Table 3 Performance comparisons with baselines on the YouTube-w-ALI dataset, unit: %.

From: Transferring enhanced material knowledge via image quality enhancement and feature distillation for pavement condition identification

Model

Acc.

Rec.

Spec.

CNN-3

90.08

87.36

87.03

CNN-2

90.72

86.29

86.47

CNN-1

90.89

89.34

89.65

SqueezeNet

89.14

85.65

85.36

VGG16

90.65

88.46

88.21

VGG19

90.17

89.17

89.01

ResNet50

92.54

90.34

90.35

ResNeXt50

92.78

92.87

96.48

EfficientNet-B3

92.74

92.88

96.42

FocalNet

93.22

93.19

96.65

DenseNet121

94.08

93.27

93.36

MBFN

97.28

97.06

97.36

IQEFD (Our)

98.04

98.01

98.06

  1. The best value of each metric is bold and italic.