Table 6 Best estimation of quadratic regression models.

From: DFT based structural modeling of chemotherapy drugs via topological indices and curvilinear regression

Quadratic best regression model

R2

F

Sig.

SE

RMSE

\(\:\text{D}\text{M}={(-3.720\times\:{10}^{-7})\text{G}\text{u}\text{t}\left(\text{G}\right)}^{2}+0.004\text{G}\text{u}\text{t}\left(\text{G}\right)-1.442\)

0.693

4.518

0.094

1.678

2.268

\(\:\text{P}={1.396\times\:{10}^{-6}\text{E}-6\text{W}\left(\text{G}\right)}^{2}+0.006\text{W}\left(\text{G}\right)+18.770\)

0.783

7.207

0.047

2.660

2.011

\(\:\text{S}\text{E}{\text{Z}}_{\text{p}}\text{E}=(4.470\times\:{10}^{-5})\text{G}\text{u}\text{t}{\left(\text{G}\right)}^{2}-0.460\text{G}\text{u}\text{t}\left(\text{G}\right)-216.780\)

0.853

11.63

0.022

140.4

106.1

\(\:\text{Z}\text{p}\text{V}\text{E}={(5.026\times\:{10}^{-5})\text{W}\left(\text{G}\right)}^{2}-(0.029)\text{W}\left(\text{G}\right)+145.546\)

0.768

6.631

0.054

23.91

18.07

\(\:\text{E}=(5.006\times\:{10}^{-5})\text{W}{\left(\text{G}\right)}^{2}-0.024\text{W}\left(\text{G}\right)+152.731\)

0.786

7.363

0.046

24.14

18.24

\(\:\text{C}\text{V}=({-9.357\times\:{10}^{-6})\text{W}\left(\text{G}\right)}^{2}+(0.049)\text{W}\left(\text{G}\right)+36.542\)

0.990

190.1

0.000

1.803

1.363

\(\:\text{S}=(7.136\times\:{10}^{-6}){\text{W}\left(\text{G}\right)}^{2}+(0.027)\text{W}\left(\text{G}\right)+111.060\)

0.976

82.81

0.001

3.767

2.847

\(\:\text{C}={(-1.74\times\:{10}^{-4})\text{W}\left(\text{G}\right)}^{2}+(0.605)\text{W}\left(\text{G}\right)+53.352\)

0.781

7.153

0.048

81.02

61.25