Table 5 Best estimation of linear regression models.
Linear best regression model | R2 | F | Sig. | SE | RMSE |
---|---|---|---|---|---|
\(\:\text{D}\text{M}={0.020\text{H}}_{\text{M}}\left(\text{G}\right)-1.228\) | 0.658 | 9.60 | 0.027 | 1.586 | 2.340 |
\(\:\text{P}=0.009\text{W}\left(\text{G}\right)+17.759\) | 0.779 | 17.66 | 0.008 | 2.398 | 2.026 |
\(\:\text{S}\text{E}{\text{Z}}_{\text{p}}\text{E}=-2.731{\text{H}}_{\text{M}}\left(\text{G}\right)-199.289\) | 0.833 | 24.97 | 0.004 | 133.93 | 113.2 |
\(\:\text{Z}\text{p}\text{V}\text{E}=0.072\text{W}\left(\text{G}\right)+109.167\) | 0.710 | 12.221 | 0.017 | 23.937 | 20.23 |
\(\:\text{E}=0.077\text{W}\left(\text{G}\right)+116.496\) | 0.734 | 13.784 | 0.014 | 24.099 | 20.37 |
\(\:\text{C}\text{V}=0.007\text{G}\text{u}\text{t}\left(\text{G}\right)+43.628\) | 0.979 | 228.30 | 0.000 | 2.313 | 1.955 |
\(\:\text{S}=0.042\text{W}\left(\text{G}\right)+105.894\) | 0.972 | 170.91 | 0.000 | 3.699 | 20.37 |
\(\:\text{C}=6.740\text{H}\left(\text{G}\right)-42.308\) | 0.766 | 16.390 | 0.010 | 74.953 | 63.35 |