Table 6 Best estimation of quadratic regression models.
Quadratic best regression model | R2 | F | Sig. | SE | RMSE |
---|---|---|---|---|---|
\(\:\text{D}\text{M}={(-3.720\times\:{10}^{-7})\text{G}\text{u}\text{t}\left(\text{G}\right)}^{2}+0.004\text{G}\text{u}\text{t}\left(\text{G}\right)-1.442\) | 0.693 | 4.518 | 0.094 | 1.678 | 2.268 |
\(\:\text{P}={1.396\times\:{10}^{-6}\text{E}-6\text{W}\left(\text{G}\right)}^{2}+0.006\text{W}\left(\text{G}\right)+18.770\) | 0.783 | 7.207 | 0.047 | 2.660 | 2.011 |
\(\:\text{S}\text{E}{\text{Z}}_{\text{p}}\text{E}=(4.470\times\:{10}^{-5})\text{G}\text{u}\text{t}{\left(\text{G}\right)}^{2}-0.460\text{G}\text{u}\text{t}\left(\text{G}\right)-216.780\) | 0.853 | 11.63 | 0.022 | 140.4 | 106.1 |
\(\:\text{Z}\text{p}\text{V}\text{E}={(5.026\times\:{10}^{-5})\text{W}\left(\text{G}\right)}^{2}-(0.029)\text{W}\left(\text{G}\right)+145.546\) | 0.768 | 6.631 | 0.054 | 23.91 | 18.07 |
\(\:\text{E}=(5.006\times\:{10}^{-5})\text{W}{\left(\text{G}\right)}^{2}-0.024\text{W}\left(\text{G}\right)+152.731\) | 0.786 | 7.363 | 0.046 | 24.14 | 18.24 |
\(\:\text{C}\text{V}=({-9.357\times\:{10}^{-6})\text{W}\left(\text{G}\right)}^{2}+(0.049)\text{W}\left(\text{G}\right)+36.542\) | 0.990 | 190.1 | 0.000 | 1.803 | 1.363 |
\(\:\text{S}=(7.136\times\:{10}^{-6}){\text{W}\left(\text{G}\right)}^{2}+(0.027)\text{W}\left(\text{G}\right)+111.060\) | 0.976 | 82.81 | 0.001 | 3.767 | 2.847 |
\(\:\text{C}={(-1.74\times\:{10}^{-4})\text{W}\left(\text{G}\right)}^{2}+(0.605)\text{W}\left(\text{G}\right)+53.352\) | 0.781 | 7.153 | 0.048 | 81.02 | 61.25 |