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In the context of rapid advancements in autonomous driving technology, ensuring passengers’ safety 
and comfort has become a priority. Obstacle or road detection systems, especially accurate pavement 
condition identification in unfavorable weather or time circumstances, play a crucial role in the safe 
operation and comfortable riding experience of autonomous vehicles. To this end, we propose a 
novel framework based on image quality enhancement and feature distillation (IQEFD) for detecting 
diverse pavement conditions during the day and night to achieve state classification. The IQEFD model 
first leverages ConvNeXt as its backbone to extract high-quality basic features. Then, a bidirectional 
fusion module embedded with a hybrid attention mechanism (HAM) is devised to effectively extract 
multi-scale refined features, thereby mitigating information loss during continuous upsampling and 
downsampling. Subsequently, the refined features are fused with the enhanced features extracted 
through the image enhancement network Zero-DCE to generate the fused attention features. Lastly, 
the enhanced features serve as the guidance online for the fused attention features through feature 
distillation, transferring enhanced material knowledge and achieving alignment between feature 
representations. Extensive experimental results on two publicly available datasets validate that IQEFD 
can accurately classify a variety of pavement conditions, including dry, wet, and snowy conditions, 
especially showing satisfactory and robust performance in noisy nighttime images. In detail, the IQEFD 
model achieves the accuracies of 98.04% and 98.68% on the YouTube-w-ALI and YouTube-w/o-ALI 
datasets, respectively, outperforming the state-of-the-art baselines. It is worth noting that IQEFD has 
a certain generalization ability on a classical material image dataset named MattrSet, with an average 
accuracy of 75.86%. This study provides a novel insight into pavement condition identification. The 
source code of IQEFD will be made available at https://github.com/rainzyx/IQEFD.
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In recent years, with the rapid development of autonomous driving technology, how to ensure the safety of 
passengers and provide them with a relatively comfortable riding experience has become the focus of common 
attention inside and outside the industry. Autonomous vehicles not only need to complete driving tasks 
accurately in various complex traffic environments but also should respond to emergencies in a timely manner 
to ensure the life safety of occupants1. Obstacle or road detection systems play a key role in this procedure, 
where the accurate identification of pavement conditions such as dry, slippery, icy, or snow, is directly related to 
the safety and driving experience of autonomous vehicles2. According to the latest data3, many traffic accidents 
occur under non-dry pavement conditions, such as rain, snow, and fog conditions, causing vehicles to lose 
control while driving. Reduced road adhesion significantly increases the braking distance, thereby increasing 
the potential hazard4. Therefore, accurate pavement condition identification can not only help early braking 
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but also provide the necessary dynamic adjustment for autonomous vehicles to ensure the safety and stability of 
our driving. By continuously monitoring pavement conditions, the vehicle can better adjust its running speed 
according to real-time data, thereby improving the safety and comfort of passengers5.

As we know, different pavement conditions usually have unique physical characteristics and effective detection 
methods are needed to monitor them in real-time. Traditional methods are often labor-intensive and inefficient, 
especially in some inclement weather conditions. Over the past few years, diverse methods have been proposed 
to investigate various conditions on different road surfaces. Many studies attempting to use visible or near-
infrared images to classify pavement conditions have shown satisfactory classification accuracy6,7. Jokela et al.8, 
proposed a pavement condition identification method based on the polarization variation of the light reflected 
from the road surface, and improved image contrast through texture analysis. However, the adaptability of this 
method is limited under different conditions. Jonsson et al.9 explored the feasibility of using three wavelengths of 
near-infrared bands to distinguish different pavement conditions. The images of pavement conditions captured 
by cameras on road sections have been used to build robust detection systems. Moreover, the effect of infrared 
illumination and infrared detectors on pavement detection under different viewing angles has also been studied. 
However, passive optical sensors, although capable of using artificial light, limited their usage in the dark 
condition10. Recently, with the continuous development of modern machine learning (ML) technologies, more 
and more researchers have begun to apply numerous classical ML classification models for pavement condition 
identification. For example, support vector machines (SVM) have achieved an accuracy of about 90%, but this 
result is still less than ideal for ensuring the safety of autonomous driving11. Certainly, SVM performed better 
than the naive Bayes classifier in this task12. To further enhance the robustness of the corresponding recognition 
model, Fauzi et al.13 proposed a novel method combining gray co-occurrence matrix and local binary pattern 
features, which focuses on low-level feature extraction for better characterizing diverse pavement conditions.

Although the above methods injected vitality into this field, current identification performance is relatively 
low to some degree. The application of well-known advanced technologies such as deep learning provides a 
new perspective for pavement condition identification. These technologies can identify the nuances of different 
pavement conditions by analyzing a large amount of data and improve the identification accuracy and response 
speed of detection systems14. High-quality data is important for the successful usage of these intelligent systems, 
while low-quality media may degrade the performance of these systems. Many studies15–18 have focused on image 
quality modeling to address this issue well, aiming to improve the robustness and accuracy of these systems.

As we know, as a classical representative, convolutional neural networks (CNNs) have greatly advanced the 
research of computer vision (CV)19. CNN adaptively detects features or patterns in images, which is well suited 
for pavement condition identification because CNN detects spatial patterns of surface differences20. Hence, 
deep learning-based methods began to play an important role in pavement condition identification, promoting 
the development of the field of autonomous driving. Using pre-trained CNN backbones, such as VGG-1621, 
SqueezeNet22, ResNet5023, DenseNet12124, and ConvNeXt25, to build classifier has been widely studied. These 
methods performed well on the classification tasks. For example, Cheng et al.26 proposed a new CNN for 
pavement condition identification, which creates a new activation function based on the rectified linear unit 
(ReLU), significantly enhancing the classification metrics. Garcea et al.27 proposed a semi-supervised LSTM-
based model that leverages contrastive self-supervised pretraining and temporal consistency augmentation 
to effectively enhance wet pavement condition identification performance. Zhang et al.28 proposed a multi-
supervised bidirectional fusion network (MBFN) for detecting pavement conditions. The model uses the 
classical backbone ConvNeXt for feature extraction, which can improve classification efficiency. Although 
these methods demonstrate that it is possible to classify the pavement conditions ahead using camera images, 
challenges including adverse weather effects and inadequate lighting remain problematic29. And they also lack a 
certain model interpretability, affecting models’ practicality.

On the other side, the pavement conditions images at night usually have relatively poorer quality due to low 
brightness or contrast. They may be disturbed by the noise caused by various weather conditions. A common 
CNN is not good at processing these low-quality images and may lose some significant context information, 
which limits the generalization ability of the identification model and affects the final identification performance. 
To address the above problems, we propose a novel idea of transferring enhanced material knowledge by 
devising a novel framework named image quality enhancement and feature distillation (IQEFD), which is 
robust to diverse pavement conditions during the day and night. The IQEFD model first adopts the mainstream 
ConvNeXt as its backbone to extract high-quality basic features. The features extracted by ConvNeXt do not 
contain sufficient semantics information. Then, a novel bidirectional fusion module embedded with a hybrid 
attention mechanism (HAM) is designed to extract sufficient multi-scale refined features, thereby reducing the 
negative effect of continuous up-sampling and down-sampling operations. Our HAM focuses on modelling the 
importance of each channel through the channel attention module as well as the importance of each location 
through the spatial attention module to accurately identify the critical regions in the image, enabling the network 
to extract more robust features. Subsequently, we perform image quality enhancement on the original image 
using the image enhancement network called Zero-DCE30. Zero-DCE predicts a higher-order curve by training 
a lightweight network named DCE-NET that adjusts the image by that curve to obtain the enhanced image. 
The refined features are fused with the enhanced features extracted from the enhanced image to generate the 
fused attention features. Additionally, the enhanced features serve as the teacher online for the fused attention 
features, facilitating the transfer of enhanced material knowledge and obtaining alignment between feature 
representations, which contributes to promoting robustness as well as identification performance. The main 
contributions are shown as follows:

	(1)	  We propose a novel idea of transferring enhanced material knowledge by designing an efficient but robust 
framework called IQEFD for effectively and robustly detecting weather-induced pavement conditions, es-
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pecially for the path of automatic vehicles at night. To the best of our knowledge, this is an early work that 
absorbs enhanced material knowledge for pavement condition identification.

	(2)	 We bridge the gap between the image enhancement network named Zero-DCE and the fused attention 
features through online feature distillation. The enhanced features generated by Zero-DCE are regarded as 
the “teacher” to optimize the feature learning procedure of our model, which contributes to learning more 
complex feature patterns for effective and robust pavement condition identification.

	(3)	 We devise a novel bidirectional fusion module embedded with a hybrid attention mechanism (HAM), 
which not only reduces the negative effect of continuous upsampling and downsampling but also focuses 
on the focal road regions, significantly improving the model’s accuracy.

	(4)	 Experimental results on two benchmark datasets show that IQEFD reduces the negative impact of noises 
and obtains satisfactory identification performance on those night images, which outperforms the most 
advanced baselines. Additionally, the IQEFD model shows satisfactory generalization ability on a classical 
coarse-grained material image dataset. We also validate the robustness of IQEFD using both black-box 
testing with noise effects and gradient-based white-box attack testing. Furthermore, we provide sufficient 
model interpretability of IQEFD by implementing extensive visualization analysis.

	(5)	 The rest of the article is organized as follows. The second section describes the relevant literature and the 
motivation of our study. The third section describes the proposed IQEFD model. Then, the fourth section 
presents the relevant benchmark datasets used in this study. The fifth section discusses the experimental 
results on three benchmark datasets. Some qualitative results of the model are shown in the sixth section. 
Finally, the seventh section presents our conclusions and future work.

Related works
Material image identification
Material image identification is a fundamental problem in CV. The complexity of visual material appearance 
as observed in the huge variation under different viewing and illumination conditions makes material image 
identification a highly challenging task. Traditional works for material image identification usually use two 
distinct approaches. One approach assesses material identity using reflectance as an intrinsic property of the 
surface31,32. Another approach identifies material labels using the appearance of the surface within the real-
world scene33–35. The success of deep learning methods in object identification also transferred into the material 
image identification field. For example, Bell et al. achieved per-pixel material category labeling by retraining 
the state-of-the-art object recognition network on a large-scale dataset of material appearance36. Zhang et al.37 
introduced a deep texture encoding network (Deep-TEN) that absorbs the dictionary learning and feature 
pooling approaches into the classical CNN pipeline to learn an encoding for an orderless texture representation. 
Recently, Zhang et al.38 proposed the gene selection XGBoost algorithm that combines feature selection and 
boosting strategy to generate image features with stronger discriminative and generalization abilities, which 
demonstrate satisfactory performance of material image identification. Asheghi et al.39 proposed a novel two-
level network called detail-aware salient object detection (DASOD), which addresses the challenges posed by 
complex backgrounds, low contrast, transparent objects, and occluded objects in images.

Pavement condition identification
We have seen significant advances in autonomous driving technology, and more and more people are relying on 
the safety and utility of this technology. However, in dynamic and varied road environments, the driving strategy 
of an intelligent vehicle will be mostly determined by the pavement conditions. Scholars have proposed lots of 
methods for this problem, such as the utilization of traditional ML models, such as SVM, decision trees, and 
random forests40. Kim et al.41 used weather station data to predict rainy road conditions. Their method required 
considerable human resources. Deviations in human measurements often result in unexpected uncertainties. 
Zhao et al.11 and Omer et al.42 used an SVM model to classify pavement conditions, obtaining an accuracy of 
approximately 90%, which was still unsatisfactory considering the safety required in self-driving. Smolyakov et 
al.43 devised the model of the environment and the temperature of roads to predict icy-road conditions, which 
combines a physical model for predicting pavement conditions based on site measurements with an ML model 
to detect incorrect data.

Nevertheless, these traditional ML approaches only performed well in a few specific situations and poorly 
in a wider range of situations or special cases. With the rapid development of high-performance computing 
devices, deep learning methods offer new solutions to this problem. For example, Roychowdhury et al.44 
achieved an accuracy of 97% using SqueezeNet. Fink et al.45 went one step further by using SqueezeNet to reduce 
the computational complexity without significantly affecting the accuracy. Guo et al.46 proposed an improved 
YOLOv5 model with attention mechanisms to enhance accuracy and robustness in detecting pavement distress, 
demonstrating its effectiveness in smart transportation. Jiang et al.47 proposed a novel pavement condition 
identification system by integrating the whale optimization algorithm-enhanced back-propagation neural 
network (WOA-BP) with multi-sensor data, which demonstrates superior performance in terms of detection 
accuracy and model stability compared to traditional ML methods. Karunasekera et al.48 improved the pavement 
condition identification performance by fusing multiple information sources from temperature sensors and 
other image regions, and the pavement condition identification performance was significantly improved by 
fusing the additional information sources. Zhang et al.28 proposed the MBFN model for effectively detecting 
pavement conditions, which obtains relatively better identification performance. Previous studies focused 
mainly on recognizing pavement conditions during the daytime while ignoring pavement conditions at night. As 
we know, low brightness or low contrast at nighttime usually leads to relatively poorer image quality and limits 
the generalization ability of existing methods to obtain sufficient discriminative information, thus posing a great 
challenge to the identification of nighttime pavement conditions. Moreover, wet pavement creates reflections 
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that blur the texture and color of the underlying surface. While dry pavement typically provides sharper details, 
but the colors vary depending on the material and weather conditions, making it more challenging to generalize 
across environments. Furthermore, different pavement materials have different visual characteristics. They also 
reflect light differently, which adds additional difficulty to recognizing pavement conditions under varying 
nighttime conditions.

Our motivation
Hence, pavement condition identification is still challenging to some degree, especially in unfavorable weather or 
time circumstances. In this study, we attempt to devise an effective but robust model to better address the above 
problems. Unlike the above methods, we combine image quality enhancement and online feature distillation 
ideas seamlessly to build our model. We hope the model is effective and robust for unfavorable weather or time 
conditions. Moreover, we will offer sufficient model interpretability.

Related technologies
Low-light image enhancement
Low-light image enhancement (LLIE) has been studied extensively in previous literature. LLIE aims at improving 
the perception or interpretability of an image captured in an environment with poor illumination. Traditional 
LLIE methods contain two classical categories, namely Histogram Equalization-based methods49–52 and Retinex 
model-based methods53–58. Recent advances in this area are dominated by deep learning-based solutions. They 
usually employ specific learning strategies, network structures, loss functions, etc.

The original deep learning-based LLIE method called low-light net (LLNet)59 uses a variant of stacked sparse 
denoising autoencoder to simultaneously brighten and denoise low-light images. Lv et al.60 proposed an end-
to-end multi-branch low-light enhancement network (MBLLEN), the key idea of MBLLEN is to extract rich 
features up to different levels, so that we can apply enhancement via multiple subnets. Unlike previous methods 
that rely on pairwise training data, EnligthenGAN61 was the first unsupervised learning work that successfully 
introduced unpaired training data into LLIE. Zhu et al.62 proposed a three-branch CNN, called robust retinex 
decomposition network (RRDNet), for underexposed image restoration. The RRDNet decomposes an input 
image into illumination, reflectance, and noise via iteratively minimizing specially designed loss functions. Liu 
et al.63 proposed a Retinex-inspired unrolling method for LLIE, in which the cooperative architecture search was 
used to discover lightweight prior architectures of basic blocks. Zhai et al.64 provided a comprehensive survey of 
perceptual image quality assessment, including both traditional and emerging approaches, providing a valuable 
reference for image quality enhancement directions.

Our motivation
Evidently, the above LLIE methods can enhance the quality of those images with complex illumination. 
However, few works have considered this positive factor in the field of pavement condition identification, which 
contributes to boosting the effectiveness and robustness of the identification model. As an effective but efficient 
LLIE network, Zero-DCE30 can help us achieve this goal.

Feature distillation
 Knowledge distillation (KD) transfers the implicit but valuable knowledge from a teacher network to a student 
network with the goal of greatly improving the performance of the student network. For instance, Hinton et 
al.65 utilized pre-trained teacher-generated logits as an additional goal for students. Motivated by KD, various 
logit-based approaches have been proposed for performance improvement. For example, Zhang et al.66 proposed 
a deep mutual learning (DML) model, which replaces a pre-trained teacher with a set of students so that the 
distillation mechanism needs to train a large network of students in advance. Mirzadeh et al.67 proposed a teacher-
assistant knowledge distillation (TAKD) model, in which better teachers distill poorer students due to the large 
performance gap between them. Therefore, a similarity-based distillation method was proposed that is different 
from the traditional logits-based method, which attempts to explore the potential relationship between samples 
in the feature space. Tung et al.68 proposed a similarity-preserving knowledge distillation (SPKD) method to 
allow pairs of input samples with similar activations in the teacher network to produce the same activations in 
the student network, thus guiding the learning procedure of the student network. Unlike logit-based method, 
feature distillation aims to make the mid-layer features of student and teacher as similar as possible. To make 
it easier to transfer knowledge from the teacher network, Kim et al.69 introduced so-called “factors” as a more 
understandable form of intermediate representations. To match the semantics gap between teacher and student, 
Chen et al.70 proposed a kind of cross-layer KD method, which adaptively assigns the appropriate teacher layer 
to each student layer through attention allocation. Furthermore, contrastive representation distillation (CRD)71 
and Softmax regression representation learning (SRRL)72 show that the last-layer feature representations are 
more suitable for KD. One potential reason is that the last-layer feature representation is relatively closer to the 
final classifier. This study also draws on this idea to use the final layer for feature distillation.

Our motivation
More importantly, few works have ever employed the KD method to transfer material knowledge from enhanced 
features generated using the LLIE network to the student for promoting the effectiveness of feature learning 
procedure in the task of pavement condition identification. The gap between them needs to be broken while a 
significant relationship between them should be built up.
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Attention mechanisms
The method of shifting specific attention to the most important regions of an image while ignoring those 
irrelevant parts is called the attention mechanism. The attention mechanism can capture the most related 
semantics from images. For instance, different channels in different feature maps represent different objects. 
Hu et al.73 proposed the channel attention and squeeze-and-excitation net (SENet) for this purpose. SENet 
includes a SE block, which collects global information, capturing channel-wise relationships and improving 
representation ability. GSoP-Net74 attempted to improve the squeeze module by changing the way they were 
compressed, and ECANet75 reduced the complexity of SENet by improving the excitation module. Unlike them, 
SRM76 improved both the squeeze and excitation modules. Mnihet al.77 proposed the recurrent attention model 
(RAM) using RNNs and reinforcement learning to enable the network to learn where to pay attention. Jaderberg 
et al.78 proposed spatial transformer network (STN) that explicitly learns the invariance to translation, scaling, 
rotation, and other general warps, making the STN pay more attention to the most relevant regions.

Inspired by ResNet, Wang et al.79 proposed the residual attention network (RAN) by combining the attention 
mechanism with residual connections. Park et al.80 proposed the bottleneck attention module (BAM), aiming to 
efficiently improve the representational capability of networks. As an important innovation, BAM used dilated 
convolution to enlarge the receptive field of the spatial attention sub-module and built a bottleneck structure 
to save computational costs. Moreover, channel attention and spatial attention were computed independently, 
ignoring the relationships between the two domains. Motivated by spatial attention, Misra et al.81 proposed novel 
triplet attention, a lightweight but effective attention mechanism that can capture cross-domain interaction.

Our motivation
Attention mechanism is also important for this study. On the one hand, it helps refine the extracted features 
to improve their discriminative abilities. On the other hand, it contributes to focusing on the focal pavement 
regions, significantly improving the model’s accuracy and interpretability.

Whole design motivation
The overall design idea of this study is to improve the road condition detection accuracy and robustness under 
more complex nighttime environments by introducing a variety of innovative techniques while ensuring the 
model’s generalization ability and interpretability to some degree. Most of all, we try to bridge the gap between 
Zero-DCE and the fused features through online feature distillation. By using the enhanced features generated 
by Zero-DCE as “teachers”, we can optimize the feature learning procedure and capture more complex feature 
patterns, which could significantly improve the accuracy and robustness of the pavement condition identification 
task. Moreover, we intend to build an attention module to effectively combines Channel Attention and Spatial 
Attention, allowing our model to better focus on the key road regions in each image.

The IQEFD model
The proposed IQEFD model is shown in Fig. 1. We describe the model using the following step-by-step mode.

Step 1: Data preprocessing. Before training the proposed model, the resolution of each input image is 
normalized and all images are resized to 224 × 224 with each color space considered. In addition, histogram-
based image equalization is applied to each image for preliminary contrast enhancement.

Fig. 1.  The network architecture of IQEFD.
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Step 2: Image quality enhancement. The effective but efficient LLEI network Zero-DCE is utilized to enhance 
the original pavement condition images, which builds a firm foundation for the subsequent material knowledge 
transfer.

Step 3: Feature extraction. Each original pavement condition image is input into ConvNeXt-1 for extracting 
basic features. Similarly, each enhanced pavement condition image is input into ConvNeXt-2 for extracting 
enhanced features. ConvNeXt-1 and ConvNeXt-2 employ the same structure of ConvNeXt but are used for 
different goals.

Step 4: Feature refinement. The refined features with sufficient multi-scale semantics information are obtained 
by throwing the basic features into the bidirectional fusion module.

Step 5: Feature fusion. We get the fused features by fusing the refined features with the enhanced features 
through element-wise multiplication, thereby capturing more valuable semantics information from the pavement 
condition images. Subsequently, the fused features are dynamically weighed using HAM to generate the fused 
attention features.

Step 6: Material knowledge transfer. The enhanced features guide the fused attention features online to enrich 
many more visual details through feature distillation. The semantics gap between feature learning and image 
quality enhancement is broken.

Step 7: Pavement condition identification. We input the fused attention features containing implicit material 
knowledge into a fully connected layer. Then a Softmax function using focal loss is employed to complete 
pavement condition identification.

Zero-DCE network
As analyzed above, few work leverage image enhancement strategies to boost the final performance of pavement 
condition identification. Most previous models are usually poor at handling dark conditions. To address this 
issue, on the one hand, we employ Zero-DCE to enhance the quality of the original pavement condition images, 
which provides many more reliable image samples for the field of nighttime pavement condition identification. 
On the other hand, we regard the features extracted from the enhanced image (we also call them enhanced 
features) as teachers, which transfers the implicit pavement knowledge online to the student (the fused attention 
features). All these contribute to improving the final recognition performance.

Zero-DCE uses a simple curve called a brightening curve to map the pixels of different brightness onto a 
new brightness, producing an image with just the right brightness. Zero-DCE uses neural networks to learn 
the mapping between low-light images and their optimal curve parameter mappings, and then generates a 
brightening image according to the curve and the original image. The brightening curve is formulated as below:

	 LE (I (x) ; α ) = I (x) + α I (x) (1 − I (x))� (1)

Where x is the pixel coordinate, α ∈[-1, 1] is the learnable parameter, LE (I (x) ; α ) is an enhanced image of 
the original I (x). In order to handle more complex low light situations, we iterated a brightening curve to learn 
more appropriate parameters, as shown in formula 2:

	 LEn (x) = LEn−1 (x) + An (x) LEn−1 (1 − LEn−1 (x))� (2)

Here, n represents the number of iterations, A is a parameter map with the same dimensions as the image, 
where each pixel corresponds to an optimal adjustment parameter A (x). This setup preserves the monotonic 
relationship of neighboring pixels during the enhancement process, ensuring continuous brightness distribution 
in local regions.

The enhancement process for low-brightness pavement condition images is illustrated in Fig.  2. The 
computation process of the brightening curve is differentiable, making it easy to optimize via gradient descent 
in neural networks. Here, DEC-Net is used, which has a total of 7 layers (6 hidden layers and 1 output layer). All 
layers are standard 3 × 3 convolutional layers with a stride of 1. To preserve the relationship between neighboring 
pixels, batch normalization is not applied after the convolutional layers. The activation function for each 
hidden layer is ReLU, and since the output lies in the range [-1,1], the activation function for the output layer 
is tanh. Notably, the 6 hidden layers use symmetric skip connections similar to U-Net82. After the output layer, 
each pixel has 24 channels, including 3 color channels (red, green, and blue), with each channel containing 8 
parameters. The trained brightening curve automatically adjusts brightness and contrast. Consequently, Zero-
DCE is relatively lightweight for image quality enhancement, laying a solid foundation for our feature learning. 
Enhanced brightness in nighttime pavement condition images improves the visibility of critical features, aiding 
more accurate pavement condition identification.

Bidirectional fusion module
As a well-known framework, a feature pyramid network (FPN) provides high-resolution details by integrating 
high-level global semantics into low-level feature maps83, while retaining sufficient semantics differentiation. This 
multi-scale feature extraction capability enables the FPN to be more robust when processing objects of different 
sizes. However, simple stepwise fusion does not consider the varying importance of features at different scales. 
This may result in some unimportant high-level information being incorporated into low-level features, while 
crucial fine-grained information is not effectively retained. Additionally, although continuous downsampling 
captures more global semantics information, it severely loses spatial details, leading to insufficient model 
performance in detecting small objects or detailed features.

To address this issue, we propose a bidirectional fusion module with an embedded HAM. Specifically, we 
upsample the final layer of ConvNeXt-1 to match the scale of the features from the downsampling stage, allowing 
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finer spatial details to be better preserved during fusion. This helps our model retain more discriminative 
information when integrating multi-scale features, improving its ability to detect small objects and fine-grained 
details. The features at different stages of the upsampling and downsampling operations are fused so that 
the fused features have sufficient semantics information. This operation allows the model to efficiently learn 
semantically complementary but robust features at different scales to mitigate the loss of semantics information 
during continuous down-sampling. We then concatenate these features from different stages to generate a new 
feature with sufficient semantics information. Additionally, during the concatenation of ConvNeXt-1 features 
with the bidirectional fusion module, as well as within the fusion module itself, we employ the proposed HAM 
that selectively focuses on the key information across different scales, enabling the model to concentrate on 
useful fine-grained and semantics information during fusion and enhancing the representation of the fused 
features.

Figure  3 shows the details of the bidirectional fusion module. The left side of this module performs an 
upsampling strategy. The multi-scale features extracted from the ConvNeXt-1 are incorporated, which are 
further refined by the HAM module. The right side of this module employs a top-down mode to perform 
downsampling. At each stage, the features of the same scale obtained in the intermediate upsampling are fused 
together to generate the final refined features Notably, our model can learn much more multi-scale material 
knowledge for pavement condition identification.

Hybrid attention mechanism (HAM)
In pavement condition identification, the target object usually appears under different weather circumstances. 
To better adapt to the variations of the environment and enhance the robustness ability of target detection, a 
hybrid attention mechanism (HAM) is designed and embedded into the bidirectional fusion module (please 
see Fig.  3). The HAM module combines channel attention and spatial attention together to focus on those 
local areas in a pavement condition image. Compared with simple feature fusion or splicing operations, HAM 
can capture much more important semantics information. First, channel attention helps extract the semantics 
related to the target by selectively emphasizing channel information in different feature maps. In contrast, spatial 
attention focuses on identifying the significant regions in the spatial dimension. As expected, HAM is able to 
integrate multi-layer features extracted from ConvNeXt, thereby improving the final performance under very 
complex pavement conditions, especially for those conditions influenced by adverse weather. The structure of 
the proposed HAM module is shown in Fig. 4.

As shown in Fig. 4, the input feature F  is passed through a channel attention module, where it goes through 
two parallel layers: Global Max Pooling and Global Avg Pooling. These produce the two feature maps F c

avg and 
F c

max , both with dimensions 1 × 1×C. These two feature are then fed into a two-layer multi-layer perceptron 
(MLP) with the shared weights, represented by W0​and W1. The two output features generated by the MLP 
are added together and processed by a Sigmoid activation function, resulting in a channel-wise weight vector 
Mc (F ). The detailed computation is shown in Eq. 3. Next, Mc (F ) is multiplied with the original input feature 
F  to obtain the channel attention feature F ′ .

Subsequently, a spatial attention module is applied to F ′ , as shown in Eq. 4. First, Max Pooling and Avg 
Pooling are performed along the channel dimension of F ′ , resulting in two feature maps, F s

avg and F s
max , 

Fig. 2.  The network structure of zero-DCE.
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both with dimensions H×W×1. These two features are then concatenated, followed by a 7 × 7 convolution and a 
Sigmoid function to generate the spatial attention weight vector Ms (F ′ ).

	

Mc (F ) = σ (MLP (AvgP ool (F )) + MLP (MaxP ool (F )))
= σ

(
W1

(
W0

(
F c

avg
))

+ W1 (W0 (F c
max))

) � (3)

	

Ms
(
F ′) = σ

(
f7×7 ([

AvgPool
(
F ′) ; MaxPool

(
F ′)]))

= σ
(
f7×7 ([

F s
avg; F s

max
])) � (4)

	

F ′ = Mc (F ) ⊗ F

F ′′ = Ms
(
F ′) ⊗ F ′� (5)

Where the symbol σ  stands for the Sigmoid activation function. f7× 7 represents a convolution operation with 
a convolution kernel size of 7 × 7. The final output is shown as Eq. 5. F ′ is the result of multiplying the input 
feature F  by the channel attention weight map Mc (F ). F ′ ′ is the result of multiplying F ′ by the spatial 
attention weight map Ms (F ′ ).

In our model, on the one hand, we embed HAM into the bidirectional fusion module to refine feature at 
different scales, which can enrich much more discriminative information for pavement condition identification. 
The features extracted by ConvNeXt do not contain sufficient semantics information and need to go through a 

Fig. 3.  The bidirectional fusion module with an embedded HAM.
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bidirectional fusion network to extract more refined features for pavement condition identification. Hence we 
design the HAM module and embed it into the bidirectional fusion network so as to enhance the model’s ability 
for focusing on the key regions in the pavement image, which helps eliminate the background interference and 
improve the final performance. Additionally, we use the HAM module on the fused features and get the fused 
attention features, further extracting crucial information for pavement condition identification.

Online features distillation
As analyzed above, few works have attempted to transfer material knowledge from an LLIE network to a feature 
learning network for pavement condition identification. The implicit knowledge embedded in the LLIE network 
is beneficial in improving the representation ability of the classification model. To this end, we explore the above-
mentioned relationship through online feature distillation to further optimize the classification performance of 
our model. We define the pavement conditions dataset as X = {xi}N

i=1, where N is the total number of samples. 
The image category is yi ∈ {1, 2, . . . , M}. In our model, the fused attention features serve as the student 
while the enhanced features are regarded as the teacher that can guide the learning procedure of the student 
online. We design a feature distillation loss called Lfd to capture and align the two feature representations:

	 Lfd = || F s − Ft ||22� (6)

Where Fs and Ft represent the features extracted from the student and teacher, respectively. The fused attention 
features obtained after weighting by the HAM module is denoted as Fs, whereas the feature of the front layer of 
the ConvNeXt-2 classification header is denoted as Ft. In addition, feature dimension alignment is achieved in 
advance using a 1 × 1 convolution kernel.

As the student, the fused attention features benefit from the implicit material knowledge of the teacher 
(the ConvNeXt-2 network using brightened images), effectively reducing the semantics distance between 
them. Through this online feature distillation, the student can extract more comprehensive pavement material 
knowledge, enabling more accurate pavement condition identification. This design is especially critical under 
nighttime and complex lighting conditions, allowing the proposed model to maintain robust classification 
performance across variable road scenes. By leveraging the enhanced features provided by the LLIE network, 
the student gradually adapts to pavement semantics features affected by complex lighting variations, providing 
powerful features for pavement condition identification and enhancing the overall classification accuracy.

Losses
In the IQEFD model, we employ focal loss to address the training instability problem caused by a slight sample 
imbalance. Focal loss incorporates a weighting factor into the loss function from the perspective of sample 
distribution, enhancing the model’s focus on hard-to-classify samples by increasing their loss weight. The 
corresponding formula is shown in Eq. 7:

	 Lfl = −α t(1 − pt)γ log (pt)� (7)

Where pt represents the model’s predicted probability or confidence for a given class, defined as 
pt = sigmoid (zt), with zt as the model’s prediction score. The parameter α t balances the number of positive 
and negative samples, decreasing with larger sample quantities and increasing otherwise. The parameter γ  

Fig. 4.  The network structure of HAM.
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adjusts for sample imbalance by reducing the loss for easy-to-classify samples. Typically, γ ≥ 1 is chosen to 
enhance the model’s focus on difficult samples.

On this basis, we construct the loss function Ls for the bidirectional fusion network, which includes the focal 
loss Lfl1 and the feature distillation loss Lfd, as shown in Eq. 8. Lfl1 and Lfl2 represent the loss functions 
used for training the student and teacher networks, respectively. Their basic expressions are the same, as shown 
in Eq. 7, but the training samples used are different. The feature distillation loss Lfd guides the student online 
in learning the implicit pavement knowledge from the teacher through a weighted approach, with the weight 
values following Zhang’s research84. Additionally, we define the teacher’s loss function Lt using the focal loss 
Lfl2 to serve as a benchmark for guiding the student’s learning. As shown in Eq. 9, only focal loss is required 
for the teacher’s loss.

	 Ls = Lfl1 + 0.000001 × Lfd� (8)

	 Lt = Lfl2� (9)

In summary, the IQEFD model combines focal loss and feature distillation loss, effectively addressing sample 
imbalance and hard-to-classify issues. Leveraging knowledge guidance from the teacher, we enhance the feature 
representation capacity of the proposed IQEFD model, providing robust and precise feature representation for 
pavement condition identification.

Dataset preparation
Compared with daytime pavement condition identification, it is more challenging to detect pavement conditions 
at night. There are relatively few works on nighttime data collection and pavement condition identification. To 
this end, Zhang et al.85 collected data from YouTube videos to form new datasets. Each image was extracted 
from the video frame at an interval of at least 1  s between the two frames to ensure the difference between 
the images within the dataset, and the extracted images were all manually labeled. The corresponding video 
can be found at https://doi.org/10.6084/m9.figshare.22775078. As we know, the characteristics of the reflected 
light vary depending on the lighting conditions, and videos shot with ambient lighting differ from videos shot 
without it. The videos shot with ambient lighting are usually captured from urban areas while the videos shot 
without ambient lighting are usually shot from the countryside or highways. The images taken under ambient 
light illumination and other images taken without ambient light illumination have a large difference. Therefore, 
the datasets were collected separately under two lighting conditions, forming two different datasets respectively, 
namely YouTube-W-ALI and YouTube-w/o-ALI. The two datasets after necessary pre-processing can be found at 
https://doi.org/10.6084/m9.figshare.22761149.v1. Each dataset includes snow, wet, and dry conditions as shown 
in Fig. 5. Obviously, the wet pavement has more reflected light, whereas the dry pavement has less reflected light. 
Furthermore, it is more challenging to accurately detect pavement conditions on the YouTube-w/o-ALI dataset 
due to the low-light environment. Please refer to the right section of Fig. 5 to learn more details.

Zhang et al.85 also collected validation datasets from other video sources. Each image has an original 
resolution of either 1,920 × 1,080 or 1,280 × 720, with the RGB color space. Prior to the training model, all images 
were resized to 224 × 224, considering each color space. For the YouTube-w-ALI dataset, 10,193 images were 
finally chosen for training while the remaining 10,781 images were chosen for testing. For the YouTube-w/o-ALI 
dataset, 11,153 images were used for training with the remaining 13,073 images allocated for prediction. Table 1 
provides more details of the two datasets.

Road surface is a kind of specific material. Hence, pavement condition identification belongs to a branch 
of the traditional task of material image classification. Therefore, to further verify the generalization ability of 

Dataset

Training set Test set

Dry Wet Snow Dry Wet Snow

YouTube-w-ALI 3219 3464 3510 3722 2837 4222

YouTube-w/o-ALI 3722 3830 3601 6081 2809 4183

Table 1.  Data distribution of the YouTube-W-ALI and YouTube-w/o-ALI datasets.

 

Fig. 5.  Some images in YouTube-w-ALI and YouTube-w/o-ALI.
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the proposed IQEFD model, we conducted additional validation experiments on a classical material image 
dataset called MattrSet84. This dataset was derived from online real goods, including bags and shoes, and it was 
constructed under the guidance of several experienced materials experts. Unlike other material image datasets, 
MattrSet is a coarse-grained material image dataset that includes four types of material, such as polyurethane 
(PU), canvas, nylon, and polyester. The MattrSet dataset contains 11,021 images with resolutions ranging from 
123 × 123 to 4,300 × 2,867. All these will make the image material recognition task more challenging than before. 
On the contrary, this material image dataset is a good choice to demonstrate the generalization ability of our 
IQEFD model. To fulfill this goal, we completed four-fold cross-validation testing in our experiment. Table 2; 
Fig. 6 exhibit more details of this dataset. For example, “Bag_pu” represents the product is a bag with the material 
of pu while “Shoe_canvas” represents the product as a shoe with the material of canvas. The MattrSet dataset is 
completely open and can be obtained freely from the following link: ​h​t​t​p​s​:​​​/​​/​d​r​i​v​​e​.​g​o​o​g​l​​e​.​c​​​o​m​/​o​p​​​e​n​​?​i​d​=​​1​2​​x​X​X​​_​
M​u​w​I​I​​8​h​g​h​w​X​F​L​t​T​3​s​n​e​E​​z​g​A​4​-​S​N.

All in all, we selected two pavement condition image datasets with different lighting conditions to validate the 
effectiveness and robustness of the IQEFD model. Furthermore, we demonstrated the generalization ability of 
IQEFD on the classical material image dataset MattrSet. All these contribute to evaluating the proposed model 
more comprehensively.

Experiments and analysis
Experimental settings
We used PyTorch on a computer server with four NVIDIA GeForce GTX2080Ti GPUs with 94 GB of RAM. We 
used the Adam optimizer with a weight decay and set the initial learning rate to 8e-5. The regularized weight 
decay was 5e − 4, and the learning rate decay was 0.1. The batch size was set to 8, and the proposed model was 
trained for 30 epochs.

Baselines and evaluation metrics
To better demonstrate the effectiveness, robustness, and generalization ability of the proposed IQEFD model, 
we compared our model with the following mainstream baselines. (1) Fine-tuned deep learning-based networks 
including CNNs (CNN-1, CNN-2, and CNN-3 represent CNN using one convolutional layer, two convolutional 
layers, three convolutional layers, respectively), VGG-1621, VGG-1921, SqueezeNet22, ResNet5023, Vision 
Transformer (ViT)86, DenseNet12124, ConvNeXt25, ResNeXt87, EfficientNet88, FocalNet89. (2) Two classical 
material image recognition models: SENet correlation gene selection (SECGS)84 and hierarchical multi-feature 
fusion (HMF2)90. (3) Previous state-of-the-art model MBFN28. Given the nature of the datasets used in this field, 
we compared, to the extent possible and all our effort, all baseline models that were compatible with our datasets 
and consistent with the problem we were addressing. We used Accuracy (Acc), recall (Rec), and specificity 
(Spec) to evaluate our model.

Fig. 6.  Some representative images in the MattrSet dataset.

 

Category Bag_pu Bag_canvas Bag_nylon

Number 1982 1948 1764

Category Bag_polyester Shoe_pu Shoe_canvas

Number 1715 1757 1855

Table 2.  Data distribution of the MattrSet dataset.
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Quantitative comparisons
We compared the IQEFD model with a group of baselines. The corresponding experimental results are presented 
in Table 3 and 4. It can be observed that the proposed IQEFD model performs well on both datasets. And it 
outperforms all the baselines with evident performance margins. To get more valuable conclusions, we conducted 
an in-depth analysis from the following perspectives.

First, we compared our model with those fine-tuned deep learning networks. On the YouTube-w-ALI dataset, 
compared with the most competitive DenseNet121, the accuracy, recall, and specificity of IQEFD improved 
by 3.96%, 4.74%, and 4.7%, respectively. On the YouTube-w/o-ALI dataset, the corresponding performance 
improvements are 3.22%, 2.88%, and 2.4%, respectively. As mentioned above, deep learning-based networks are 
very complex (e.g., ResNet50, and VGG19 use very deep feature layers), and the layers of these networks rarely 
interact with each other. Moreover, the extracted features usually focus on relatively small independent regions of 
the image, ignoring the overall context information (you can see Fig. 10). All these could cause the loss of the key 
semantics information. However, the IQEFD model handles this issue well. On the one hand, the bidirectional 
fusion module implements feature fusion at different scales to retain the key semantics information. On the 
other hand, the Zero-DCE network provides high-quality material knowledge to guide the procedure of the final 
feature learning, which continuously enhances the discriminative ability of our features, thus contributing to the 
pavement condition identification.

Second, compared with the previous MBFN model, the accuracy, recall, and specificity of our model 
improved by 0.76%, 0.95%, and 0.7% on the YouTube-w-ALI dataset and improved by 0.97%, 1.08%, and 1.31% 
on the YouTube-w/o-ALI dataset, respectively. To our surprise, more evident performance improvements are 
observed on the YouTube-w/o-ALI dataset. We guess Zero-DCE offers positive “bias” to the YouTube-w/o-ALI 
dataset, which means that image quality enhancement plays a more positive role in this dataset. This also firmly 
validates the robustness of our method. As analyzed above, the enhanced features generated through Zero-DCE 

Model Acc. Rec. Spec.

CNN-3 90.96 88.21 88.65

CNN-2 90.16 88.98 89.21

CNN-1 89.96 85.29 85.78

SqueezeNet 93.59 92.36 92.48

VGG16 91.65 90.58 90.87

VGG19 91.79 91.44 91.88

ResNet50 92.17 92.30 92.51

ResNeXt50 93.36 94.06 97.08

EfficientNet-B3 94.58 94.76 97.23

FocalNet 95.16 95.06 97.85

DenseNet121 95.46 96.02 96.25

MBFN 97.71 97.82 97.34

IQEFD (Our) 98.68 98.90 98.65

Table 4.  Performance comparisons with baselines on the YouTube-w/o-ALI dataset, unit: %. The best value of 
each metric is bold and italic.

 

Model Acc. Rec. Spec.

CNN-3 90.08 87.36 87.03

CNN-2 90.72 86.29 86.47

CNN-1 90.89 89.34 89.65

SqueezeNet 89.14 85.65 85.36

VGG16 90.65 88.46 88.21

VGG19 90.17 89.17 89.01

ResNet50 92.54 90.34 90.35

ResNeXt50 92.78 92.87 96.48

EfficientNet-B3 92.74 92.88 96.42

FocalNet 93.22 93.19 96.65

DenseNet121 94.08 93.27 93.36

MBFN 97.28 97.06 97.36

IQEFD (Our) 98.04 98.01 98.06

Table 3.  Performance comparisons with baselines on the YouTube-w-ALI dataset, unit: %.  The best value of 
each metric is bold and italic.
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serve as a teacher online, providing good guidance for the fused attention features, which helps further improve 
the discrimination of our model.

In a word, the IQEFD model is superior to current mainstream baseline models. Notably, larger performance 
improvements are observed on the YouTube-w/o-ALI dataset. The IQEFD model is effective and robust for the 
task of pavement condition identification in unfavorable weather or time conditions. More importantly, our 
idea of transferring enhanced material knowledge is effective, which provides a novel insight into the task of 
pavement condition identification.

Cross-validation results
Cross-validation is a useful strategy for objectively evaluating the performance and robustness of a classification 
model. Researchers usually use the k-fold approach to complete their cross-validation experiments. In this study, 
we implemented four-fold cross-validation, which is a significant complementarity to the above performance 
comparisons. We randomly divided the dataset into 4 (k = 4) parts. One part was used as the validation set while 
the remaining k − 1 parts were remained as the training set. We repeated our testing four times and computed 
the average accuracy (Avg) as well as standard deviation (Std) of each dataset. The four-fold cross-validation 
results of the IQEFD model are shown in Table 5.

According to Table 5, we find that the average accuracy of our model on each dataset is very close to the 
accuracy value presented in Table 3 (or Table 4), which means that our model is robust and stable for pavement 
condition identification to a certain degree. Moreover, the standard deviation results of the IQEFD model on 
each dataset are also stable, with values of 0.220% and 0.308%, respectively. This further indicates that our model 
is very stable, promoting its practicality.

To further demonstrate the generalization ability of the IQEFD model, we completed additional cross-
validation experiments on the classical material image dataset called MattrSet. The dataset contains relatively 
more coarse-grained material semantics information and fewer training samples, which brings a certain 
challenge to the proposed recognition model. The corresponding experimental results are shown in Table 6. We 
computed the average accuracy (Avg) and standard deviation (Std) of each baseline model. “Imp” is a relative 
performance improvement of the IQEFD model compared to the corresponding baseline. For example, the 
performance improvement of IQEFD compared to ConvNeXt is 75.86%-73.85%=2.01%.

According to the Std values in Table 6, our model is also stable for coarse-grained material image recognition. 
This finding firmly supports the above conclusion of Table  5. In addition, the IQEFD model significantly 
outperforms a group of baselines, including the ConvNeXt, SECGS, HMF², and MBFN models, with an 
improvement of 2.01%, 4.44%, 3.66%, and 0.78% in terms of the average accuracy, respectively, which better 
demonstrates the generalization ability of the IQEFD model. Hence, IQEFD is also a general method for 
material-related image recognition tasks, highlighting its wide application prospect.

Robustness validation results
To assess the robustness of the proposed IQEFD model, we conducted both black-box testing with noise effects 
and gradient-based white-box attack testing in this section. We want to simulate real-world noise effect or face 
adversarial attack and evaluate the robustness of our model more comprehensively. The black-box test assumes 
that the adversary has no access to the model’s internal information, while the white-box test allows access to the 
model’s parameters, gradients, and other details. Given the numerous random variables involved, we reported 
the average results from three experiments as the final outcome. In the black-box testing, we applied random 
noise to 20% of the input data and observed the corresponding changes in the model’s output. This approach 
simulates real-world noise effects, such as sensor noise, environmental interference, data corruption, and other 
factors that could introduce noise into the input image.

Model
1st
fold 2nd fold

3rd
fold

4th
fold Avg Imp Std

ConvNeXt 73.70 73.70 73.50 74.50 73.85 2.01 0.384

SECGS 70.10 71.38 72.10 72.30 71.42 4.44 0.862

HMF² 71.30 71.90 72.50 73.10 72.20 3.66 0.671

MBFN 74.80 74.70 74.60 76.20 75.08 0.78 0.653

IQEFD 75.18 75.39 75.72 77.16 75.86 / 0.773

Table 6.  Four-fold cross-validation on the MattrSet dataset, unit: %. The best value of each metric is bold and 
italic.

 

Dataset 1st fold 2nd fold 3rd fold 4th fold Avg Std

YouTube-w-ALI 98.21 97.65 97.86 98.12 97.96 0.220

YouTube-w/o-ALI 98.42 98.81 97.96 98.25 98.36 0.308

Table 5.  Four-fold cross-validation results on YouTube-w-ALI and YouTube-w/o-ALI, unit: %.
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For the random noise selection, we used Gaussian noise and Salt Pepper noise. Gaussian noise simulates the 
random, continuous noise typically encountered during sensor acquisition. It reflects subtle disturbances from 
the natural environment and is useful for testing the model’s stability under continuous noise. In contrast, Salt 
Pepper noise is more suited to simulating sudden, discrete noise caused by transmission errors, dust, localized 
occlusions, or sensor failures. This type of noise results in distinct pixel extremes and presents different challenges 
for model robustness. In the Gaussian noise experiment, the standard deviation of the noise added to each 
sample was randomized within the range of 0 to 5, simulating real-world uncertainty as accurately as possible. 
For the Salt Pepper noise, we set the ratio of Salt noise to Pepper noise at 1:1, with the maximum intensity of 
the noise capped at 0.1. The experimental results are shown in Table 7 and the evaluation metric is accuracy. We 
repeated each testing three times and got the averaged accuracy (Avg). And we computed the variance (Var) that 
is the comparison with before the addition of noise.

The experimental results in Table 7 demonstrate that IQEFD exhibits strong noise robustness (NR), as it can 
still classify correctly despite noise disturbances. This indicates that the model learns more robust image features 
rather than merely memorizing the training data. Additionally, IQEFD shows good resistance to both continuous 
perturbations and discrete outliers. All these demonstrate the effectiveness of our design idea. Certainly, there 
is a little challenge for the YouTube-w/o-ALI dataset. Thus, from the noise effect perspective, our model is very 
robust for pavement condition identification.

Unlike the above attack testing, the Fast Gradient Sign Method (FGSM)91 is a gradient-based white-box 
adversarial attack technique usually designed to generate adversarial examples for testing the robustness of deep 
learning models. Hence, it is a significant complementarity to the above robustness testing. In detail, FGSM 
creates adversarial samples by calculating the gradient of the loss function with respect to the input data and 
then adding a small perturbation in the direction of the gradient, producing samples that can deceive the model, 
as shown in Eq. 10.

	 x′ = x+ ∈ ·sign (∇xJ (θ, x, y))� (10)

Let x denotes the original input image, x′  denotes the adversarial samples, ∈ denotes the attack strength (i.e., 
the size of the perturbation), and J (θ , x, y) denotes the loss function. In this case, we used the cross-entropy 
loss function, following previous designs. The term ∇ xJ (θ , x, y) represents the gradient of the loss function 
with respect to the input x. In our experiment, we set ∈ to 0.05 and selected 20% of the samples for the attack 
testing. This setting helps reduce computational cost while still effectively evaluating the adversarial robustness 
of the proposed model. The experimental results are shown in Table 8 and the evaluation metric is accuracy. We 
repeated each testing three times and got the averaged accuracy (Avg). And we computed the variance (Var) that 
is the comparison with before facing the FGSM confrontation attack.

The experimental results in Table 8 show that IQEFD still maintains high accuracy on the adversarial samples 
generated by FGSM, indicating that the proposed model is insensitive to small-amplitude perturbations and 
has already possessed some adversarial robustness. All these demonstrate the effectiveness of our design idea. 
Certainly, there is a little challenge for the YouTube-w/o-ALI dataset. In the future, we will test it under stronger 
adversarial attacks and further enhance model’s robustness on the YouTube-w/o-ALI dataset. Thus, from the 
adversarial attack perspective, our model is also very robust for the task of pavement condition identification.

Summarily, the above extensive results validate that the IQEFD model is much robust for pavement condition 
identification. Our model design idea also works well under relatively harsh environment.

Real-time performance of the model
In practical applications, on the one hand, model accuracy is very important. On the other hand, real-time 
performance must also be considered in the task of pavement condition identification. Therefore, we measured 
the model’s frame rate (i.e., the number of the images processed per second) and latency (i.e., the total time from 
input data entry to result generation). For each metric, we evaluated two scenarios: (1) the end-to-end time, 
which includes dataset loading and preprocessing, (2) the inference time, which covers only the model’s forward 

Dataset 1st testing 2nd testing 3rd testing Avg Var

YouTube-w-ALI 96.04 96.10 96.07 96.07 1.97

YouTube-w/o-ALI 96.37 96.40 96.38 96.38 2.30

Table 8.  Identification results of IQEFD after facing FGSM confrontation attack, unit: %.

 

Dataset Noise type 1st testing 2nd testing 3rd testing Avg Var

YouTube-w-ALI
Gaussian noise 97.54 96.62 96.94 97.03 1.01

Salt Pepper noise 96.13 97.59 97.54 97.08 0.96

YouTube-w/o-ALI
Gaussian noise 95.91 97.33 95.83 96.36 2.32

Salt Pepper noise 95.44 95.64 94.76 95.28 3.40

Table 7.  Identification results of IQEFD after facing different noise interference, unit: %.
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inference process. The results are presented in Tables 9 and 10. To ensure reliable measurements, we calculated 
the average inference time over 1000 images.

As shown in Tables 9 and 10, IQEFD demonstrates satisfactory processing speeds, making it well-suited for 
real-time applications. Additionally, the short processing time per image allows the system to make decisions 
quickly, helping reduce potential safety risks. All these real-time performance metrics accompanied with 
satisfactory identification accuracy support the possible deployment of the proposed IQEFD model in the field 
of autonomous driving.

Confusion matrix
The confusion matrix can help us fully understand the recognition ability of the IQEFD model in each category. 
Here, we compare our model with the state-of-the-art MBFN model according to confusion matrices Fig. 7a 
and b show the confusion matrix of the MBFN model on the YouTube-w-ALI and YouTube-w/o-ALI datasets, 
respectively, whereas Fig. 7c and d show the confusion matrices of the IQEFD model on the YouTube-w-ALI and 
YouTube-w/o-ALI datasets, respectively.

As shown in Fig. 7, on the YouTube-w-ALI dataset, 8 images of the dry surface condition are misclassified 
with sufficient light, which are 6 wet samples and 2 snow samples. This classification effect is satisfactory to some 
degree. As we know, with sufficient light, the dry ground doesn’t have more reflective conditions, which will not 
affect the recognition model negatively. However, for the category of wet, the corresponding wrong results are 
53 dry samples and 9 snow samples, respectively, which may be due to the reflection and scattering of the wet 
images under the light condition, generating a certain noise and affecting the final performance. The recognition 
of the snow category is similar to the wet category. However the recognition task in the snow category is slightly 
more challenging than in the wet category. Moreover, our IQEFD model beats the MBFN model in each category 
evidently, further validating the effectiveness of the proposed method.

Further, on the YouTube-w/o-ALI dataset, the IQEFD model obtains more satisfactory classification 
performance compared to YouTube-w-ALI. For example, only one snow sample is misclassified as wet. This is 
due to the fact that the reflection of light is greatly reduced under low-light conditions. Meanwhile, our model 
enhances the original input image and employs mid-layer feature maps to boost the corresponding performance. 
However, there is still a certain challenge for the dry samples. High visual similarity occurs between the dry and 
wet pavement conditions. We need to absorb a more effective feature representation approach to address this 
problem in our future work. Furthermore, our model is superior to the previous MBFN model evidently, further 
promoting the practicality of IQEFD.

In summary, based on the confusion matrix, our model exhibits satisfactory classification performance in 
the task of pavement condition identification. It outperforms the state-of-the-art baseline in most categories. In 
the future, we need to pay more attention to the snow samples on YouTube-w-ALI as well as the dry samples on 
YouTube-w/o-ALI.

Ablation analysis
In this section, we make extensive ablation analysis experiments, including backbone model selection, and 
contribution evaluation of each component. We need to obtain a deeper understanding of the IQEFD model.

First, the backbone plays a significant role in our model. In order to ensure the effectiveness and model size, 
we chose ConvNeXt-S as the backbone network of the proposed approach. Thus, we can obtain a good trade-
off between recognition performance and model size in this way. To support this choice, we made a detailed 
comparison between different ConvNeXt backbones in Table 11. As shown in Table 11, the ConvNeXt-B model 
is nearly 0.11% better than ConvNeXt-S, whereas the number of parameters in ConvNeXt-B is nearly 1.78 times 
that in ConvNeXt-S. Compared with ConvNeXt-B, ConvNeXt-S is a “cheaper” but effective choice. Similarly, 
compared with ConvNeXt-T, ConvNeXt-S is more effective and the corresponding number of parameters is 
relatively acceptable. Hence, we consider using ConvNeXt-S as the backbone of the proposed IQEFD model in 
terms of recognition performance and model size.

Second, the IQEFD model consists of the Zero-DCE-based image enhancement module, the bidirectional 
fusion module embedded with the HAM module, and the feature distillation module. The actual contribution 
of each module needs to be verified through ablation experiments. We removed the Zero-DCE-based image 

Dataset Overall latency Inference latency

YouTube-w-ALI 0.016754 0.014555

YouTube-w/o-ALI 0.016712 0.014543

Table 10.  Averaged latency of the IQEFD model, unit: second.

 

Dataset Overall FPS Inference FPS

YouTube-w-ALI 59.69 68.70

YouTube-w/o-ALI 59.84 68.76

Table 9.  Number of images processed per second by the IQEFD model.
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enhancement module, all HAM modules, feature distillation module, as well as using both and neither of them, 
respectively. Thus, we get five variants of our model. The corresponding results are shown in Table 12.

From Table 12, it can be found that removing any of the modules on both datasets could affect the final 
accuracy negatively. Specifically, the most substantial performance decay occurs after removing the Zero-DCE-
based image enhancement module, which is 0.51% on the YouTube-w-ALI dataset and 0.65% on the YouTube-
w/o-ALI dataset, respectively. This means that the Zero-DCE-based image enhancement module is the most 
significant component of our model. It improves the image quality to some extent without considering any light 
conditions. So, it curbs the noise in low quality images and reduces the negative impact on classification at the 
source, ultimately improving the pavement condition identification accuracy. Moreover, the feature distillation 
module is slightly better than the HAM module. This module employs the enhanced features to guide the 
learning procedure of the fused attention features online, which facilitates enhanced material knowledge transfer 
and bridges the semantics gap between the image enhancement and feature extraction modules, improving 

Backbone

Accuracy on different datasets (%)

Param(MB)YouTube-w/o-ALI YouTube-w-ALI

ConvNeXt-T 96.23 96.08 29

ConvNeXt-S 97.71 97.28 50

ConvNeXt-B 97.82 97.35 89

Table 11.  Efficiency and parameters of different ConvNeXt backbones. “Param (MB)” indicates the number of 
parameters in M (million).

 

Fig. 7.  Confusion matrix comparisons for pavement condition identification.
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the discriminative ability of the fused attention features and thus boosting the final classification performance. 
Therefore, the contribution descending order of the three modules is “Zero-DCE > Feature Distillation > HAM”. 
The contribution of all the modules is the same on both datasets, which also indicates the stability of the proposed 
model.

In conclusion, each component of IQEFD plays an important role in pavement condition identification, and 
all the components form a synergy to jointly drive the accuracy improvement of the model.

Visualization analysis
Image quality enhancement results
In the IQEFD model, we utilize the Zero-DCE network to enhance each input image and extract the corresponding 
enhanced features. Subsequently, the enhanced features are used to guide the learning procedure of the fused 
attention features online through feature distillation. It bridges the gap between the image enhancement network 
and feature extraction network, thus contributing to improving the final recognition performance. So, Zero-
DCE plays a significant role in our model. The image quality enhancement results of Zero-DCE are shown in 
Table 13. We sampled three images from the YouTube-w/o-ALI dataset to complete this visualization analysis.

As shown in Table  13, the original image contains more noise or blurred local regions, which hurts the 
final classification. However, there is a certain denoising effect after introducing Zero-DCE, which is beneficial 
for the subsequent feature distillation and can improve the training quality of the IQEFD model (Please refer 
to Table 12. According to ablation analysis, the Zero-DCE-based image enhancement module plays the most 
significant role in our model). Thus, the Zero-DCE network is effective and robust for our task, which creates a 
solid foundation for the subsequent feature fusion and feature distillation.

Feature visualization results
In this section, we validate the effectiveness of IQEFD from the perspective of feature visualization, which also 
helps enhance the interpretability of IQEFD. The features after the last pooling layer of the ConvNeXt, ViT, 
MBFN, and IQEFD models are visualized using t-SNE, respectively, where the visualization results are shown 
in Fig. 8.

Pavement conditions Original image Enhanced image

Dry

Snow

Wet

Table 13.  Image quality enhancement results.

 

Variant Zero-DCE HAM Feature distillation YouTube-w-ALI YouTube-w/o-ALI
Param
(MB)

1 × × × 97.28 97.71 75.81

2 × √ √ 97.53 98.03 76.05

3 √ × √ 97.85 98.43 163.36

4 √ √ × 97.76 98.38 163.61

5 √ √ √ 98.04 98.68 163.61

Table 12.  Ablation analysis results, unit: %. The best value of each metric is bold and italic. “Param (MB)” 
indicates the number of parameters in M (million).
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As shown in Fig. 8, for the ConvNeXt and ViT models, it can be seen that different kinds of samples are 
mixed together, especially for ViT, which means that the features extracted by the pure deep learning backbone 
are insufficient for pavement condition identification. However, for the MBFN and IQEFD models, the 3 clusters 
are more concentrated, and the inter-class distance is larger while the intra-class distance is smaller, which helps 
create a clearer decision boundary and improves the final classification performance. We also find that it is 
difficult to classify the snow and wet samples as well as the dry and snow samples for the MBFN model. On 
the contrary, for the proposed IQEFD model, the classification confusion results are significantly reduced and 
more satisfactory intra-class and inter-class distances are observed, which helps promote the final recognition 
performance. In addition, it can be seen that the wet and snow categories are the most difficult categories to be 
classified by all the models. Hence, more attention needs to be paid to these two categories in future work. In 
summary, the feature visualization results validate the effectiveness of the IQEFD model from another significant 
perspective, which also provides a more intuitive visualization of our model and improves its interpretability. 
More importantly, the visualization results light up our future research directions.

Grad-CAM visualization results
To further support the superiority of our approach, we present the IQEFD visualization results from a more 
comprehensive perspective. First, we used the well-known CAM technique to visualize different variant 
operations to reveal their significance more intuitively, as shown in Fig. 9. To learn more about each variant, 
please refer to Table 12. Variant 5 represents the proposed model. We want to know whether our model could 
accurately locate the key local regions of the pavement images. As Fig. 9 shows, Variant 1 without any proposed 
module gets the worst pavement heat-map and some false detection results. Variant 2 combining HAM and 
feature distillation is better than Variant 1, but it also gets some false detections. Variant 3 considering Zero-DCE 
and feature distillation obtains relatively satisfactory visualization results due to material knowledge transfer and 
image enhancement. Unlike Variant 3, Variant 4 combining HAM and Zero-DCE can focus more on the key 
region areas of the pavement, which is significant for pavement condition identification. Evidently, our model 
(Variant 5) gets more sufficient context information and is more robust for nighttime condition, which is the 
best variant for our task.

Fig. 8.  Feature visualization results on the YouTube-w/o-ALI dataset.
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Second, we exhibited the visualization results of ConvNeXt, MBFN, and IQEFD on the YouTube-w-ALI 
dataset, where the features in the layer before the classification head are selected for visualization, so as to more 
intuitively compare the ability of different models to capture key focal regions. The results are shown in Fig. 10.

As shown in Fig.  10, the ConvNeXt only focuses on some fragmented and localized pavement regions 
because the single ConvNeXt network is unable to extract global information. As another representative 
baseline, the MBFN model can better detect the key pavement regions compared to ConvNeXt, which lays 
an important foundation for improving the corresponding recognition performance. However, some critical 
pavement regions like the left two lanes are still ignored by MBFN. As expected, the IQEFD model accurately 
detects most pavement regions which is important for the subsequent pavement condition identification. As 
described above, IQEFD captures both the channel and spatial information from pavement images using the 
HAM module. Moreover, the proposed bidirectional fusion module retains multi-scale semantics information 
from the successive up-sampling and down-sampling operations. All these enrich the proposed model with a 
kind of capability of extracting the global contextual information, thus detecting the key regions of the pavement 

Fig. 10.  Grad-CAM visualization results on the YouTube-w-ALI dataset.

 

Fig. 9.  Grad-CAM visualization results for each variant on the YouTube-w-ALI dataset.
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images and improving the final recognition performance. Summarily, the Grad-CAM visualization results help 
better support the effectiveness of our model. More significantly, these results enhance the interpretability of the 
IQEFD model.

Conclusions and future work
In this study, we proposed the novel idea of transferring enhanced material knowledge by constructing the 
IQEFD model for pavement condition identification. The model achieves the accuracies of 98.04% and 98.68% on 
the YouTube-w-ALI and YouTube-w/o-ALI datasets, respectively, outperforming the state-of-the-art baselines. 
We aimed to reduce the negative effect of image quality and the loss of context information. First, the image 
enhancement network Zero-DCE was employed to enhance the quality of pavement conditions images. Then we 
designed the bidirectional fusion module embedded with a HAM module to extract the refined feature containing 
multi-scale semantics information. Last, we bridged the gap between the image enhancement network and the 
feature extraction network. We used the enhanced features to guide the optimization procedure of the fused 
attention features through online feature distillation. Extensive experimental results showed that the IQEFD 
model not only outperforms the mainstream baselines but also showed powerful robustness and generalization 
ability. It can better process the pavement condition images under very complex light environments. Moreover, 
we further validate the effectiveness of our model using diverse visualization methods, which also enhanced the 
model’s interpretability. Summarily, the idea of transferring enhanced material knowledge works well, which 
provides a novel insight into pavement condition identification.

Although the IQEFD model obtains satisfactory performance in pavement condition identification, there 
is still a room for improvement in the model. Our method may overlook the extraction of specific texture 
information which is significant to depict pavement conditions. Meanwhile, the proposed model ignores 
other modalities like textual content. The proposed model could combine the image modality with the textual 
descriptions to provide more comprehensive but complementary contextual information to improve the final 
accuracy.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author Zejiu 
Wu on reasonable request via e-mail wzjhdjd@qq.com.
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