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Ovarian cancer is associated with high rates of patient mortality and morbidity. Laparoscopic 
assessment of tumor localization can be used for treatment planning in newly diagnosed high-grade 
serous ovarian carcinoma (HGSOC). While spread to multiple intra-abdominal areas is correlated 
with worse outcomes, whether other morphological tumor differences are also associated with 
patient outcomes is unknown. Given the large volume of visual information in laparoscopic videos, 
we investigated whether deep-learning models can capture implicit features and predict treatment 
outcomes. We developed a novel deep-learning framework using pre-treatment laparoscopic images 
to assess clinical outcomes following upfront standard treatment, defined as short progression-free 
survival (PFS) (< 8 months) or long PFS (> 12 months). The deep-learning framework consisted of 
contrastive pre-training to capture morphological features of images and a location-aware transformer 
to predict patient-level treatment outcomes. We trained and extensively evaluated the model using 
cross-validation and analyzed the extracted features via UMAP visualizations and Grad-CAM saliency 
maps. The model reached an AUROC of 0.819 (± 0.119) on fivefold cross-validation and an out-of-
fold AUROC of 0.807 on the whole dataset, successfully discriminating between patients with short 
PFS and long PFS using only laparoscopic images. Our approach demonstrates the potential of deep 
learning to simplify HGSOC triage and improve early treatment planning by accurately stratifying the 
patients based on minimally invasive laparoscopy at the diagnostic stage.
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High-grade serous ovarian carcinoma (HGSOC) is the most common and lethal subtype of ovarian cancer and 
is often diagnosed at an advanced stage (III or IV)1,2. While most patients respond to front-line chemotherapy 
and enter disease-free remission, up to 73% of patients with advanced-stage disease will ultimately experience 
recurrence3, and only 50.8% of all patients will be alive five years after diagnosis1. Differences in clinical 
outcomes within HGSOC correlate with both molecular and treatment factors. Success and timing of surgical 
resection (immediately upon diagnosis vs after chemotherapy)4,5 correlates with differential progression-
free survival time. HGSOC patients with inherited genetic mutations (BRCA1, BRCA2) and somatic tumor 
alterations impacting homologous recombination status6,7 experience longer disease-free intervals and respond 
more favorably to chemotherapy. While identification of these and other molecular changes guides the selection 
of treatment agents in the maintenance and recurrent settings8,9, customized treatments at the time of diagnosis 
of HGSOC are not yet routinely used. Though several individual clinical and genomic risk factors are known, 
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the ability to fully distinguish between patients who will experience excellent versus poor treatment outcomes 
remains limited, particularly at the time of diagnosis.

Clinicians have identified gross morphological differences among ovarian cancers of the same histological 
subtype at the time of diagnosis. Morphological variations are associated with distinct clinical courses, genomic 
alterations, and metabolic changes10–12. These differences suggest that visual tumor morphology may be a 
biomarker for underlying tumor biology. This study explores whether tumor morphology alone can identify 
subgroups of HGSOC patients with distinct prognoses. The ability to define risk with this novel methodology 
allows for future personalized therapy choices, an unmet need in ovarian cancer treatment.

Laparoscopic triage of newly diagnosed patients with ovarian carcinoma represents a unique opportunity for 
early visual assessment of tumors. Laparoscopic assessment has been validated as a predictor of tumor resectability 
in ovarian cancer13. Since deep learning has shown potential for processing and gaining new information from 
medical imaging, combining deep learning algorithms with laparoscopic imaging has enhanced several aspects 
of patient care, including semantic segmentation14, surgical action recognition15–17, cancer detection18,19, and 
prediction of tumor resectability20.

The task of parsing large quantities of visual information, such as tumor morphology at the time of diagnosis, 
is particularly well suited to AI. Recent work integrating radiographic imaging, histology, and clinical factors 
using AI can successfully retrospectively risk-stratify patients with ovarian carcinoma21. Other artificial 
intelligence and machine learning technologies have been successfully applied to ovarian cancer diagnosis and 
risk prediction, leveraging multiple types of input data, such as radiography22–24, lab tests and biomarkers25–28, 
genetic data29,30, and other clinical data31–38. Many current models rely on collecting and processing serum or 
tissue from patients. We aimed to simplify this process by using images from minimally invasive pre-treatment 
laparoscopy alone as our input.

To investigate whether laparoscopic images from the time of diagnosis are associated with clinical outcomes 
following upfront therapy, we developed a deep-learning framework using pre-treatment laparoscopic imaging. 
This model hypothesizes that much of the information needed to determine patient outcomes is somehow visual 
or otherwise contained in images. Furthermore, this proof-of-concept approach may be expanded to identify 
patients more likely to respond to a particular therapeutic regimen and aid future personalized clinical decision-
making.

Here, we report the use of deep learning to capture morphological features from laparoscopic images and 
their associations with clinical outcomes of patients with ovarian cancer. We summarize our major contributions 
as follows:

•	 We developed an ovarian cancer outcome prediction model using only images from diagnostic laparoscopy, 
facilitating treatment planning at the time of diagnosis.

•	 We proposed a contrastive pre-training framework consisting of view and location contrast to learn morpho-
logical and locational features from laparoscopic images.

•	 We enabled patient-level outcome prediction by training a location-aware transformer encoder and using 
data augmentation to stabilize training and alleviate potential overfitting.

•	 We comprehensively evaluated our pipeline by nested cross-validation, zero-shot validation, and few-shot 
validation while visualizing UMAPs of learned embeddings, attention maps of the transformer encoder, and 
Grad-CAM maps.

Results
Figure 1 illustrates the workflow of our prediction system and the diagrams of our pre-training and downstream 
prediction architectures. Our framework used diagnostic laparoscopic images screened and selected by 
physicians to predict treatment outcomes of HGSOC patients, i.e., short progression-free survival (short PFS) 
and long progression-free survival (long PFS) (Fig.  1A). This framework may enable early prognostication 
and treatment planning for patients with HGSOC. We included 115 patients in our analysis, 16 with short 
PFS (PFS < 8 months) and 99 with long PFS (PFS > 12 months). We also set a stricter threshold for extremely 
short PFS patients (PFS < 6 months) for zero-shot and few-shot evaluations (Fig. 1B). For modeling, we first 
pre-trained the ResNet-50 backbone using contrastive learning (Fig. 1C). Then we fed the augmented image 
groups into a downstream transformer encoder for final prediction (Fig. 1D). The “Methods” section introduces 
more modeling details. In comparison, our model classified 42 patients as short PFS and 73 patients as long 
PFS after aggregating the out-of-fold predictions. Supplementary Table S1 lists the clinical and demographic 
characteristics of the initial and predicted treatment groups.

Model prediction of PFS outcomes on the test sets
Figure 2 and Table 1 show our model’s prediction results over fivefold test sets. Our model pre-trained with 
both view and location contrast reached a mean AUROC of 0.820 (± 0.182) over five folds when predicting 
augmented image groups (Fig. 2A–E, Table 1), while the patient-level mean AUROC achieved 0.819 (± 0.119) 
when averaging group-level predictions for each patient. In addition, the group-level sensitivity was 0.747 
(± 0.339) with a specificity of 0.748 (± 0.097), while the patient-level sensitivity was 0.883 (± 0.145) with a 
specificity of 0.716 (± 0.075). The standard deviations of patient-level performances were smaller than those of 
group-level performances, except for AUPRC [group-level: 0.342 (± 0.173); patient-level: 0.586 (± 0.211)]. Due 
to our small sample size, we also reported the out-of-fold predictions on the whole dataset. The patient-level 
AUROC reached 0.807 with an AUPRC of 0.424, and the sensitivity reached 0.875 (14 true positives and 2 false 
negatives) with a specificity of 0.717 (71 true negatives and 28 false positives) (Fig. 2B). Since using laparoscopic 
images to predict treatment outcomes is novel and no previous methods exist, we compared our proposed 
method to the two ablated baseline methods, i.e., models without pre-training and models pre-trained with only 
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view contrast (Fig. 2A–F). This comparison can illustrate the effectiveness of the view and location contrastive 
pre-training strategy. The AUROCs of our proposed method outperformed the other two settings on the test 
sets for most folds except fold 1 (Fig. 2A–E) and the out-of-fold evaluation (Fig. 2F). Supplementary Tables S2 
and S3 report the detailed prediction results for the model without pre-training and the model pre-trained with 
only view contrast respectively. Figure 2G,H show the Kaplan–Meier (KM) plots. Figure 2G shows the ground-
truth survival curves as a reference with significant differences (p < 0.001). Figure 2H displays survival curves 
between our models’ predicted short PFS and long PFS groups, still showing statistically significant differences 
(p = 0.013).

Zero-shot and few-shot evaluations
In addition, we also set up a stricter threshold for short PFS (PFS < 6  months) to approximate platinum 
resistance39–41, defined as disease recurrence within 6  months of completion of first-line platinum-based 
chemotherapy, which is used widely in medical practices. However, only 5 patients in our cohort satisfy 
this threshold. As a result, we performed the zero-shot and few-shot evaluations to evaluate our model’s 

Fig. 1.  Overview of the ovarian cancer treatment outcome prediction system. (A) The overall workflow of 
our framework to predict treatment outcomes in the diagnostic stage. (B) Diagram showing how we select 
thresholds to determine the short PFS (< 8 months) and long PFS groups (> 12 months) to train and evaluate 
our model. We also considered the typical threshold for short PFS in practice (< 6 months) and performed 
zero-shot and few-shot evaluations. (C) Contrastive pre-training framework with view contrast and location 
contrast to pre-train a ResNet-50 backbone. (D) Data augmentation strategy to form a bag of augmented image 
groups for each patient and the outcome prediction model using a transformer encoder to train on sequences 
of image features.
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Fig. 2.  AUROC and Kaplan–Meier curves. (A–E) ROC curves on the five-fold test sets by cross-validation. 
The colors refer to different training settings: green lines refer to no pre-training, orange lines refer to pre-
training with view contrast only, and blue line refers to our proposed method, i.e., pre-training with view and 
location contrast. (F) ROC curve of our model’s out-of-fold predictions. The colors refer to different training 
settings: green lines refer to no pre-training, orange lines refer to pre-training with view contrast only, and blue 
line refers to pre-training with view and location contrast. (G) Ground-truth Kaplan–Meier progression-free 
survival curves between short PFS and long PFS groups. (H) Kaplan–Meier progression-free survival curves 
between model-predicted short PFS and model-predicted long PFS groups.
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generalizability to the stricter threshold (refer to “Zero-shot and few-shot evaluations” in Methods for more 
details). We reported the evaluation results for the zero-shot and few-shot settings to investigate the threshold 
we selected for short PFS (PFS < 8  months) and compare it to the stricter threshold of platinum resistance 
(PFS < 6 months). The patient-level AUROC for the zero-shot evaluation was 0.794 with an AUPRC of 0.495, 
which suggests that our model can correctly predict treatment outcomes for patients with PFS < 6 months when 
only seeing patients with 7- or 8-month PFS in the training set. After adding a small subset of patients with 
PFS < 6  months to the training set for few-shot evaluation, the performance increased significantly, and the 
patient-level AUROC reached 0.842 with an AUPRC of 0.578. This suggests that our model has a few-shot 
ability to generalize to the 6-month threshold for platinum resistance. These findings demonstrate that it would 
be reasonable to extend the commonly used threshold (PFS < 6 months) to our setting (PFS < 8 months) when 
defining the short PFS group.

Visualizations for locations
Figure 3 displays the features learned from the downstream prediction model. To better understand the quality 
of learned features, we generated 2D UMAP visualizations supervised by location on the features extracted from 
the ResNet-50 backbone (Fig. 3A). Images were clustered according to image location (diaphragm, omentum, 
pelvis, and peritoneum). This may suggest that we can readily group individual images by their original locations, 

Fig. 3.  Visualization and interpretation of learned features and attention maps over folds. (A) UMAP 
visualizations of the image embeddings extracted by fine-tuned ResNet-50 on the five-fold test sets. The 
UMAPs were trained on the training sets supervised by locations. (B) The scaled last-layer attention maps of 
the transformer encoder contributing to the final classification embedding, averaged over augmented image 
groups. Each row corresponds to the features of an image sent into the transformer, and the corresponding 
location is noted. The peritoneum is the most salient location that contributes more to the final prediction than 
other locations.

 

AUROC AUPRC Sensitivity Specificity Precision F1 Score MCC

Results on the fivefold test sets [mean (± standard deviation)]

Image group
0.820 0.342 0.747 0.748 0.154 0.201 0.195

(± 0.182) (± 0.173) (± 0.339) (± 0.097) (± 0.103) (± 0.142) (± 0.171)

Patient
0.819 0.586 0.883 0.716 0.339 0.489 0.431

(± 0.119) (± 0.211) (± 0.145) (± 0.075) (± 0.058) (± 0.079) (± 0.131)

Out-of-fold results on the whole dataset

Image group 0.654 0.148 0.302 0.767 0.123 0.175 0.048

Patient 0.807 0.424 0.875 0.717 0.333 0.483 0.426

Table 1.  Prediction results on the fivefold test sets for models trained with both view and location contrast.
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validating the use of this feature embedding. This finding is concordant with work highlighting the success of 
machine learning methodologies in identifying anatomical structures during laparoscopic surgery14,16,42.

Then, we asked if one image location was more important for the model performance than others. Previous 
work using CT imaging to create a prognostic model for ovarian cancer identified significant correlations between 
multiple omental features and patient outcomes21. These data and others support the hypothesis that discrete 
anatomical locations may drive model performance43. Figure  3B indicates that images from the peritoneum 
were the most important for our model performance. While images from the pelvis are the most frequent in our 
cohort (31%, 996 images), peritoneal images (20%, 648 images) are most integral to the model performance. This 
suggests that the quality or quantity of peritoneal disease may contribute to therapeutic outcomes.

Grad-CAM maps for visual features
We investigated the model performance of patients who were accurately or inaccurately classified (Fig. 4). We 
reviewed the images to determine the differences between accurately and inaccurately classified patients. Grad-
CAM maps for representative correctly classified short PFS patients show attention to areas of gross tumor, 
vasculature, and interfaces between gross tumor and normal tissue (Fig.  4A). A visual review of the images 
from the two incorrectly classified short PFS patients found multiple instances of attention to laparoscopic 
instrumentation, image periphery, or non-tumor areas (Fig. 4B).

Discussion
This study applied deep-learning algorithms to laparoscopic images from patients with HGSOC to investigate 
AI-generated visual features and patient oncologic outcomes. Our model could accurately categorize patients’ 
survival outcomes after treatment as indicated by high cross-validation AUROC [0.819 (± 0.119)] and out-of-
fold AUROC (0.807) based only on images of the pre-treatment laparoscopy. The high proportion of patients 
with long PFS in our cohort reflects the landscape of HGSOC, where most patients experience efficacy with 
first-line treatment; however, most will ultimately relapse. This model offers a feasible treatment outcome 
prediction methodology with the ability to identify patients at immediate risk of ovarian cancer progression. 
This approach highlights how deep-learning methods may reflect underlying biology and complement clinical 
decision-making.

Visualizing our results through techniques such as UMAP for embedding analysis, group-wise attention map 
for locations, and Grad-CAM for image-wise local features suggests anatomical location and disease-specific 
features may be integral to the model’s decision-making processes. These results offer a window into the features 
the model recognizes that might be less obvious to the human eye. In the correctly classified images as short 
PFS, the model attended to areas of gross disease or borders between disease and normal tissue. By contrast, in 
the patient images that were short PFS misclassified as long PFS, the model attended to borders between two 
normal-appearing tissue types within the images, instruments, or peripheral image borders. In our visual analysis 
of our true and false positive images, the model repeatedly attends to areas of border areas of high contrast. In 
the false positive images, these high contrast areas correspond to instruments or false edges generated by the 
still photograph frames. In the true positive images, high contrast borders are associated with the transition 
from grossly apparent tumor to surrounding normal tissue. These findings suggest that attention to artificial 
features may be a source of model performance variability and support the hypothesis that visual features within 
the gross tumor may contribute to model performance. Further optimization of model performance in future 
studies could include training the model to recognize and exclude surgical instruments and frame borders.

To better understand what factors may be associated with our model performance, we considered additional 
clinical differences between our two groups. Most patients in both the short PFS and long PFS groups were 
diagnosed with stage III or stage IV disease, indicating the presence of abdominal and nodal disease in both 
groups. Consistent with known features of poor outcomes4, our short PFS group had higher rates of incomplete 
surgical resection and higher mean PIV (predictive index value, a score indicating risk of incomplete surgical 
resection). This suggests that total disease burden, the nature of metastatic spread, or other tumor-specific 
features contributing to resectability may be important contributors to patient outcomes. In addition, the 
prominent role of peritoneal images in our model generates questions about whether peritoneal implants have 
a unique role in tumor biology and the importance of therapeutic targeting of disseminated peritoneal disease.

This study lays the foundation for future models predicting outcomes for therapeutic agents. A better 
understanding of a patient’s outcome probability with therapy will offer transformative personalized treatment 
strategies for better patient outcomes. Our model requires straightforward input data and basic resources for 
implementation. Images are abstracted from standard laparoscopic surgery, often performed for diagnostic 
evaluation. This retrospective study design excludes patients with benign histology and intermediate survival. 
Once prospectively validated, our model could be readily integrated into standard peri-diagnostic evaluations 
to aid clinical decision-making.

Our study has important limitations. First, our method used manually extracted still-frame images to 
train deep learning models, ignoring the spatial and temporal relations between video frames. This may cause 
two problems: (1) the numbers of manually selected frames were imbalanced across patients, resulting in the 
variability over different training folds; (2) selection focused on frames with visible gross diseases, ignoring 
many frames with potentially important information for outcome prediction. Our future work will use full 
laparoscopic videos with automatic frame sampling methods to learn spatial and temporal relations via temporal 
modeling approaches such as recurrent neural networks, temporal convolutional networks, and transformers.

Second, we defined the treatment outcomes as binary labels with cutoffs of PFS to provide reasonable 
numbers of patients in the smallest group. This could be expanded to evaluate PFS as a continuous variable for 
a more comprehensive survival assessment. Third, our model only considered the imaging modality. Extending 
our transformer encoder and integrating multimodal data, including imaging, clinical notes, genetics, and other 
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related information, may offer a new avenue for deep learning models. Such integration could lead to a more 
holistic view of a patient’s condition and refine the model’s prediction capabilities.

Third, although our patient-level AUPRC reaches 0.586 (± 0.211), much higher than the baseline values (rate 
of positive samples in the dataset, which ranges from 0.111 to 0.167 in our nested cross-validated validation 
sets), it still suffered from false positives as the precision is low [0.339 (± 0.058)]. This may be due to expanding 
the patient-level label to all images of each patient, which may increase false positives in the image-level labels 
since we have limited knowledge about how one specific image contributes to patient-level outcomes. To address 
this issue and improve the AUPRC and precision of our model, we propose three directions for future works: (1) 

Fig. 4.  Grad-CAM maps and the original images of selected cases. We display Grad-CAM saliency maps 
and the original images of four image group instances. (A) Two instances of short PFS correctly classified as 
short PFS. In these two instances, our model can correctly attend to areas of gross diseases. (B) Another two 
instances of short PFS misclassified as long PFS. The masks were performed using attention mechanisms to 
mask out the paddings in the input sequence when a location had insufficient images.
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annotate more image-level labels such as anatomic locations and potential lesion regions to help the model learn 
more morphological features; (2) include more frames in videos and integrate temporal and spatial relations 
into our model to get consistent annotations; (3) recognize potential important frames or regions of interest that 
contributes to the outcome prediction and use clinical knowledge to evaluate the findings.

Finally, our work is limited by the relatively small sample size of 115 patients. Despite including over 3000 
distinct images, the analysis is subject to bias from the small number of patients from the study cohort who 
experienced short PFS, consistent with known response rates to primary treatment3. While this study serves 
as an important validation of an AI-based approach to an image-based prediction tool, the small number of 
patients limits the generalizability of our results. Our current findings remain hypothesis-generating rather than 
broadly clinically predictive. External validation in future studies is crucial to confirm our findings and expand 
their generalizability, which will help verify the initial insights and refine them with broader datasets, thereby 
enhancing the reliability and clinical impact of our work.

Despite using methodologies to augment information from each patient, our model would benefit from 
including additional videos. In conclusion, our research highlights the potential of deep learning in predicting 
treatment outcomes in HGSOC using laparoscopic images. Our model was trained to recognize features 
associated with PFS. This study shows a potential connection between AI-derived image features and patient 
survival outcomes. Our approach supports future investigations into video analytics and integration with multi-
omics platforms and opens the possibility for personalized ovarian cancer treatment planning.

Methods

Ethical approval
All research was performed in accordance with relevant guidelines/regulations. The study was conducted after 
approval by the IRBs at The University of Texas MD Anderson Cancer Center (IRB Number: LAB10-0850) and 
The University of Texas Health Science Center at Houston (IRB Number: HSC-SBMI-20–118). Informed consent 
was obtained from all participants. The Strengthening the Reporting of Observational Studies in Epidemiology 
guideline was followed in design and reporting.

Study cohort
Patients with suspected advanced-stage ovarian cancer who were candidates for upfront cytoreduction 
underwent laparoscopic assessment of disease burden at the University of Texas MD Anderson Cancer Center4, 
These patients were enrolled between April 1, 2013, and August 31, 2019. 323 patients with laparoscopic videos 
were screened retrospectively, and those with benign histology and intermediate survival were excluded. Eligible 
patients (n = 115) with malignant histology were followed until disease progression. Demographic information, 
clinical data, and laparoscopic videos were collected prospectively.

Threshold selection
The clinical outcome of therapy was measured by progression-free survival (PFS). We focused on patients 
with extreme outcomes to the treatment, i.e., short PFS and long PFS (Fig. 1B). The typical threshold to define 
short PFS is PFS < 6 months to approximate clinical platinum resistance39–41; however, there are only 5 patients 
satisfying this criterion in our cohort, which is insufficient for meaningful analysis. As a result, we extended 
the threshold to PFS < 8  months to include more subjects (n = 16). In addition, we categorized patients with 
PFS > 12 months (n = 99) as long PFS. Supplementary Fig. S1 	 summarizes the cohort selection 
procedure. We also designed two strategies to evaluate the threshold of PFS < 6 months (refer to “Zero-shot and 
few-shot evaluations” in Results and Methods for more details).

Image review
Three gynecologic surgeons retrospectively reviewed videos of surgical laparoscopic assessment of pre-treatment 
disease burden without knowledge of clinical outcomes. Reviewers attempted to capture gross areas of disease in 
multiple frames. Frames showing the critical anatomical areas were captured if only at least one visible disease 
was observed on each of them. The captured frames were categorized according to anatomical areas (diaphragm, 
pelvis, omentum, and peritoneum). As a result, 3169 frames were abstracted from the surgical videos of 115 
patients.

Data augmentation
Due to the relatively small sample size of patients (n = 115), data augmentation was performed to increase the 
sample size, stabilize the training, and alleviate potential overfitting (Supplementary Fig. S2). Suppose a patient 
has m images consisting of m1 images from the diaphragm, m2 images from the omentum, m3 images from 
the pelvis, and m4 images from the peritoneum (m = m1 + m2 + m3 + m4). First, the images of this patient 
at the same location were divided into groups of k images, and the final insufficient group was padded with 
zeros. In this way, n1 = ⌈m1/k⌉, n2 = ⌈m2/k⌉, n3 = ⌈m3/k⌉, and n4 = ⌈m4/k⌉ groups were obtained 
for four locations of the patient (⌈a⌉ indicates the ceiling of a). Then, the augmented image groups were 
constructed by selecting one group in each location and combining them. As a result, we obtained a bag of 
n = n1 × n2 × n3 × n4 groups for the patient, each group including at most 4 × k images. This way, we can 
significantly increase the sample size and stabilize the model training.
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Pre-training with view and location contrast
The image embeddings extracted from ImageNet pre-trained ResNet-5044 do not encode the domain-specific 
information of our dataset. Therefore, we first pre-trained the ResNet-50 on our dataset via contrastive learning 
to learn representations from our laparoscopic images (Fig. 1C). The contrastive losses have two components: an 
InfoNCE loss to contrast two augmented views of images (view contrast) as in SimCLR45, and a MILNCE loss 
to distinguish different locations (location contrast) in the same patients46 (Supplementary Fig. S3). Suppose 
one batch of our dataset has N  images. Each image I ∈ I was randomly transformed to two augmented 
views to obtain a total of 2N  views, Iaug

1 = T1(I), Iaug
2 = T2(I), where I denotes the set of images, T1 and 

T2 are two random augmentation transforms. The random augmentation transforms included flipping, scale 
shifting, rotation, color jittering, brightness contrast, cropping, and resizing. For one augmented view i, the 
view contrast took the paired augmented view j transformed from the same original image as the positive 
sample and all the other views in the batch were treated as negative samples. In location contrast, the positive 
sample set of view i was denoted as Pi, containing the views of the same patient at the same location (excluding 
view j since it is from the same image and has already been considered in view contrast). The remaining views 
formed the negative sample set of view i, denoted as Ni. Suppose the ResNet-50 backbone was denoted by 
f (·) : I �→ R2048 and g (·) : R2048 �→ R128 was a projection head, the embedding for an augmented image 
view was then z = g (f (Iaug)) ∈ R128. The InfoNCE loss for view contrast and MILNCE loss for location 
contrast were calculated below:

	
lview
i = −log

exp (sim (zi, zj) /τ)∑
k ̸=i

exp (sim (zi, zk) /τ) � (1)

	
lloc
i = −log

∑
j∈Pi

exp(sim(zi, zj)/τ)∑
k∈Pi

exp(sim(zi, zk)/τ) +
∑

k∈Ni
exp(sim(zi, zk)/τ)

� (2)

where sim (zi, zj) = z⊤
i ·zj

∥zi∥·∥zj∥  is the cosine similarity, and τ  is the temperature parameter that controls how 

peaked the similarity distribution is. A low temperature will lead to high similarities between most image views 
in a batch, making it hard to distinguish between positive and negative image views. We set τ = 0.07 in our 
experiments. The total loss for pre-training is a weighted sum of the InfoNCE loss and the MILNCE loss:

	 lpretrain
i = λ1 · lview

i + λ2 · lloc
i � (3)

where we set the weights λ1 = 0.5 and λ2 = 0.5. The pre-training was trained for 500 epochs with a learning 
rate of 5e-4, a weight decay of 1e-4, and a batch size of 256.

Location-aware transformer for downstream prediction
The downstream prediction model aims to learn integrated information using sampled images from all 4 
locations. We used a transformer encoder to predict binary treatment outcomes, taking augmented image groups 
as inputs (Fig. 1D, Supplementary Fig. S4). We first removed the black boundaries of the images and resized all 
images to 224 × 224. During training, the images were augmented by flipping, scale shifting, rotation, color 
jittering, and brightness contrast. Then, all the images were randomly resized and cropped to 196 × 196 and 
normalized. During validation and testing, we only center-cropped the images to 196 × 196 and normalized 
them. We then extracted and flattened the feature map from the outputs of the last convolutional layer from 
pre-trained ResNet-50 as sequenced tokens for each image. This way, we obtained 7 × 7 feature maps, which 
were flattened into 49 image embeddings. The 2048-d image embeddings were then projected to 512-d image 
tokens. The image tokens were gathered into augmented image groups as described in the “Data augmentation” 
subsection, and each group contained at most 4 × k images, where we selected k = 2 for this study. As a 
result, each augmented image group had at most 8 images, and the input to the downstream transformer was 
transformed into 8 × 49 = 392 tokens. To encode the location and positional information, we added three levels 
of learnable positional embeddings, i.e., 4 location embeddings indicating image locations, 2 image positional 
embeddings indicating different images in each location, and 49 feature positional embeddings showing distinct 
features in each image. We performed attention masks for the paddings in the input sequence when a group had 
less than 8 images. In addition, a learnable classification token was attached to the head of the image sequence, 
and the input sequence had 393 tokens. Then, we sent the resulting sequence into a transformer encoder47,48. The 
transformer encoder had 8 layers with 8 attention heads, and the dropout rate for input tokens and transformer 
blocks was 0.5. The output corresponding to this classification token was the group-level representation, and a 
classifier was attached to make the binary group-level prediction. The final patient-level logits are obtained by 
averaging a bag of group-level logits for each patient. The loss function was the binary cross-entropy loss with 
logits in PyTorch, and the positive weight was set to 10 to compensate for the imbalanced dataset. The ResNet-50 
backbone was fine-tuned end-to-end during the downstream training with a learning rate of 1e-6, lower than 
the learning rate for the transformer encoder (1e-4). The weight decay was set to 0.01. We employed a cosine 
warm-up scheduler for learning rate scheduling with 10 iterations for warm-up. The batch size was 64, and the 
gradients were accumulated over 8 batches before stepping the optimizer, effectively enlarging the batch size to 
stabilize the training. The downstream prediction was trained for 5 epochs for all folds.
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Cross-validation
To get robust performance estimation with our relatively small sample size, we tuned pre-training and 
downstream hyperparameters using nested cross-validation (CV) (Supplementary Fig. S5). We split the dataset 
on the patient level to avoid data leakage (Supplementary Table S4) and stratified all the data split based on 
patient-level labels to ensure a similar percentage of S-PFS patients across the folds. First, we split the dataset 
into fivefold training and test sets and further split each training set into 5 folds for hyperparameter tuning. 
After training for 5 epochs, the best model hyperparameters were selected by the largest average patient-level 
AUROC over all 25 nested cross-validation folds (learning curves are shown in Supplementary Fig. S6). The 
best binary prediction thresholds for test folds were also chosen using nested cross-validation by balancing the 
averaged sensitivities and specificities over all the folds (Supplementary Table S5). Then, after determining the 
hyperparameters, we retrained our model using all data in the fivefold training sets for 5 epochs and used the 
last checkpoints to get final predictions on the fivefold test sets. All patient-level metrics (AUROC, AUPRC, 
sensitivity, specificity, precision, F1-score, MCC) were reported by mean and standard deviation over the fivefold 
test sets. We also reported the out-of-fold predictions on the whole dataset by aggregating the results on all 5 
test sets. All the aforementioned data splits were stratified by our patient-level binary classes, i.e., short PFS 
(PFS < 8 months) and long PFS (PFS > 12 months), to make sure that all the folds had similar patient-level class 
distribution.

Zero-shot and few-shot evaluations
Since our threshold for short PFS differed from the typical threshold in practice (PFS < 6  months)39–41, we 
performed two evaluation strategies to justify our chosen threshold (PFS < 8 months) (Supplementary Table S6). 
First, we trained and validated our model using patients with PFS equal to 7 or 8 months and tested the model 
on a hold-out set containing short PFS patients with PFS < 6 months only. This aims to demonstrate whether 
our model can be generalized to the 6-month threshold in a zero-shot setting. Second, we moved 2 short PFS 
patients with PFS < 6 months from the hold-out test set to our training set, maintained the same validation set, 
and retrained our model. This few-shot setting aims to evaluate our model’s generalization performance when 
providing a small subset of the target threshold (PFS < 6 months) during training.

Visualizations and interpretation
We also employed UMAP49 and Grad-CAM50 to investigate the learned image embeddings and to quantify the 
contribution of different locations to the model’s final prediction. The UMAP can show whether the learned 
embeddings encode the location information of the images by clustering based on their specific locations. 
After the downstream training, we extracted the final image embeddings from the fine-tuned ResNet-50 and 
trained UMAPs using the embeddings supervised by the corresponding locations on the fivefold training sets. 
The UMAPs were then evaluated on the test sets and visualized with different locations in distinct colors. We 
also extracted the last attention weights contributing to the final classification embedding, scaled them by the 
proportions of non-masked tokens in sequences, and averaged them over the augmented image groups. This 
approach can reflect how each location contributes to model prediction. In addition, we employed GradCAM 
to visualize gradient-based saliency maps on the last CNN layer of the fine-tuned ResNet-50. GradCAM can 
highlight important regions on the images that contribute more to the model prediction than other areas, which 
may indicate salient morphological features in the images that are related to the treatment outcome prediction.

Evaluation metrics and statistical methods
We used AUROC, AUPRC, sensitivity, specificity, precision, F1-score, and MCC to evaluate our outcome 
prediction. The AUROC measures the probability that the ground-truth positive samples have higher predicted 
scores than the negative ones. The baseline of AUROC is 0.5, referring to a random classifier. The AUPRC shows 
the trade-off between recall (sensitivity) and precision. A higher AUPRC indicates that the model can identify 
positive samples without too many false positives. The baseline for AUPRC is the positive rate in the dataset. 
Sensitivity (recall) is the fraction of true positives among ground-truth positives ( T P

T P +F N ), while specificity is 
the fraction of true negatives among ground-truth negatives ( T N

T N+F P ). Precision measures the fraction of true 
positives among predicted positive samples ( T P

T P +F P ). F1-score is the harmonic mean of precision and recall, 
considering true positive, false positive, and false negative ( 2T P

2T P +F P +F N ). Matthews correlation coefficient 
(MCC) measures the Pearson correlation between ground-truth labels and predicted values, which is considered 
a comprehensive description of the confusion matrix. MCC ranges from − 1 to 1, with 1 indicating perfect 
prediction, 0 indicating no better than random, and − 1 indicating total disagreement between ground truth 
and prediction. When using fivefold cross-validation, we reported the mean and standard deviation of these 
evaluation metrics on the test sets.

To evaluate whether our model can stratify patients based on PFS, we plotted Kaplan–Meier (KM) curves 
to estimate survival functions. PFS was measured from the date of primary tumor reductive surgery to the 
date of first recurrence or progression. We performed log-rank tests to determine whether there are significant 
differences between L-PFS and S-PFS groups with a significance level of 0.05.

Computational hardware and software
All models and analyses in this paper were implemented via NVIDIA PyTorch docker image nvcr.io/nvidia/
pytorch:22.12-py3. The open-sourced softwares and libraris used are Python 3.8.10, PyTorch 1.14.0a0 + 410ce96, 
Torchvision 0.15.0a0, PyTorch Lightning 2.0.9, Torchmetrics 1.1.2, Numpy 1.24.4, Pandas 1.5.2, Matplotlib 3.6.2, 
Scikit-learn 1.3.1, Tensorboard 2.9.0, OpenCV-Python 4.8.0.74, Albumentations 1.3.1, Captum 0.6.0, UMAP 
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0.5.6, and Lifelines 0.27.8. All training experiments used 40G NVIDIA A100 GPU, and only 1 GPU was used for 
each training session.

Data availability
All original code for modeling, training, and evaluation is available in this paper’s supplementary information 
(Supplementary Code). The data supporting this study’s findings are available on request from the correspond-
ing author Shayan Shams, PhD (Email: shayan.shams@uth.tmc.edu). The data are not publicly available due to 
federal regulation of protected health information.
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