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The attitude angles of the drilling tool serve as crucial information for transmitting Measurement 
While Drilling (MWD) data, enabling the optimization of drilling performance and ensuring tool safety. 
However, the real-time transmission and processing of attitude data pose a significant challenge, 
especially with the increasing prevalence of horizontal and directional drilling. To accurately and 
promptly obtain the attitude data, this paper proposes a lossless compression method based on 
Huffman coding, called Adaptive Frame Prediction Huffman Coding (AFPHC). This approach leverages 
the slowly varying characteristics of MWD tool attitude data, employing frame residual prediction 
to reduce data volume and selecting optimal bit widths for encoding transmission data. By using 
real-world drilling data, the proposed method is implemented on a Verilog HDL on a Xilinx field-
programmable gate array (FPGA) circuit. Simulation and experiment results show that compression 
ratios provided by the proposed method for the inclination, azimuth, and toolface angles reach up to 
4.02 times, 3.98 times, and 1.48 times, respectively, outperforming several existing methods.
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The Rotary Steerable System (RSS), the most effective drilling technology for unconventional oil, gas, and 
new energy development to date, offers advantages such as high drilling speed, low cost, and smooth wellbore 
trajectories1,2. As a component of RSS, attitude measurement is a crucial prerequisite in enabling directional 
control3. Mud Pulse Telemetry (MPT) is the most widely used data transmission technology for MWD, but 
its transmission rate is only 2-5 bits/s4–6. With the continuous advancement of MWD technology, there is an 
increasing demand for real-time transmission and higher accuracy of drill tool attitude data. This has led to a 
significant increase in the amount of attitude data, which poses a great challenge for transmitting and processing 
attitude data7. Data compression technology solves this issue and realises timely transmission of while-drilling 
measurement data8. Two primary techniques, lossy and lossless, have been developed in the data compression 
technology to MWD engineering9,10.

Lossy data compression techniques
Lossy data compression techniques achieve higher compression ratios by discarding some data, causing data 
accuracy or quality to reduce11. In MWD data transmission, differential pulse code modulation (DPCM) and 
wavelet transform are the main techniques for lossy data compression12,13. For the former, an improvement to 
DPCM has been proposed by combining non-uniform quantization with root mean square (RMS) propagation 
gradient descent, achieving compression ratios of 2.73 and 3.06 times for resistivity and gamma data, 
respectively14. A compression algorithm for underground remote acoustic logging data was designed based on 
adaptive differential pulse modulation, achieving a 50% data compression ratio while maintaining a distortion of 
only 3%15. For the latter, a downhole video image compression system based on wavelet transform is proposed. 
By changing the compression factor, some image information is lost, resulting in a data compression ratio greater 
than 4 times16. Photographic images achieved a compression ratio of 1.01 times, while non-photographic images 
achieved a compression ratio of 1.31 times, both achieved using discrete wavelet transform and prediction 
methods, respectively17. Ling Kaixuan et al. proposed a data rearrangement method to enhance the compression 
efficiency of a hybrid coding approach based on DPCM and Discrete Cosine Transform (DCT). Under the 
premise of keeping the reconstruction error within 5%, they achieved a 60% improvement in the compression 
ratio of imaging-while-drilling data18. Zhang et al. proposed a quantized Compressed Sensing (CS) method 
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that achieves a peak signal-to-noise ratio of approximately 20 dB at an extremely low sampling rate of 1% on 
real-world datasets19. Wolfgang Weinzierl et al. developed a PCA-based method combined with a convolutional 
autoencoder to compress real-time NMR downhole data of three echo trains to fewer than 100 bits, addressing 
telemetry constraints in drilling operations20. However, lossy compression results in some distortion, preventing 
the compressed data from being fully restored to its original form21. For real-time attitude data, this can lead to 
inaccuracies in data calculations, reducing the reliability of the data.

Lossless data compression techniques
Lossless data compression techniques reduce the data volume by eliminating redundancy and repetitive 
information, which benefits the integrity and accuracy of the data22. The classic compression methods include 
run-length coding, arithmetic coding, dictionary-based coding, Lempel-Ziv-Welch (LZW) coding, Huffman 
coding, etc.23. For MWD data, the correlation between different physical quantities is weak, and there is a lack of 
a large number of repeated characters, causing run-length coding to be ineffective24. Despite its high compression 
ratio, arithmetic coding is unsuitable for compressing MWD data due to the difficulties in its hardware 
implementation25. Dictionary-based coding can improve the compression ratio, but it introduces system latency, 
which impacts real-time performance26. Therefore, the main methodologies applied in the lossless compression 
of MWD data are the LZW and the Huffman coding algorithms. For the former, Su et al. proposed an LZW data 
compression system based on Minimum Edit Distance prediction, achieving a compression ratio of 1.42 for 
sonic logging data27. After that, a joint algorithm of LZW lossless compression and Reed-Solomon coding was 
presented to encode and compress mud channel data, achieving a compression ratio of 2.75 in experiments28. 
For the latter, Shan Song et al. proposed a grouped frame prediction Huffman coding method and compared 
it with LZW, Huffman, and adaptive Huffman methods, among other lossless compression algorithms. They 
achieved a compression ratio of 1.41 for the compression of logging-while-drilling data29. Thereafter, a mixed 
coding algorithm based on adaptive Huffman and Golomb-Rice was proposed, achieving a compression ratio 
of 4.11 for wireless sensor network data30. However, this kind of coding table based on real-time statistical 
features makes it difficult to recover the original data in case of transmission errors, which makes it unsuitable 
for MPT31. A combined coding method using DCT, run-length coding, and Huffman coding was proposed 
for MWD nuclear magnetic resonance echo data, achieving a compression ratio of 15 with a relative error of 
less than 5%32. Although this method achieves a relatively large compression ratio, it requires the target data 
to have obvious continuous repetitiveness and multi-exponential variation features, making it unsuitable for 
MWD attitude data33. Chen Jianhua et al. proposed a deep learning-based lossless data compression method for 
well-logging data, achieving a 23% improvement in compression ratio for one-dimensional well-logging data 
and a 21% improvement for two-dimensional well-logging data34. Shan Song et al. employed a compression 
method utilizing deep autoencoders, which reduces errors by compressing and transmitting residual data from 
the feature extraction process through quantized encoding and Huffman coding, achieving a data compression 
ratio of 4.05 for inclination and azimuth angles35. Despite achieving high compression ratios through advanced 
artificial intelligence algorithms, the practical implementation of these techniques in downhole drilling tools 
remains challenging.

The literature review of the aforementioned compression methods for logging-while-drilling data is 
summarized in Table 1. The combination of various lossless compression algorithms requires high processing 
time and computing resources. In terms of algorithms, compared with joint algorithms, the Huffman coding 
algorithm is simple to operate and highly feasible, making it more suitable for MWD data processing36. The 
algorithm reduces the encoded data size by constructing an optimal prefix code based on character frequency. It 
dynamically adjusts the code length according to the frequency of characters, achieving effective data compression. 
Although Huffman coding has been applied to compress MWD data, it can only achieve a compression ratio of 
1.2 to 1.837. In the current field of lossless compression for MWD data, Huffman coding has yet to be effectively 
improved or optimized. In terms of hardware implementation, due to the limited space of downhole drilling tools 
and the complex geological environment, the high integration and low power consumption characteristics of the 
hardware are put forward strict requirements. FPGAs offers high integration, low power consumption, flexibility, 
and parallel computation capabilities with simpler algorithm implementation38–40. Reconfigurable programming 
also facilitates updating the Huffman coding table to adapt to new geological environments. Therefore, FPGA 
circuits serve as an ideal embedded hardware development platform for attitude data compression41–43.

A high compression ratio often means sacrificing data accuracy while-drilling in engineering applications44,45. 
However, the accuracy requirements for MWD attitude data are particularly strict. To address this challenge, 
improving the data compression ratio while maintaining the required accuracy of MWD attitude data to reduce 
data transmission volume has become an urgent issue in engineering applications.

Contributions
To address the problem of timely and accurate transmission of attitude data while-drilling, this paper develops an 
AFPHC algorithm to realize lossless compression of attitude data. The method relies on the slowly varying data 
characteristics of the attitude data, performing frame residual prediction to reduce data transmission volume. 
Based on the predicted residual features, we propose an improved adaptive-range Huffman coding method to 
select the appropriate bit width for encoding the transmission data, thereby enhancing the efficiency of attitude 
data coding and bandwidth utilization. By building an attitude data compression system while-drilling based on 
FPGA, it also leverages the advantages of parallel computation, easy embedding, and low power consumption of 
FPGA to improve the real-time performance of attitude data transmission.
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Method and implementation
System framework and key technologies
The FPGA-based attitude data compression system is depicted in Fig. 1. It primarily comprises the following 
models: data preprocessing model, coding table training model, and residual prediction coding model. The data 
preprocessing model standardizes the logging file data, converting the attitude angle data into frame-format 
data. The data frame format of one frame of logging data is shown in the following Fig. 2. The attitude angle data 
in the logging file is in decimal form M, which needs to be converted into binary data C according to the protocol 
of uploading coded data in the rotary steering system C = M

P , where P is the physical quantity versus accuracy. 
For example, the azimuth is 188.8◦, the corresponding precision P is 0.17578125, and the coded value is 11-bit 
binary coded value and 1-bit even parity bit, that is, 100001100100.

Fig. 2.  Data frame format.

 

Fig. 1.  Framework of drill tool attitude data compression system.

 

Ref@year Main methods data object Compression ratio Method type

14@2023 DPCM
Resistivity data 2.73

Lossy

Gamma data 3.06
15@2023 Adaptive DPCM Acoustic logging data 2.00
16@2007 Wavelet transform Logging image 4.00

17@2020 Wavelet transform & prediction
Photographic image 1.01

Non-photographic image 1.31
18@2018 DPCM & DCT Imaging while drilling data 2.50
32@2018 DCT & RLE & Huffman Nuclear magnetic resonance data 15.00
19@2024 CS Ultrasonic image Effectual
20@2024 PCA Nuclear magnetic resonance data Effectual
27@2015 MED & LZW Acoustic logging data 1.42

Lossless

28@2016 LZW & RS Mud channel data 2.75

29@2021

FPHC

MWD logging data

1.41

Huffman 1.11

Adaptive Huffman 1.08

LZW 0.83
30@2016 Huffman & Golomb-Rice Wireless sensor network data 4.11

34@2021 Deep learning
One-dimensional logging data 1.29

Two-dimensional logging data 1.26
35@2024 Depth automatic coding Inclination and Azimuth data 4.05

Table 1.  Literature Review of Downhole Logging Data Compression Methods.
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The coding table training model applies Huffman algorithm coding training to the frame-format data of 
the training set, generating a fixed probability coding table.  The main steps involve: counting the character 
frequency, establishing an optimal binary tree based on the character frequency, and sequentially outputting the 
codes corresponding to the characters by logic chip selection.

The residual prediction coding model performs residual prediction between frames on the frame-format 
data of the test set. It generates the adaptive range Huffman coding output for the predicted residuals based on 
the fixed probability coding table. This section will mainly introduce the improved and innovative algorithms in 
this these models. The main steps include: grouping data frames, carrying out residual prediction on the data in 
the frame group, applying Huffman coding to the prediction residual with self-adaptive bit width, selecting and 
outputting coding on the logic chip of the prediction residual character, and carrying out bit splicing to realize 
the coding output of each frame one by one.

In Fig. 1, data grouping, residual prediction and adaptive coding are the core modules and technical 
difficulties, which will be introduced in the following sections.

Frame grouping and packing method
Since the output of Huffman coding method is bitstream data, it has relatively poor error correction ability and 
is susceptible to channel errors caused by noise interference. Because the flexible grouping method can prevent 
error spreading and improve its error resilience without affecting the compression ratio of Huffman coding, the 
robustness of the system can be improved by using grouping and packaging. The main principle is as follows:

	(1)	 Independent grouping: Group all frames in the logging file. Each frame group is independent so as to pre-
vent error propagation.

	(2)	 Synchronized processing: The number of frames in each frame group is the same and fixed, ensuring syn-
chronization between the encoder and decoder.

This paper uses grouping parameters K = 10 as an example for data packing without loss of generality. However, 
the grouping parameters K can be optimized in drilling operations based on the actual geological environment.

The packet packing state machine realized by FPGA is shown in Fig. 3, which mainly includes five states: 
initial state Idle to realize global reset, frame header search state Header_search, frame data acquisition state 
Frame_receive, frame tail check state Tail_check to realize data reception integrity judgment, and frame group 
packing state Packet_form.

Residual prediction method
There are a total of Z data frames in the logging data file. When processing the current i − th data frame, the 
i − th frame is defined as the current frame, and the (i − 1) − th frame is defined as the predicted reference 
frame.

In the MWD data file, the frames are grouped into sets of K frames, referred to as frame groups. In each frame 
group, the data frames are labeled sequentially according to the acquisition time, denoted as F0, F1, F2, ..., FK−1
, i.e., Frame 0, Frame 1, Frame 2, ..., Frame K − 1. A frame group can be represented as:

	
Fi =

{
{B0,I , . . . , B0,A, . . . , B0,T }
{Bi,I , . . . , Bi,A, . . . , Bi,T }
{BK−1,I , . . . , BK−1,A, . . . , BK−1,T }

,� (1)

where I is the inclination angle, A is the azimuth angle, and T is the toolface angle. In order to facilitate 
calculation, all characters in the reference frame of frame 0 are initialized to 0. Treat all Bi,j(j = I, A, T ) as 
unsigned integers, then compute the prediction residuals between the corresponding physical quantities of the 
current frame and its reference frame.

The prediction residual can be expressed as:

Fig. 3.  Packet packing state machine.

 

Scientific Reports |        (2025) 15:13809 4| https://doi.org/10.1038/s41598-025-98372-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
Ri,j =

{
ei,I = Bi,I − Bi−1,I

ei,A = Bi,A − Bi−1,A

ei,T = Bi,T − Bi−1,T

,� (2)

where ei,I , ei,A, ei,T  are signed integers with value ranges of −2047 ≤ ei,I , ei,A ≤ 2047 and −63 ≤ ei,T ≤ 63, 
and the value range of i is 0 ≤ i ≤ K − 1.

The principle is shown in Fig. 4. The FPGA timing circuit design uses chip select signal of CS control to 
implement three-state gating, ensuring that only one byte of data from the same frame is received on the same 
clock-rising edge. The enable signals of en_W1, en_W2, and en_W3 inputs control the data writing. Before 
the current frame register holds the next frame data, the data of the current frame is transferred to the predictive 
frame register, iteratively, completing the residual prediction between frames for the frame group.

Adaptive-range Huffman coding method
Adaptive prediction residual range [-9, 9] encoding better aligns with attitude data characteristics, while 
the encoding scheme maintains low FPGA logic resource consumption for practical implementation. The 
distribution of a small number of residual prediction characters is scattered, and the high-order bits of the 
corresponding encoded data are filled with many zeros, occupying bit-width resources. Based on this feature, 
this paper proposes an adaptive-range Huffman coding method for predicting residuals between attitude data 
frames. The procedure is as follows: (1) Residual values of the drilling attitude angle prediction within the range 
of [−9, 9] are encoded and transmitted using Huffman coding. (2) Residual values of the drilling attitude angle 
prediction within the ranges of [−63, −10] and [10, 63] are encoded using a fixed bit-width of 7 bits (1 bit for 
the sign and 6 bits for the data). (3) The predicted residual values of the inclination and azimuth are transmitted 
in a fixed coded bit width of 12 bits (1 bit for the sign and 11 bits for the data) in other ranges.

	
ei,I =ei,A =

{
Indefinitelength for Ri,j ∈ [−9, 9]

7bit for Ri,j ∈ [−10, −63] ∪ [10, 63]
12bit for Ri,j ∈ [−64, −2047] ∪ [64, 2047]

. � (3)

	
ei,T =

{
Indefinitelength for Ri,T ∈ [−9, 9]

7 bit for Ri,T ∈ [−10, −63] ∪ [10, 63] . � (4)

FPGA implementation
Digital RTL synthesis and information theory achieve synergistic optimization through functional 
complementarity, with the FPGA architecture providing a unified hardware implementation platform. As the 
algorithm requires specific logic resources and IP cores for FPGA, this paper selects the Artix-7 series FPGA 
chip XC7A100T-2FGG484I from Xilinx, USA, for the system-level circuit design. The FPGA logic design, 
project configuration, environmental compilation, and timing simulation are carried out on the Vivado 2023.2 
software46. During the experimental verification process, the proposed algorithm was embedded into the 
FPGA for functional validation via software simulation. The realization of the program includes the following 
steps: The host computer uses Qt Creator 12.0.2 software47 to read the attitude data and convert it into frame-
format files. The frame-format data is then sent to the FPGA circuit via USB-to-serial communication. The 
input data is processed in parallel to implement the algorithm’s logic functions inside the FPGA. Finally, the 
encoded bitstream data is output. The encoded data is transmitted to the agent device according to the UART 
communication protocol, where the slave computer’s Python 3.11.0 software48 decodes the data and displays the 
attitude angles. The algorithm is implemented on FPGA as shown in Fig. 5.

Finally, the attitude angle data displayed by the slave computer is shown in Fig. 6. It mainly includes: the serial 
port settings module, data transmission module, data reception module, and attitude angle display disk module. 

Fig. 4.  Bock diagram of residual prediction frames.
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The serial port settings module is used to configure the baud rate and parity settings. The data transmission 
module is responsible for sending the attitude data. The data reception module receives the encoded data sent 
by the FPGA, performs decoding and decompression, and calculates the attitude angle frame format. The disk 
interface is primarily used to display the drill tool’s attitude angles, enabling the visualization of the drill tool’s 
attitude.

The lossless compression method of attitude data while-drilling based on residual feature prediction coding 
runs on an FPGA circuit. Its thermal margin is 58.5 °C, and the total power consumption is 0.87 W, which meets 
the low-power consumption requirement of MWD drilling tools. The compression algorithm circuit described 
in this paper utilizes only a limited amount of hardware resources within the FPGA chip as Table 2 shows. By 
efficiently mapping the operation sequence of the FPGA parallel architecture, it avoids excessive control logic or 
memory dependencies.

Method validity analysis
To effectively compress MWD attitude data, this study collected eight logging data files obtained from 
the actual drilling process in Luntai Oilfield, Xinjiang, China. The logging files have been divided into two 

Fig. 6.  Receiving data display interface of slave computer.

 

Fig. 5.  Block diagram of the proposed algorithm implemented on FPGA.
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groups: Group1 and Group2. Group1, as the training set, contains four files: 1st, 2nd, 3rd, and 4th, with each 
containing more than 50,000 frames of measurement data, used for preliminary feature analysis and training the 
Huffman probability table. Group2, as the test set, includes four files: 5th, 6th, 7th, and 8th, used for algorithm 
simulation and testing experiments. This section establishes the original character probability model and the 
predicted residual probability model. Normal distribution curve fitting analysis is performed to demonstrate the 
effectiveness of the residual prediction method.

Each data frame in the logging files is treated as three independent decimal characters, ai , representing the 
physical quantities of inclination angle, azimuth angle, and toolface angle. According to Shannon’s information 
theory49, the entropy of the random variable H (A) is given by:

	
H (A) = −

n∑
i=1

p(ai) · log p(ai),� (5)

where p(ai) is the probability of the i − th character in the logging data file. According to Shannon’s first 
theorem50, the entropy H (A) of each character in the logging file represents the theoretical limit of the binary 
code length for lossless compression, i.e.,

	
H(A) = −

n∑
i=1

pi · log pi ≤ −
n∑

i=1

pi · log qi.� (6)

The equality holds only when {qi} = {pi}, with 0 ≤ qi ≤ 1(j = 1, 2, ..., n) and 
∑n

i=1 qi = 1. The average 
code length L of all character ai codes in the logging file is:

	
L =

n∑
i=1

pi · li = −
n∑

i=1

pi · log qi,� (7)

where li is the coding length of the character ai, which is a non-negative random variable with li = − log qi

. According to the maximum discrete entropy theorem51, the entropy of all probability distributions pi is the 
maximum when the probability is equal, that is:

	 H(p) = Hn(p1, p2, · · · , pn) ≤ log n,� (8)

where P = (p1, p2, · · · , pn) is the n-dimensional probability vector. n = 2R, in which R is the binary coded 
bit width. The average information redundancy contained in all characters in the logging file is then given by:

	 r = Hmax(A) − H(A) = log n − H(A).� (9)

The key to achieving lossless compression of drill tool attitude data lies in reducing the information redundancy 
of the corresponding physical quantities in the drilling measurement data. As long as the probability distribution 
of all characters in the logging file is not uniform, there is potential for data compression.

Independent character probability model
Calculate the relationship between characters and probability distributions in each logging file of Group1, and 
establish character probability models for physical quantities such as inclination, azimuth, and toolface angles. 
Fit each original probability model to a Gaussian distribution, characterized by the mean µ0 and the standard 
deviation σ0, which quantifies the data dispersion.

In Fig. 7a–c represent the probability distribution models of the original data characters for the inclination 
angle, azimuth angle, and toolface angle, respectively. According to Eqs. (7) and (8), entropy has extremality. 
In the graph, each dataset’s L value takes the minimum value, which is the entropy value, calculated using Eq. 
(6). The probability distribution range of the original characters varies across different logging files, resulting in 
different L values. (1) The average code length L of the inclination angle and azimuth angle in the 1st and 2nd well 
logging files is 6.66, calculated from Eq. (7), which is unsuitable for compression. In the 3rd and 4th well logging 
files, the character probability distribution is more concentrated, resulting in a smaller average code length. (2) 
The fixed code length L for the toolface angle transmitted in the data frame is 7 bits, with a minimum average 
code length of 4.978. The character probability distribution is dispersed, making it unsuitable for compression.

Performance index Resource usage Resource utilization

Look-Up Tables 29788 35.80%

Flip-Flops 32182 21.72%

Digital Signal Processors 30 11.36%

Table 2.  Resource of algorithm on FPGA circuit.
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Predictive residual character probability model
Next, the residuals between frames are predicted for each logging file in Group1. Figure 8 shows the probability 
model of the predicted residual characters corresponding to the three physical quantities of inclination, azimuth, 
and toolface angle of the four files. The mean µp, standard deviation σp, and average code length L of the 
Gaussian-distributed random variables for each residual prediction model.

From Fig. 8, it can be revealed that most of the prediction residuals are concentrated in the range of [−9, 9]
. This suggests that small-range residual character coding is more appropriate for this data. Comparing the 
variation characteristics of the residual data probability models, the statistical fitting parameters of the normal 
distribution curve are shown in Table 3.

From Table 3, it can be concluded that:

	(1)	 The mean value µ0 of the original data probability model ranges from a minimum of 2 to a maximum of 
1836, with a relatively discrete distribution. The mean value µp of the residual data probability model is con-
centrated around 0. As shown in Fig. 8, the probability distribution of the predicted residuals is consistent 
with the fit of the normal distribution. Therefore, the predicted residual characters are more suitable for data 
compression than the original ones.

	(2)	 For both inclination angle and toolface measurements, the standard deviation values show a substantial 
reduction (σ0>>σp ) through the residual prediction process. This reduction demonstrates a clear trend 
from dispersed to centralized data distribution. The mean value of standard deviation of toolface angle σp 
tends to increase compared with σ0. The reason is that since the toolface angle fluctuates significantly, the 
probability distribution of the predicted residuals is more dispersed and uneven.

Fig. 7.  The probability distribution of characters for Group1.
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Parameter Attitude 1st 2nd 3rd 4th µ σ

µ0

INC 412.413 620.173 618.638 508.811 540.009 99.771

AZI 287.000 509.000 1836.000 305.402 734.351 741.290

TF 2.000 32.000 32.000 34.027 25.007 15.368

σ0

INC 13.116 2.970 1.406 0.998 4.623 5.726

AZI 28.450 15.695 10.569 5.457 15.043 9.867

TF 2.646 3.426 0.681 0.734 1.872 1.382

µp

INC −0.354 1.000 0.000 0.000 0.612 0.583

AZI 0.000 0.587 −0.003 0.000 0.146 0.294

TF 0.000 0.137 0.000 −4.000 −0.966 2.024

σp

INC 2.907 2.471 0.456 0.402 1.559 1.317

AZI 4.272 7.999 0.534 0.409 3.304 3.607

TF 3.579 4.344 2.384 0.278 2.646 1.773

Table 3.  Normal Distribution Curve Fitting Parameters.

 

Fig. 8.  The probability distribution of prediction residual for Group1.
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The average coding length and redundancy of the two models are shown in table 3, where L1, L2, L3 and L4 
respectively represent the code lengths of file 1st, 2nd, 3rd and 4th, L represents the average code length of files, 
σ represents the average standard deviation and r represents the average redundancy calculated from Eq. (9).

Table 4 shows that the probability distribution of data is more concentrated and the redundancy r of data is 
increased after residual prediction. The average code length L of the characters for the drilling attitude angles 
decreases, indicating that the residual prediction between frames can effectively improve the data compression 
performance.

Results
In 2021, Song et al. used an inter-frame residual prediction method to compress LWD data, achieving an average 
data compression ratio of 1.4129. However, this method has not been implemented on microprocessors such 
as DSP. Based on the characteristics of attitude data while-drilling, this paper’s proposed method improves the 
adaptability of coded data bit width, so the compression effect is better. And it is deployed on FPGA, which is 
more in line with the actual engineering needs.

This paper uses the data compression ratio as the indicator of the algorithm’s reasonable and effective 
compression performance. The larger the compression ratio, the greater the improvement in the equivalent 
transmission rate of the data compression system. The calculation method for the compression ratio in this 
paper is as follows:

	
CR = M

N
.� (10)

Where M is the number of bits in the original MWD data file, and N is the number of bits in the MWD data after 
compression by the FPGA.

Simulation results and analysis
Following the coding table training method outlined in Fig. 1, the well-logging data files “1st” and “2nd” from 
set Group1 are read for training to obtain the probability coding table T1 for the residual range [−9, 9]; well-
logging data files “3rd” and “4th” from set Group1 are used to train and obtain the probability coding table T2 
for the residual range [−9, 9].

Figure 9 shows the Huffman coding table T1 output bitstream as an example. It comprises two distinct 
components: (a) a comprehensive schematic diagram and (b) an enlarged view of the region highlighted by the 
red circle. The system operates with clk_out50 as the 50 MHz clock signal and sys_rst_n as the global reset 
signal. The dataset, stored in txt format as digital signals, is processed through a sequential readout mechanism. 
Specifically, the tx_data signal, with a width of 63 bits and depth of 58,000, systematically retrieves data 
from the text file and transmits it to the rx_data signal for subsequent encoding table training. Key signals: 
temp_data is fixed-length encoding, and temp_len is variable-length character encoding size, both used for 
subsequent logic selection. The encode_data signal outputs the encoding table in the range of -9 to 9 through 
a bit-stream format.

Based on this Huffman coding table T1, the attitude data of the 5th well logging file in set Group2 is tested. 
The bit-stream output of variable-length coding is illustrated in Fig. 10, where clk represents the 50 MHz clock 
signal and sys_rst_n denotes the reset signal. Figure 10a presents the global schematic diagram, showing 
the processing of the dataset stored in txt format as digital signals through a sequential readout mechanism. 
Specifically, the tx_data signal, with a width of 63 bits and a depth of 58,000, systematically retrieves data from 
the text file and transmits it to the rd_data signal for subsequent inter-frame residual prediction. Figure 10b 
provides an enlarged view of the region marked by the red circle in Fig. 10a. The enable signal en_flag outputs 
a high-level pulse, indicating the output within a frame of residual prediction signals. The residual prediction 
frame signal encode_data is sequentially output through bit-stream encoding. As evident from the figure, the 
residual prediction frame bit-stream encoding is output in sequence. Each data frame consists of a frame header 
(5A5A), residual prediction coding, and a frame tail (A5A5).

Experimental results and analysis
The process of attitude data of 5th logging file from compression to restoration is shown in Fig. 11, which 
intuitively illustrates the entire sequence of character feature transformations in digital signal processing. Figure 
11a shows the real drilling attitude trajectory, from which the attitude angle change information of angle of 
inclination, azimuth and toolface angle can be obtained. In Fig. 11b, the inclination angle demonstrates an 

Data type Attitude L1 L2 L3 L4 L σ r

Fig. 7

INC 6.658 7.215 1.557 1.502 4.233 3.130 7.767

AZI 6.918 7.170 1.554 4.395 5.009 2.622 6.991

TF 5.582 4.978 5.605 5.717 5.471 0.334 1.529

Fig. 8

INC 4.591 4.362 0.800 0.050 2.451 2.361 9.549

AZI 5.350 5.695 1.384 0.240 3.168 2.762 8.832

TF 6.550 5.501 5.634 2.111 4.949 1.949 2.051

Table 4.  Comparison of Parameter Average Code Length.
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increasing trend, the azimuth angle gradually increases, and the toolface angle undergoes significant fluctuations 
as the drilling tool moves. After applying residual prediction between frames using FPGA, the predicted residuals 
are obtained as depicted in Fig. 11c. In Fig. 11c, the calculation results for the inclination and azimuth angles are 
generally small and relatively stable, with only a few exceptions of larger residual values. The prediction residuals 
of the toolface angle still display some fluctuations, preserving the large fluctuation characteristic of the original 
data. However, compared to the initial fluctuation trend, there is a noticeable degree of reduction. Adaptive-
range Huffman coding is then applied to the predicted residuals, and the FPGA outputs the encoded bitstream 
to the slave computer. Python 3.11.0 software is utilized on the slave computer for decoding verification, and 
the transmitted attitude data is employed for trajectory prediction, as illustrated in Fig. 11d. By comparing 
the predicted trajectory (d) with the attitude trajectory (a), the results are found to be completely consistent, 
indicating accurate transmission of the residual prediction coding. It should be noticed that there is no noise 
interference in the channel during the ground test, which prevents the generation of erroneous coding, resulting 
in a bit error rate of 0.

Fig. 10.  Output diagram of coded bitstream of 5th logging file.

 

Fig. 9.  Simulation diagram of bitstream output of coding table.
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Using the probability coding tables T1 and T2, coding and compression tests were performed on four well-
logging files (5th, 6th, 7th, and 8th). The algorithm’s transmission performance is summarized in Table 5. In 
the table, N1 represents the number of bits compressed according to the coding table T1, and CR1 denotes the 
compression ratio corresponding to coding table T1. N2 represents the number of bits compressed according 
to the coding table T2, and CR2 indicates the compression ratio corresponding to coding table T2. CR is the 
average of the compression ratios for the two models.

The table illustrated that:

	(1)	 The experiments conducted using Huffman coding tables T1 and T2, which were trained based on two 
different logging files, resulted in similar compression ratios CR1 and CR2. This indicates that Huffman 
coding tables constructed on the basis of small-range residuals do not rely on specific well logging files and 
exhibit compatibility with the predicted residual characters.

	(2)	 The maximum average compression ratios CR for the inclinations, azimuth angles, and toolface angles 
reach 4.00 times, 3.98 times, and 1.46 times, respectively, demonstrating the algorithm’s ability to compress 
the attitude data effectively.

	(3)	 The data compression ratios of 7th and 8th are notably higher than those of 5th and 6th. This indicates that 
the compression effect becomes more evident as the number of data frames contained in the well logging 
file increases. The experimental results show that the proposed algorithm is an effective and reliable com-
pression method for drilling tool attitude data.

Number Filename Attitude M N1 N2 CR1 CR2 CR

1 5th

INC 6432 2375 2470 2.71 2.60 2.66

AZI 6432 2734 2887 2.35 2.23 2.29

TF 3752 3270 3361 1.15 1.12 1.13

2 6th

INC 6108 2282 2114 2.68 2.89 2.78

AZI 6108 2863 2747 2.13 2.22 2.18

TF 3563 2575 2554 1.38 1.40 1.39

3 7th

INC 251268 64110 63947 3.92 3.93 3.92

AZI 251268 65232 65277 3.85 3.85 3.85

TF 146573 105673 111025 1.39 1.32 1.35

4 8th

INC 708660 176415 177597 4.02 3.99 4.00

AZI 708660 178164 178268 3.98 3.98 3.98

TF 413385 279309 288036 1.48 1.44 1.46

Table 5.  Normal Distribution Curve Fitting Parameters.

 

Fig. 11.  The process of real attitude data from compression to restoration.
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Discussion
Huffman, adaptive Huffman, LZW, and other lossless compression algorithms are implemented in Python 3.11.0 
as baseline methods to comparatively assess the compression efficiency of the proposed algorithm. Two well-
logging files, 7th and 8th, from Group2, were used as the test set. Based on the principles of these algorithms, 
the two well-logging files were compressed and encoded, and the average compression ratios were calculated. 
The comparison results of different lossless compression algorithms are shown in Fig. 12. From Figure, it can be 
observed that the algorithm proposed in this paper achieves a higher average compression ratio CR compared to 
other lossless algorithms, with average compression ratios of 3.96 times, 3.92 times, and 1.41 times for the good 
inclination, azimuth angle, and toolface angle, respectively. This confirms that the residual-based prediction 
algorithm for attitude data compression proposed in this paper achieves a higher compression ratio than those 
of other tested lossless compression algorithms.

While the proposed residual-based prediction algorithm and Adaptive Frame Prediction Huffman 
Coding (AFPHC) technique demonstrate significant improvements in attitude data compression, there are 
certain limitations and potential directions for future research: (1) Certain limitations: This method requires 
further optimization of timing paths and enhanced clock domain constraint management. Through precise 
timing budgeting and FPGA logic resource allocation, energy consumption and hardware overhead can be 
reduced, achieving optimal configuration and utilization of hardware resources. (2) Potential directions: The 
method’s proven efficacy supports its practical adoption. Immediate extensions include aerospace applications, 
particularly attitude data compression, while exploring cross-domain adaptability for industrial automation and 
real-time embedded systems. Future developments will focus on enhancing compression performance through 
the integration of AI algorithms and cloud computing.

While the residual prediction in AFPHC introduces moderate computational complexity, this is effectively 
mitigated by the parallel architecture of FPGAs. In contrast, deep learning methods present prohibitively complex 
implementations for embedded systems. The FPGA implementation significantly reduces latency and achieves 
faster processing than software-based solutions. AFPHC excels in real-time, high-accuracy compression of 
MWD attitude data, combining FPGA efficiency with algorithmic innovation. It outperforms existing methods 
in both compression ratio and hardware adaptability, making it an ideal solution for resource-constrained 
downhole environments.

Conclusion
This paper proposes a residual-based prediction algorithm for attitude data compression, solving the problems of 
large data volumes and high accuracy requirements in attitude data transmission. This method is not restricted 
by different downhole working conditions or drilling tools, demonstrating universal applicability. Based on this 
algorithm, an attitude data compression system was designed and implemented on an FPGA hardware platform. 
The algorithm is applied to the measurement data transmission system, where frame grouping is used to enhance 
the robustness of the system, and residual prediction between frames is employed to decrease the amount of 
transmitted data. By improving traditional coding methods, an adaptive-range Huffman coding method is 
established to reduce the bitstream of attitude data transmission, thereby enhancing both the transmission 
efficiency and accuracy of attitude data. Compared with other commonly used lossless compression methods, 
the compression ratio of angle of inclination, azimuth and toolface angle of this algorithm is up to 4.02 times, 
3.98 times and 1.48 times, which proves that this algorithm has a very good compression effect.

Fig. 12.  Comparison of compression ratio.
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