Table 4 Performance comparisons with baselines on the YouTube-w/o-ALI dataset, unit: %.

From: Transferring enhanced material knowledge via image quality enhancement and feature distillation for pavement condition identification

Model

Acc.

Rec.

Spec.

CNN-3

90.96

88.21

88.65

CNN-2

90.16

88.98

89.21

CNN-1

89.96

85.29

85.78

SqueezeNet

93.59

92.36

92.48

VGG16

91.65

90.58

90.87

VGG19

91.79

91.44

91.88

ResNet50

92.17

92.30

92.51

ResNeXt50

93.36

94.06

97.08

EfficientNet-B3

94.58

94.76

97.23

FocalNet

95.16

95.06

97.85

DenseNet121

95.46

96.02

96.25

MBFN

97.71

97.82

97.34

IQEFD (Our)

98.68

98.90

98.65

  1. The best value of each metric is bold and italic.