
Multifractal analysis and 
support vector machine for the 
classification of coronaviruses and 
SARS-CoV-2 variants
J. P. Correia1,4, L. R. da Silva1,2 & R. Silva1,3

This study presents a novel approach for the classification of coronavirus species and variants of SARS-
CoV-2 using Chaos Game Representation (CGR) and 2D Multifractal Detrended Fluctuation Analysis 
(2D MF-DFA). By extracting fractal parameters from CGR images, we constructed a state space that 
effectively distinguishes different species and variants. Our method achieved 100% accuracy in species 
classification, with a notable 76% accuracy for SARS-CoV-2 variants despite their genetic similarities. 
Using a Support Vector Machine (SVM) as a classifier further enhanced the performance. This approach, 
which requires fewer steps than most existing methods, offers an efficient and effective tool for viral 
classification, with implications for bioinformatics, public health, and vaccine development.
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The rapid evolution of viruses, particularly RNA viruses like coronaviruses, has posed significant challenges to 
public health and global economies1–3. Viruses such as SARS-CoV-2 and its related species have demonstrated 
high mutation rates, leading to the emergence of new variants that may evade immune responses and reduce 
the efficacy of treatments and vaccines4–6. Accurate and timely classification of virus species is crucial for 
understanding viral pathogenesis, monitoring transmission patterns, and developing practical diagnostic 
tools7–9. Moreover, precise classification is fundamental in designing targeted therapeutic interventions, 
informing public health policies, and preventing future outbreaks10. Traditional classification methods based 
on morphological features and genetic sequence analysis, while effective to some extent, often fail to capture the 
complexity and non-linear dynamics inherent in viral genomes11,12. As viruses evolve, small genetic changes may 
not always be detectable with standard approaches, necessitating more sophisticated methods3,13.

This study proposes a novel approach to virus classification that leverages advanced computational techniques. 
We employ chaos game representation (CGR), which maps complex sequences onto fractal images to extract 
meaningful geometric features from viral genomes14–16. Additionally, we utilize two-dimensional multifractal 
detrended fluctuation analysis (2D MF-DFA), in the images generated by CGR, to characterize the genomic 
sequences’ scaling behavior and multifractal properties17–19. The 2D MF-DFA method is an extension of the 
traditional MF-DFA applied to two-dimensional data, such as images, and aims to identify multifractal behavior 
in such systems20–22. We obtained several multifractal parameters from the 2d MF-DFA and constructed a state 
space with the most relevant fractal parameters. These same parameters were used as the features to feed the 
support vector machine algorithm and distinguish between the different samples. To facilitate the understanding 
of our work, in Fig. (1), we show the flowchart of the method.

By combining CGR, MF-DFA, and machine learning, we aim to develop a robust and accurate method for 
classifying virus species, focusing on coronaviruses. Unlike traditional approaches that apply these methods 
separately, our methodology integrates them into a cohesive framework, enabling a comprehensive analysis of 
fractal properties and their use in distinguishing species and variants. This unified approach not only simplifies 
the workflow but also improves the interpretability of the results, leveraging the strengths of each technique to 
provide a more holistic view of genomic and evolutionary patterns. Our approach offers the potential to provide 
valuable insights into the evolutionary relationships and functional diversity of viruses, ultimately contributing 
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to better disease prevention and control. To test the feasibility of the application, we selected six species of 
coronavirus (HCoV-OC43, HCoV-HKU1, HCoV-NL63, HCoV-229E, MERS-CoV, and SARS-CoV-2) and five 
variants of SARS-CoV-2 (Alpha, Beta, Delta, Gamma, and Omicron) and applied the procedure above.

Our results indicate the fractal nature in the CGRs of all analyzed species. SARS-CoV-2 and MERS-CoV 
exhibited significantly higher fractal complexity, reflecting their unique genomic characteristics. Furthermore, 
the fractal parameters presented distinct values for each species, allowing a clear separation between them. 
Using these multifractal parameters as a basis for classification, our machine-learning models achieved high 
accuracy in differentiating coronavirus species. We obtained good performance for classifying SARS-CoV-2 
variants, indicating a promising path for this approach. These findings suggest that the approach used is adequate 
for classifying different virus species and has excellent potential for classifying emerging coronavirus variants, 
offering a promising tool for epidemiological monitoring and control.

Background and related work
The classification of virus species is a fundamental task in virology, contributing to the understanding of the 
functional diversity and transmission patterns of these pathogens. Although effective, traditional methods, 
such as sequence alignment and phylogenetic analysis, face limitations when dealing with highly mutated 
or recombined genomic regions23,24. In this context, approaches that combine graphical representations, 
mathematical transforms, and machine learning algorithms have shown promise for studying sequences from 
various species.18,19

The conversion of genome sequences into images, such as Chaos Game Representation (CGR) and Single 
Gray-Level Representation, allows capturing two-dimensional patterns that reflect structural and compositional 
properties of DNA and RNA, aiding in the identification of evolutionary and functional characteristics in 
coronavirus species25,26. Recently, advances in deep learning models, such as Vision Transformers (ViT), have 
enabled the detection of COVID-19 from X-ray images27,28. Furthermore, methods based on fractal analysis 
complement these tools by providing insights into the complexity of genome sequences and practical approaches 
for species classification29. Although some analyses use these techniques in isolation, more advanced approaches 
integrate methods such as the Discrete Fourier Transform (DFT) to extract magnitude spectra from CGR 
images30, Discrete Wavelet Decomposition (DWT)31 and Singular Value Decomposition (SVD)32 , expanding 
the potential of genomic analysis.

Recently, several machine-learning approaches have explored clinical data and genome sequences of the 
coronavirus. Some studies have highlighted the use of classification algorithms to predict COVID-19 infections 
from clinical features33, while others have employed convolutional neural networks to analyze SARS-CoV-2 
sequences34 directly. In addition, artificial intelligence-based methods have been used for diagnosis based on 
hematological markers35,36, and autonomous approaches have been developed to detect and classify the virus37.

In this context, the use of machine learning techniques to classify the coronavirus based on the spike region 
has shown to be a promising approach due to the importance of this region in viral infection and its interaction 
with human receptors. Several recent studies have applied classification algorithms, such as Convolutional 
Neural Networks (CNN), to identify patterns in genomic sequences related to the spike protein, aiming to 
differentiate between variants of the virus38–40. A distinction of our approach is using the entire genome to 
distinguish between virus variants.

Furthermore, in the current context of generative artificial intelligence development, advancing generative 
models based on deep learning has enabled new approaches for analyzing and predicting the evolution of SARS-
CoV-2. The GenSLMs model proposes adapting language models for genomic sequences, demonstrating the 
ability to rapidly identify emerging variants by learning evolutionary patterns from millions of viral genomes41. 
Similarly, SARITA uses a generative language model explicitly trained on the S1 subunit of the Spike protein, 
being able to predict future mutations present in variants such as Delta and Omicron42. Complementing these 
efforts, SpikeGPT2 stands out by applying generative models to predict future mutations in the Spike protein, 
achieving high accuracy in predicting amino acid substitutions that impact the virus’s transmissibility43. These 
studies demonstrate how artificial intelligence models can improve the identification and classification of 
variants, contributing to epidemiological monitoring and developing containment strategies.

Fig. 1.  Graphical summary of workflows.
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Combinations of these genomic analysis methods have shown promising results in classifying genomic 
sequences (with model accuracy exceeding 90% overall). Our work contributes to this advance by integrating 
2D multifractal MF-DFA analysis with CGR image transformations to study coronavirus genomic sequences. 
By combining these approaches with machine learning, we could easily classify species, achieving high accuracy 
when using SVM to distinguish coronavirus variants. This connection leads to a significant result, considering 
the high genetic similarity between the variants belonging to the same species.

Theoretical background
Chaos game representation
Chaos Game Representation (CGR) is a technique used to represent DNA sequences in the form of two-
dimensional images, providing a visual way to analyze patterns present in symbolic chains44,45. The graphical 
representation generated by CGR is based on the theory of dynamical systems and allows the analysis of fractal 
and statistical properties of symbolic sequences. This section describes this method and its application in a DNA 
sequence44–47.

Let S = (s1, s2, . . . , sL) be a sequence composed of symbols belonging to a finite alphabet 
A = {a1, a2, . . . , an}, where each si ∈ A. For the case of DNA sequences, A = {A, T, C, G}, representing the 
four nucleotide bases, namely Adenine, Thymine, Cytosine, and Guanine, respectively. The CGR of a sequence 
S  is constructed inside a square with vertices (x1, y1), (x2, y2), (x3, y3), (x4, y4), which are associated to the 
bases {A, T, C, G}.

The initial position r0 within the square is typically defined as the center, i.e., r0 = (0, 0). The CGR 
representation is then constructed iteratively along the sequence S , following the rule that for each symbol si ∈ A
, the new position ri = (xi, yi) is computed as the midpoint between the current position ri−1 = (xi−1, yi−1) 
and the vertex corresponding to symbol si.

Formally, the position ri is given by:

	
ri = 1

2(ri−1 + V (si)),� (1)

where V (si) is the coordinate of the vertex associated with the symbol si. For a DNA sequence, we have the 
vertices:

	

V (A) = (0, 0),
V (T ) = (1, 0),
V (C) = (0, 1),
V (G) = (1, 1).

Chaos Game Representation (CGR) provides a visual way to represent DNA sequences and allows us to calculate 
the frequency of subsequences of length k, known as k-mers. For example, for a value of k = 4, the CGR image 
will be a 16x16 pixel matrix, where each pixel represents a unique combination of four symbols. The frequency 
with which each k-mer appears in the sequence is reflected by the number of times the CGR trajectory hits the 
same pixel.

Pixels of the most frequent subsequences appear in darker tones in the image generated by CGR, while pixels 
corresponding to rare subsequences appear in lighter tones. In addition, the image generated by CGR can be 
analyzed for its fractal properties using techniques such as Multifractal Analysis (2D MF-DFA). This allows the 
identification of complex patterns in the distribution of subsequences, which may not be evident by counting 
frequencies alone. Thus, CGR, in conjunction with multifractal analysis, offers a powerful tool for exploring the 
structure of large genomic sequences, revealing both frequent and rare patterns.48,49

Análise multifractal detrended fluctuation 2D (2D MF-DFA)
Consider a self-similar (or self-affine) surface, denoted by a two-dimensional array X(i, j), where i = 1, 2, 3, . . . , M
, and j = 1, 2, 3, . . . , N . The 2D MF-DFA method is defined by17,50,51: 

	1.	 The surface is partitioned into Ms × Ns disjoint square segments of the same size s × s, where 
Ms = int(M/s) and Ns = int(N/s). Each segment can be denoted by Xv,w(i, j) = X(l1 + i, l2 + j) for 
1 ≤ i and j ≤ s,where l1 = (v − 1)s and l2 = (w − 1)s. We define the profile 

	
uv,w(i, j) =

i∑
k1=1

j∑
k2=1

Xv,w(k1, k2),� (2)

	2.	 For each subsurface uv,w  we obtain the local trend ũv,w  using a bivariate polynomial function. In this paper, 
we choose: 

	 ũv,w(i, j) = ai + bj + c,� (3)

	 where a, b and c are free parameters to be determined and 1 ≤ i and 1 ≤ s . These parameters can be obtained 
through a matrix operation derived from the least squares method.
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	3.	 We obtain the residual matrix 

	 yv,w(i, j) = uv,w(i, j) − ũv,w(i, j).� (4)

	 The variance of the residual matrix for each surface is given by 

	
F 2(v, w, s) = 1

s2

s∑
i=1

s∑
j=1

y2
v,w(i, j)� (5)

	4.	 Subsequentemente, definimos a 2D qth-order fluctuation function 

	
Fq(s) =

{
1

MsNs

Ns∑
v=1

Ms∑
w=1

[F (v, w, s)]q
}1/q

, q ̸= 0� (6)

	 and 

	
F0(s) = exp

{
1

MsNs

Ns∑
u=1

Ms∑
v=1

ln [F (v, w, s)]

}
, q = 0� (7)

	5.	 Vary the value of s ranging from 6 to min(M, N)/4. If there is a long-range power-law correlation for large 
values of s, then 

	 Fq(s) ∼ sh(q),� (8)

	 where h(q) is the generalized Hurst exponent of 2D surfaces. This allows us to obtain the scaling exponent h(q) 
via linearly regressing ln Fq(s) vs ln s.

If we vary the value of q in the range from −10 to 10, we can determine the strength of the multifractality, 
we calculate the difference between the asymptotic values of h(q), that is, ∆h = h(qmin) − h(qmax), here 
qmax = max{q, q ∈ [−10, 10]} and qmin = min{q, q ∈ [−10, 10]}. Here ∆h(q) quantitatively measures 
the deviation from monofractal behavior29.

The multifractal scale exponent τ(q) of the following form can be used to understand the dependency on q 
in the multifractal situation

	 τ(q) = qh(q) − Df .� (9)

In this context, Df  represents the fractal dimension of the system. For two-dimensional images, Df  equals 2, a 
fixed value for this type of system. However, the precise estimation of the fractal dimension can be influenced 
by the generalized Hurst exponent h(q), which describes the scaling behavior of fluctuations in the system. If 
the image is monofractal, τ(q) is linearly connected to q. Otherwise, the image is multifractal, with a nonlinear 
relationship between τ(q) and q. Therefore, the properties of multifractals are more robust, which makes the 
nonlinear relationship stronger29.

The other two indicators that characterize the strength of the singularity of the multifractal surface are the 
Hölder exponent and the singularity spectrum (α, f(α)), which is related to the multifractal scale spectrum 
τ(q) through a first-order Legendre transformation. If τ(q) is sufficiently smooth, the singularity’s strength α
, is given by

	
α = dτ(q)

dq
= h(q) + qh?(q) ,� (10)

from which the singularity spectrum f(α) can be constructed

	 f(α) = qα − τ(q) = q[α − h(q)] + 2 .� (11)

The exponent α characterizes the local singularity of an image texture, and f(α) measures the global singularity 
of an image texture50. Varying the value of q in the range from −10 to 10 we can determine two other multifractal 
parameters ∆α and ∆f  to describe an image

	 ∆α = αmax − αmin� (12)

	 ∆f = f(αmax) − f(αmin)� (13)
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where αmax = max{α(q), q ∈ [−10, 10]} and αmin = min{α(q), q ∈ [−10, 10]}. Note que ∆α is considered 
an indicator to measure the absolute magnitude of grayscale volatility. The higher the value of ∆α, the less 
uniform the distribution of the probability measure and the higher the expected image surface roughness. The 
index ∆f  is the Hausdorff dimension of the measurement object, which measures the degree of confusion50.

Support vector machine (SVM)
The Support Vector Machine (SVM) algorithm is a supervised learning method for classification and regression. 
Its main goal is to find a hyperplane that separates the data into different classes with the most significant 
possible margin. The SVM constructs a hyperplane in a high-dimensional feature space for binary classification, 
maximizing the margin between the two classes52–54.

Consider a training dataset {xi, yi}N
i=1, where xi ∈ Rd represents a feature vector of dimension d and 

yi ∈ {−1, 1} is the label associated with the sample xi. The objective of the SVM is to find a hyperplane 
f(x) = wT x + b = 0 that best separates the samples of the two classes, where w is the weight vector and b is 
the bias term.

The margin of the hyperplane is given by the distance between the closest points of the two classes and the 
hyperplane. To maximize this margin, we need to minimize ||w||, subject to the constraint that all samples are 
correctly classified, which can be written as:

	 yi(wT xi + b) ≥ 1∀i = 1, 2, . . . , N � (14)

The constraint says that we want all points to be on the correct side of the decision boundary with a margin of at 
least 1. For this reason, we say that an SVM is an example of a large margin classifier55,56.

Experiment materials
To demonstrate our classification method, we used six species of coronaviruses that infect humans: HCoV-
HKU1, HCoV-OC43, HCoV-NL63, HCoV-229E, MERS-CoV, and SARS-CoV-2. The species HCoV-HKU1, 
HCoV-NL63, HCoV-229E and HCoV-OC43 cause mild respiratory infections such as fever, headache, sore 
throat and runny nose. While MERS-CoV, associated with Middle East Respiratory Syndrome, causes severe 
symptoms such as fever, cough, and difficulty breathing, with high mortality. SARS-CoV-2, which causes 
COVID-19, presents a wide range of symptoms, from mild to severe cases that can lead to death57,58.

The genome sequences of these species were obtained from the Nation Center of Biotechnology Information- 
NCBI59 database, and we extracted 1373 samples from the six species of interest. The number of samples for each 
species and other information is shown in Table (1).

To select the samples, we used specific filters in the NCBI database. Only sequences that met the following 
criteria were extracted: Human host, the maximum allowed number of ambiguous characters (represented by 
“N” in the nucleotide sequence) of 500 base pairs (bp), and the selected sequence should have a minimum length 
of 27,000 bp. At NCBI, sometimes only a few regions of the species genome are added to the database. We use 
this criterion to ensure that we are extracting the entire genome sequence of the species. This size criterion 
was applied exclusively to nucleotide sequences, regardless of protein sequences. Thus, all samples from the six 
species that remained after applying these filters were used for our study. We emphasize that the SARS-CoV-2 
species has more samples due to the pandemic that began in 2019. Because of this, in order to maintain each 
species with a similar number of samples, we randomly selected 350 SARS-CoV-2 samples. We selected only 
these SARS-CoV-2 samples to avoid bias in the classification model.

Due to our interest in the SARS-CoV-2 species, we tested this method to classify the Alpha, Beta, Delta, 
Gamma, and Omicron variants. We selected 400 samples of each variant, totaling 2,000 samples obtained from 
the GISAID database60 and a file on Github61. To extract these samples, we applied the filters: “complete” and 
“High Coverage” and host: “Human.” Considering that the GISAID database does not allow random collection 
of the remaining samples, we selected each variant’s first 400 available samples.

Although sequential collection may introduce some bias, choosing 400 samples per variant is representative 
enough to capture the genetic diversity of each group, minimizing the impact of possible correlations. This 
strategy aims to ensure that our analyses are robust and reflect the variations among the variants. Remembering 

Specie Samples Size (bp) CG content (%)
HCoV-HKU1 64 29,926 32

HCoV-OC43 342 30,741 37

HCoV-NL63 165 27,553 34.5

HCoV-229E 125 27,317 38.5

HCoV-MERS 327 30,119 41

SARS-CoV-2 350 29,903 38

Table 1.  Characteristics of the coronavirus species. In the first and second columns, we have the species and 
number of samples extracted from NCBI for each of them. In NCBI, one sample of each species is identified as 
a reference sample. Thus, in the third and fourth column, we present, respectively, the size (in base pairs) and 
CG content (in the percentage of the sequence) of the samples identified as reference on NCBI.
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that we used the complete sequences of the SARS-COV-2 variants and therefore, their properties are similar to 
those shown in the Table (1).

Results and discussion
Chaos game representation
We constructed the images generated by the CGR method for all 1373 samples, with pixelation degree k = 6
. The code to construct them is available on GitHub61, and we present the results for some samples in Fig. (2). 
In NCBI, a sample of the species is identified as a reference sample. In Fig. (2), we plot the CGR for the sample 
identified as the reference for that species.

An important point when applying CGR is to consider the appropriate scale k because if the value of k is too 
large, many of the elements of the FCGR matrix may have zeros, making it difficult to identify patterns in the 
sequences. To avoid such a situation, the maximum value of k can be calculated using the equation

	
kmax = int

( ln N

2 ln 2 − 1
)

� (15)

where N is the total length of the sequence62. Using this Eq. (15) and the sizes N from Table (1), then we use 
k = 6 to generate the CGR images, both coronavirus species and variants.

Our Frequency Game Representation (FCGR), employing multiple scales, revealed empty regions shaped 
like squares (self-similarity) across all samples. Samples of each species present a CGR pattern similar to the 
reference sample of the species.

Comparative analysis of CGR representations of different coronavirus species revealed a striking visual 
similarity between the genetic sequences of these species, see Fig. (2). In particular, we observed that some CGR 
images, such as those generated from the SARS-CoV-2 and MERS-SARS sequences, exhibit sharper and more 
defined geometric patterns, suggesting regularity and repetition of subsequences (k-mers). These patterns may 
indicate the presence of conserved regions in the genome, such as essential genes or regulatory sequences that 
are less prone to mutations, conferring functional stability to the species. The five selected SARS-CoV-2 variants, 
Alpha, Beta, Delta, Gamma, and Omicron, presented visual patterns similar to that shown in Fig. (2a).

Fig. 2.  Chaos game representation for coronavirus species: HCoV-HKU1, HCoV-OC43, HCoV-NL63, HCoV-
229E, HCoV-MERS, SARS-CoV-2. We used the samples identified as reference sequences in NCBI.
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In addition, the empty regions observed in the CGR representations of all species indicate the 
underrepresentation of specific patterns, such as CG dinucleotides. This phenomenon is likely associated with the 
hypermutability of cytosine, which, due to its tendency to undergo spontaneous deamination and conversion to 
uracil, results in C-G to T-A mutations during replication. This process is one of the main factors responsible for 
reducing the frequency of CG dinucleotides, creating the characteristic empty regions in CGR representations, 
as seen in SARS-CoV-2. These observations are corroborated by the CG contents shown in Table (1), suggesting 
that the coronavirus sequence’s high mutability rate contributes to these empty regions’ emergence.

Thus, the difference in sharpness in CGR representations may be directly influenced by the nature of the 
subsequences present in each species, with more conserved genomes presenting more regular patterns and more 
diverse genomes exhibiting more diffuse patterns. These results are consistent with the hypothesis that the fractal 
organization of genetic sequences is associated with coronavirus species’ functional stability and evolution63.

2d MF-DFA
After generating CGR images for all 1373 samples of the six species, we applied the 2d MF-DFA method to 
determine the fractal parameters of the images. We performed the same procedure for the 2000 samples of the 
Alpha, Beta, Delta, Gamma, and Omicron variants. The code for this procedure is on GitHub61. Each image is 
stored as a 2D matrix in 256 grey levels, and we vary s from 4 to max(M, N)/4.

The results of the multifractal analysis of the CGR images of the coronavirus species and the variants of the 
SARS-CoV-2 species show that all the images have a multifractal nature. The multifractal nature observed in 
the CGR images refers to the inherent fractality of the genetic sequences captured by the CGR method and to 
the nonlinearity of the parameters calculated by the 2D MF-DFA. Expressly, the multifractality is confirmed 
by the fact that the function h(q) is not constant for different values of q, indicating the presence of several 
complexity scales within the analyzed sequences. Fig. (3) demonstrates the multifractal nature of a CGR image 
of the reference sequence of the SARS-CoV-2 species and the randomly chosen Delta variant. The panels on the 
left illustrate the dependence of the fluctuation function Fq(s) as a function of the scale s for different q for the 

Fig. 3.  Power-law multifractal nature of coronavirus species CGR image. Some constants are subtracted to 
make the contrast between the different curves clearer in graphics of F(q) vs. q. The straight lines are the best-
fit lines whose slopes are shown in the legend.
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two samples shown. The well-fitted straight lines indicate the evident power-law scaling of Fq(s) versus s. The 
right panel shows that τ(q) is nonlinear in q, indicated by the fact that h(q) depends on q.

Once we have identified a multifractal nature among the CGR images, we are interested in determining the 
fractal parameters of each group of samples and comparing them. Therefore, for each species, we calculated the 
values of the parameters ∆h, h(−2), h(−1), h(0), h(1), h(2), αmax, αmin, ∆f  and ∆α. The average values 
of these parameters for each species are shown in Table (2) and in the upper part of Fig. (4) we plot the average 
fractal spectra of h(q) vs. q and f(α) vs. α. In the lower part of Fig. (4), we show the average spectra of the Alpha, 
Beta, Delta, Gamma, and Omicron variants. From Fig. (4), we can notice that the average spectra of h(q) vs. q 
and f(α) vs. α across species show more significant variability across species than across variants.

Fig. 4.  Multifractal spectrum of the coronavirus species (above) and the variants of SARS-CoV-2 (below).

 

Parameters HCoV-HKU1 HCoV-OC43 HCoV-NL63 HCoV-229E HCoV-MERS SARS-CoV-2

h(−2) 2.0145 ± 0.00034 2.0158 ± 0.00026 2.0132 ± 0.00022 2.0147 ± 0.00036 2.0200 ± 0.00048 2.0224 ± 0.00040
h(−1) 2.0120 ± 0.00020 2.0133 ± 0.00016 2.0114 ± 0.00014 2.0127 ± 0.00024 2.0155 ± 0.00027 2.0174 ± 0.00023
h(0) 2.0087 ± 0.00005 2.0114 ± 0.00010 2.0101 ± 0.00008 2.0111 ± 0.00015 2.0117 ± 0.00013 2.0132 ± 0.00012
h(1) 2.0076 ± 0.00001 2.0098 ± 0.00006 2.0089 ± 0.00004 2.0098 ± 0.00009 2.0085 ± 0.00005 2.0096 ± 0.00004
h(2) 2.2506 ± 0.01336 2.0084 ± 0.00003 2.0080 ± 0.00002 2.0086 ± 0.00004 2.0058 ± 0.00011 2.0066 ± 0.00006
αmax 1.9987 ± 0.00022 2.2381 ± 0.00838 2.1736 ± 0.00666 2.1912 ± 0.00887 2.2740 ± 0.01256 2.2942 ± 0.01548
αmin 0.1050 ± 0.00728 1.9970 ± 0.00022 1.9999 ± 0.00021 1.9978 ± 0.00033 1.9812 ± 0.00070 1.9824 ± 0.00039

∆h 0.10176 ± 0.00484 0.1017 ± 0.00484 0.06923 ± 0.00337 0.07832 ± 0.00501 0.1379 ± 0.00766 0.14212 ± 0.00889

∆α 0.2519 ± 0.01355 0.2410 ± 0.00853 0.1736 ± 0.00685 0.1934 ± 0.00918 0.2928 ± 0.01296 0.3118 ± 0.01576
∆f −1.3963 ± 0.06189 −1.2945 ± 0.03671 −0.9736 ± 0.03354 −1.0533 ± 0.03930 −1.3329 ± 0.05168 −1.4963 ± 0.06872

Table 2.  Average values of fractal parameters for coronavirus species.
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The parameters ∆h and ∆α represent the fractal variability and the amplitude of the multifractality of the 
patterns present in the images. CGR images that present higher values of ∆h and ∆α, such as those generated 
from SARS-CoV-2 and MERS-CoV, would indicate a greater complexity and diversity of geometric patterns, 
suggesting that these species have genomic regions that vary significantly in their visual structure. This variability 
may indicate a greater diversity of functional elements or a less homogeneous organization. The more significant 
variability observed in the multifractal spectra of the different species means that the fractal parameters, both 
h(q) as a function of q, and f(α) as a function of α, are more distinct between the species. The graphs of these 
spectra distance themselves significantly from each other, whereas, when we compare the variants, the spectra 
are much closer to each other, suggesting a more remarkable similarity between the SARS-CoV-2 variants. As 
expected, the fractal spectrum between the variants is more similar since they share a joint genetic base. In 
contrast, the different coronavirus species show more pronounced variations in their fractal spectra, reflecting 
the more significant genetic divergence between them.

Parameters space
We define the standard deviation of each multifractal parameter-∆h, h(−2), h(−1), h(0), h(1), h(2), αmax, 
αmin, ∆f , and ∆α-for each species i as σin(i). The intra-species variability, σin, is calculated as the average of 
these standard deviations across all species:

	
σin = 1

6
∑

i

σin(i).� (16)

where i represents each species. This measure reflects the variation of the multifractal parameters within a single 
species.

Next, we define the inter-species variability, σbet, as the standard deviation of the six intra-species standard 
deviations (σin(i)) calculated for the six species. Specifically

	
I0 = σbet

σin
� (17)

In this case, I0 represents a ratio of the between-species variability σbet to the average within-species variability 
σin. This measure indicates how much the variability between species stands out compared to the variability 
within a single species.

A high value of I0 indicates that the variability between species is much greater than the variability within 
each species, suggesting that the analyzed multifractal parameter is an good discriminant to differentiate species.

Based on the values of I0 calculated for the parameters 
h(−2), h(−1), h(0), h(1), h(2), αmin, αmax, ∆α, ∆h, ∆f , we display the values in Table (3), select the four 
with the most significant values: h(2), ∆f , αmaxh and αmin and plot these parameters in a scatter plot two by 
two, as shown in Fig. (5). We call the space formed by the axes of these four parameters (h(2), ∆f , αmaxh, and 
αmin) the state space.

We observe that the coronavirus species are distributed in a dispersed manner in the scatter plots, allowing 
them to be separated by a straight line. See Fig. (5). This linear separability suggests that linear regression is an 
appropriate choice for classifying the species since a simple straight line can delimit specific regions occupied 
by each species. The most straightforward case is with the parameter h(2) vs (αmax, αmin, ∆f) in which each 
species occupies a specific region and is easily distinguishable from the other species. The other scatter plots 
(αmax × αmin), (αmax × ∆f) and (αmin × ∆f) also indicate that the species occupy specific regions of 
space but some intersections, especially between the SARS-CoV-2 and SARS-MERS species. Interestingly, 
the SARS-CoV-2 and MERS species are closer to each other in parameter space than the other species. This 
proximity reflects the more remarkable similarity between these viruses regarding the multifractal indicators 
analyzed, which may be related to genetic similarities.

Our method is advantageous because it involves fewer steps to extract the features used by machine learning 
algorithms than most existing approaches. By constructing our state space using fractal parameters, we can 
easily distinguish species visually with just two parameters. Remarkably, these results are almost independent 
of the choice of parameters, as any pair of fractal parameters allows us to differentiate the regions occupied 
by each species. This consistent separability facilitates the use of simple classification algorithms and provides 
insights into the genomic similarity among coronavirus species. Species closer in the state space may share 
similar genomic characteristics, highlighting the potential of our approach to reveal underlying evolutionary or 
structural relationships.

In Fig. (6), we indicate the state space formed by the parameters h(2), ∆f , and αmin for the SARS-CoV-2 
variants. We use these parameters for the SARS-CoV-2 variants because they present the highest values of I0 

Parameters h(−2) h(−1) h(0) h(1) h(2) αmax αmin ∆α ∆h ∆f

σbet 0.00009 0.00005 0.00007 0.00001 0.00015 0.00524 0.00257 0.00316 0.00188 0.02600

σin 0.00035 0.0002 0.00009 0.00005 0.00014 0.00580 0.00152 0.01114 0.00576 0.03723

I0 0.25714 0.2500 0.7770 0.2000 1.0714 0.90348 1.69078 0.28366 0.32638 0.69836

Table 3.  Calculation of σbet, σin and I0 for 10 fractal parameters.
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according to the Table (3). The samples are much more “mixed” and distributed much closer than samples of 
the coronavirus species. Thus, this is because the variants present a more significant genetic similarity between 
them and are, therefore, more difficult to distinguish from each other. Despite this clear separability between the 
coronavirus species, we notice a more significant overlap between the samples when analyzing specific variants, 
as in the case of the SARS-CoV-2 variants. In these cases, more robust methods such as the Support Vector 
Machine (SVM), which handles more complex boundaries and overlaps well, become more suitable to ensure 
efficient classification.

SVM
We chose the Support Vector Machine (SVM) algorithm because of its effectiveness in classification problems, 
mainly when the data are well distributed in distinct regions, as observed in the state space generated by the 
fractal parameters of the CGR images for coronavirus species (Fig. 5). The SVM is a robust approach for relatively 
small datasets, such as the coronavirus samples used, and is capable of identifying hyperplanes that maximize the 
separation margin between classes54.

Fig. 5.  Scatter plots of fractal parameters.
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For the classification of SARS-CoV-2 variants (Fig. (6)), we observed that the samples present a more 
overlapping distribution, with less defined regions compared to the coronavirus species. However, we observed 
clustering tendencies among the variants, which justifies the use of the SVM to separate these classes, even if the 
overlap makes the task more challenging.

To ensure the robustness of the results, we used cross-validation through the Scikit-Learn “StratifiedShuffleSplit” 
function, dividing the data into five parts and maintaining the proportion of classes in each division. Here, K 
represents the number of data splits into training and testing sets, with each split ensuring that 80% of the data 
is used for training and 20% for testing. In addition, we applied the “StandardScaler” to standardize the data, 
which is essential for optimal SVM performance. The classification model used was a Support Vector Machine 
(SVM) with RBF kernel (kernel=“rbf ”), a non-linear kernel that allows the identification of complex patterns in 
the data. The metric used to evaluate the model’s performance was accuracy. The accuracies of each of the five 
divisions were calculated.

To test the algorithm, we applied it to the six coronavirus species, using as features the pairs of parameters 
and the configurations mentioned in the previous paragraph. As expected, for the state spaces h(2) vs 
(αmax, αmin, ∆f), we obtained an accuracy of 100%, since in these spaces, the species are linearly separable. 
See Fig. (5). Furthermore, using as features (αmax vs. αmin), (αmax vs. ∆f), (αmin vs. ∆f) and a space formed 
by the combination of the three parameters (∆f × αmin, ×αmax). With the combination of two parameters, 
we obtained an accuracy higher than 97%, and with the combination of three parameters, it was possible to 
obtain an accuracy of 100%. See Fig. (7). This method indicates that the species are distinct in the shapes and 
textures of the CGR images. It shows once again that this method is effective in species classification.

This result reinforces the advantages of our method, as previously mentioned. The ability to achieve high 
accuracy with a minimal number of parameters highlights the efficiency of our approach. Additionally, the 
clear separability of species in the state spaces, even with different parameter combinations, demonstrates our 
framework’s robustness and simplicity for the classification of genomic species.

In Table (4), we compare the performance of our method with the results of recent studies on the classification 
of coronavirus genome sequences. The table highlights the techniques, features extracted, classification 
algorithms employed, and accuracy obtained. Our method, which combines CGR with 2D MF-DFA and uses 
fractal parameters as features, obtained an accuracy of 100%, surpassing or equaling the results of other methods 
described in the literature, such as those mentioned in Table (4) .

For the SARS-CoV-2 variants, when applying the four parameters with the highest values of I0 (∆f , αmax

, αmin and h(2)) and we label each variant as follows: 0: Alpha, 1: Beta, 2: Delta, 3:Gamma, 4: Omicron. We 
obtained an average accuracy of approximately 76%. See Fig. (7). Although the separation between the variants 
is less pronounced due to their more remarkable genetic similarity, the SVM still proved effective in identifying 
patterns that allow the classification of the variants.

When SVM presents a lower accuracy, it can be attributed to the more significant genetic similarity between 
SARS-CoV-2 variants. Therefore, it results in similar CGR images and, consequently, similar fractal parameters. 
This similarity makes distinguishing variants more challenging. However, the obtained accuracy of approximately 
76% demonstrates that the SVM algorithm still effectively captures subtle patterns within the same species that 
allow the classification of these variants even if they are genetically close.

To evaluate how our algorithm classified samples from each variant, we obtained the confusion matrix, See 
Fig. (8) and calculated the precision, recall, and F1-score measures for each class. The confusion matrix is a 
table that summarizes the performance of a classification model, showing the number of correct and incorrect 

Fig. 6.  State space constructed using fractal parameters (h(2), ∆f , αmin ) for SARS-CoV-2 variants. The 
apparent mixing of certain variants may reflect their evolutionary proximity or similarities in genomic features.
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Fig. 8.  Confusion Matrix. Each row represents the actual class, and each column represents the predicted class. 
The diagonal elements indicate correctly classified samples. Classes: 0 (Alpha variant), 1 (Beta variant), 2 (Delta 
variant), 3 (Gamma variant), 4 (Omicron variant).

 

Study Techniques Used Features classification algorithms Accuracy (%)
This work CGR + 2D MF-DFA Fractal Parameters SVM 100

Hammad et al25 CGR+ SGLR Statistical features from the images KNN 99.39

de Souza et al26 CGR + DFT Viral signatures vector CNN 99.69

Naeem et. al66 EIIP + DFT +DCT Moment invariants KNN 100

Arslan et. al67 CpG Islands Ratio(C), ratio(G), ratio(CG) KNN 98.4

Table 4.  Related works results. CGR: Chaos Game Representation, SGLR: Single gray-level representation, 
DFT: Discrete Fourier Transform, EIIP: Electron-ion-interaction pseudo potentials, DCT: Discrete cosine 
transform, SVM: Support Vector Machine, k-Nearest Neighbors, CNN: Convolutional neural Network.

 

Fig. 7.  Left: The accuracy of the six coronavirus species for the selected combinations with increasing K. Right: 
The accuracy of the five SARS-CoV-2 species variants for the selected combinations with increasing K.
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predictions organized by each class. Each row represents the samples from the actual class, while each column 
represents the model’s predictions, allowing us to observe where hits and misses occurred64,65.

The confusion matrix, Fig. (8) shows the model predictions for five classes (SARS-CoV-2 variants). For each 
class, the model obtained the following metrics:

•	 Class 0 (variant Alpha): Precision of 81.33%, recall of 76.25%, and F1-score of 78.71%, indicating a good 
ability of the model to correctly identify examples of this class, although some errors still occur.

•	 Class 1 (Variant Beta): Precision of 65.12%, recall of 73.68% and F1-score of 69.14%, suggesting that the 
model had a significant error rate in this class, possibly confusing it with other classes.

•	 Class 2 (variant Delta): Precision of 88.89%, recall of 80% and F1-score of 84.21%, revealing that the model 
performed strongly in correctly identifying examples of this class.

•	 Class 3 (variant Gamma): Precision of 74.16%, recall of 82.5% and F1-score of 78.11%, with a slight tenden-
cy to incorrectly classify this class, but with a high recall rate.

•	 Class 4 (variant Omicron): Precision of 72.97%, recall of 67.5% and F1-score of 70.13%, which indicates a 
slightly greater difficulty in correctly classifying this class.

The model performed well with classes 0 and 2 (corresponding to the Alpha and Delta variants), which exhibited 
high precision and recall values. It indicates that the fractal parameters of these variants are more efficient in 
classifying them. One reason may be that the region these variants occupy in the state space is more defined than 
the others due to the genetic divergence between them.

While classes 1 and 4 (corresponding to the Beta and Omicron variants) presented a considerable amount 
of samples overlapping with other variants, suggesting a possible overlap of the multifractal parameters 
(αmin, ∆f, αmax) with the other variants or difficulty of the model in distinguishing them adequately.

In general, we achieved an overall accuracy of 76%, showing that the model could classify a reasonable 
amount of samples correctly, but there is still room for improvement, especially in some classes. An avenue for 
further investigation is to test the same classification method on regions of the SARS-CoV-2 genomic sequence 
with higher mutation rates. For instance, instead of analyzing the entire SARS-CoV-2 genome, the method could 
be applied specifically to the Spike region, which has shown promise in achieving higher classification accuracies 
in related studies.

Conclusion
In this work, we use Chaos Game Representation (CGR) and multifractal analysis (2D MF-DFA) to explore 
and classify different species of coronaviruses and variants of SARS-CoV-2. Using fractal parameters extracted 
from CGR images, we constructed a state space to distinguish coronavirus species efficiently. We observed a 
fractal nature in the CGR images of all coronavirus species. The clear separation between species evidenced in 
the space formed by these parameters, combined with the high accuracy of the Support Vector Machine (SVM) 
algorithms, which reached 100% in some combinations of features, confirms the viability of the proposed 
method for biological classification problems.

The application of SVM in the classification of SARS-CoV-2 variants, although more challenging due to the 
more significant genetic similarity between the variants, obtained a satisfactory performance with an accuracy of 
approximately 76%. This result shows that, even in scenarios with high overlap between samples, the multifractal 
approach and SVM offer an effective solution for identifying patterns in complex data and the potential to 
classify coronavirus variants. A possible extension of this work could be to increase the variant database and use 
more robust machine learning algorithms, such as neural networks.

The proposed method proved effective for discriminating species and provided a solid basis for the 
analysis and classification of variants within a single species. Thus, this study contributes to the advancement 
of multifractal analysis techniques in bioinformatics and opens promising avenues for using CGR images and 
machine learning algorithms in future studies of the classification of organisms and their variants.

The dependence on the quality of the genomic data used in this work is an important limitation. Because the 
sequences were extracted from the NCBI database, which does not always provide complete genomes, rigorous 
filters were required to ensure the integrity and consistency of the data analyzed. Furthermore, although the 
method has demonstrated efficiency in separating species in state space, the biological interpretation of the 
fractal parameters based on the species-specific genomic characteristics is not yet fully elucidated, representing 
an opportunity for future studies that connect these patterns to specific molecular properties.

Although we focused on variants due to their relevance, we recognize that the field of virology has evolved, 
with the predominant Omicron sublineages. A possible extension of this work would be to apply the proposed 
method to classify these lineages, which could provide a more detailed view of viral evolution and contribute 
to the study of the most current variants. Furthermore, the proposed methodology may be helpful in other 
contexts, such as analyzing new variants or data from other viral families.

Data availability
The datasets generated and/or analyzed during the current study and the code of programs are available in the 
GitHub repository61. The datasets used and analyzed during the current study are available from the correspond-
ing author upon reasonable request. The corresponding author’s contact email is jonathan.pessoa@fisica.ufrn.br.
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