5) (ξ , µ ) = 1
sn(x−τ t,µ )

s(2,6) (µ ) = µ
√

3aϱ0
A2

; k(2,6) (ξ , µ ) = dn(x−τ t,µ )
sn(x−τ t,µ )

s(2,7) (µ ) = A1
4

√
31

aA2ϱ 0
; k(2,7) (ξ , µ ) = sn(x−τ t,µ )

1+µ dn(x−τ t,µ ) and

	
A35 (x, t) =

√
ϵ

2
∑

4
i=1s(i,2) (µ ) k(i,2) (ξ , µ )ei (y(x,t)).� (48)

Graphical representation of some obtained solutions
In addition to shock and plane wave solutions, the QpGI model includes a wide range of another traveling 
wave soliton solutions, such as bright, singular periodic, singular bright combo, dark, singular, Jacobi elliptic 
and hyperbolic soliton solutions. To fully understand the QpGI model, these solutions must be analyzed 
through various graphs. This section will visualize the physical behavior of these solutions in both 2D and 3D 
representations. Due to the component ei (y(x,t)) in Eq. (2), the derived solutions are complex.

For various choices of arbitrary parameters inside the proper range space, the modulus of some of these 
solutions, which stands for the amplitude of the resulting wave, is plotted in the following figures. In these 
figures, the solutions are presented in both two and three dimensions. Figure 1 shows the bright soliton 
solution for |A1 (x, t)| (Eq. (14)) with a = 0.5, a1 = 0.5, b = 2, b1 = 0.2, κ = 0.1, ω = 0.8, and 
τ = 0.1 with −3 ≤ x ≤ 3 and 0 ≤ t ≤ 2  . Figure 2 shows the singular periodic soliton solution for 
|A2 (x, t)| (Eq. (15)) with a = 0.5, a1 = 1.0, b = 0.2, b1 = 0.9, κ = 0.1, ω = 2.0, and τ = 0.1 with 
−2 ≤ x ≤ 2 and 0 ≤ t ≤ 2. Figure 3 presents the hyperbolic soliton solution for |A3 (x, t)| (Eq. (16)) with 
a = 0.5, a1 = 1.0, b = −0.9, b1 = 0.2, κ = 0.1, ω = 2.0, τ = 0.1, ϱ4 = −0.3 and α −1 = 0.7 with 
−3 ≤ x ≤ 3 and 0 ≤ t ≤ 0.5. Figure 4 displays the singular bright combo soliton solution for |A4 (x, t)| 

Fig. 1.  (a) 3D graph for |A1 (x, t)| showing the bright soliton solution’s physical behavior as a function of x 
and t variables. (Eq. (14)). (b) 2D graph for |A1 (x, t)| as a function of x at t=0.3. 
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Fig. 4.   (a) 3D graph for |A4 (x, t)| showing the singular bright combo soliton solution’s physical behavior as 
a function of  x and  t variables. (Eq. (17)). (b) 2D graph for |A3 (x, t)| as a function of  x at t = 0.3.

 

Fig. 3.  (a) 3D graph for |A3 (x, t)| showing the hyperbolic soliton solution’s physical behavior as a function of 
x and t variables. (Eq. (16)). (b) 2D graph for |A3 (x, t)| as a function of x at t = 0.3.

 

Fig. 2.  (a) 3D graph for |A2 (x, t)| showing the singular periodic soliton solution’s physical behavior as a 
function of  x and t variables. (Eq. (15)). (b) 2D graph for |A2 (x, t)| as a function of  x at t=0.3
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(Eq. (17)) with a = 0.5, a1 = 1.0, b = 0.9, b1 = −0.2, κ = 1.0, ω = 2.0, τ = 0.1, ϱ2 = −1.0 
and ϱ4 = −0.3 with 0 ≤ x ≤ 1 and 0 ≤ t ≤ 0.5. In Fig. 5 shows the periodic soliton solution for 
|A11 (x, t)| (Eq. (24)) with a = 0.5, a1 = 0.4, b = 4.0, b1 = 1.0, κ = 1.0, ω = −0.2, τ = 0.1, and 
α 0 = 0.1 with −4 ≤ x ≤ 4 and 0 ≤ t ≤ 0.1. Figure 6 shows the plane wave solution for |A14 (x, t)| 
(Eq. (27)) with a = −0.5, a1 = 0.4, b = 4.0, b1 = 0.1, κ = 1.0, ω = 0.2, τ = 0.1, ϱ3 = 1.0
and ϱ4 = −1.0  with −4 ≤ x ≤ 4 and 0 ≤ t ≤ 0.1. Figure 7 shows the dark soliton solution for 
|A15 (x, t)| (Eq. (28)) with a = −0.5, a1 = 0.1, b = 4.0, b1 = 0.1, κ = 1.0, ω = 3.0, τ = 0.1,
and ϱ3 = −1.0 with −2 ≤ x ≤ 5 and 0 ≤ t ≤ 0.1. Figure 8 shows the singular soliton solution for 
|A16 (x, t)| (Eq. (29)) with a = −0.5, a1 = 0.1, b = 4.0, b1 = 0.1, κ = 1.0, ω = 3.0, τ = 0.1, and 
ϱ3 = 1.0 with −2 ≤ x ≤ 2 and 0 ≤ t ≤ 0.1. Figure 9 displays the shock wave solution for |A17 (x, t)| 
(Eq. (30)) with a = −0.5, a1 = 0.1, b = 4.0, b1 = 0.1, κ = 1.0, ω = 3.0, τ = 0.1, and ϱ3 = 1.0 with 

Fig. 7.  (a) 3D graph for |A15 (x, t)| showing the dark soliton solution’s physical behavior as a function of x 
and t variables. (Eq. (28)). (b) 2D graph for |A15 (x, t)| as a function of x at t = 0.3.

 

Fig. 6.  (a) 3D graph for |A14 (x, t)| showing the plane wave solution’s physical behavior as a function of  x 
and t variables. (Eq. (27)). (b) 2D graph for |A14 (x, t)| as a function of  t at t = 0.3.

 

Fig. 5.  (a) 3D graph for |A11 (x, t)| showing the periodic soliton solution’s physical behavior as a function of  
x and  t variables. (Eq. (24)). (b) 2D graph for |A11 (x, t)| as a function of  x at t = 0.3.
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−2 ≤ x ≤ 2 and 0 ≤ t ≤ 0.1. Figure 10 displays Jacobi Elliptic soliton solution for |A22 (x, t)| (Eq. (35)) 
with a = 10, a1 = 0.1, b = 7.0, b1 = 2.0, κ = 1.0, ω = 3.0, τ = 0.1, µ = 0.1 and ϱ0 = 1.0with 
−7 ≤ x ≤ 7 and 0 ≤ t ≤ 0.1.

Conclusions
This work employed a modified extended mapping technique to obtain precise mathematical formulas for 
describing various wave patterns generated by the QpGI equation that models the behavior of solitonic and other 
waves. The approach proved to be highly effective in resolving the intricate problem at hand. The found wave 
solutions can be applied to a wide range of physical problems under various conditions. These solutions include 

Fig. 10.  (a) 3D graph for |A22 (x, t)| showing the Jacobi Elliptic solution’s physical behavior as a function of  
x and t  variables. (Eq. (35)). (b) 2D graph for |A22 (x, t)| as a function of  x at t = 0.1.

 

Fig. 9.  (a) 3D graph for |A17 (x, t)| showing the shock wave solution’s physical behavior as a function of x  
and t  variables. (Eq. (30)). (b) 2D graph for |A17 (x, t)| as a function of x  at t = 0.3.

 

Fig. 8.  (a) 3D graph for |A16 (x, t)| showing the dark singular soliton solution’s physical behavior as a 
function of  x and  t variables. (Eq. (29)). (b) 2D graph for |A16 (x, t)| as a function of  x at t = 0.3.
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different patterns such as shocks, singular, periodic waves, and others. These solutions are characterized by 
stability, adaptability, and the capacity for long-distance travel, making them potentially valuable for addressing 
complex phenomena in science and engineering. To enhance understanding, 3D and 2D plots were generated 
to visualize the physical attributes of several solutions. In future research, we hope that the modified extended 
mapping method will play a key role in solving a variety of non-linear partial differential equations. The research 
could be extended to solve other types of equations using the modified extended mapping technique. Researchers 
could also study the stability and behavior of the solutions found, explore their potential applications in fields like 
optical communication, and improve the modified extended mapping technique to find more soliton solutions.
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