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Accurate placement of nasogastric tubes (NGTs) is crucial for ensuring patient safety and effective 
treatment. Traditional methods relying on manual inspection are susceptible to human error, 
highlighting the need for innovative solutions. This study introduces a deep-learning model that 
enhances the detection and analysis of NGT positioning in chest radiographs. By integrating advanced 
segmentation and classification techniques, the model leverages the nnU-Net framework for 
segmenting critical regions and the ResNet50 architecture, pre-trained with MedCLIP, for classifying 
NGT placement. Trained on 1799 chest radiographs, the model demonstrates remarkable performance, 
achieving a Dice Similarity Coefficient of 65.35% for segmentation and an Area Under the Curve of 
99.72% for classification. These results underscore its ability to accurately distinguish between correct 
and incorrect placements, outperforming traditional approaches. This method not only enhances 
diagnostic precision but also has the potential to streamline clinical workflows and improve patient 
care. A functional prototype of the model is accessible at https://ngtube.ziovision.ai.

Deep learning (DL) technologies, one of the hot topics within the field of machine learning, have demonstrated 
robust performance in data analysis, showcasing superior efficacy compared to conventional methods across 
a spectrum of research areas such as visual recognition, natural language processing, and sentiment analysis.1 
In recent times, DL-based applications have emerged as a significant focus in the healthcare field, where they 
have exhibited notable successes.2 These trends have led to the employment of DL models for the automatic 
detection of abnormalities in tube positions, producing significant results.3–7 Specifically, the DenseNet 
architecture8 was used for the automated detection of nasogastric (NG) tubes misplaced in the respiratory tract 
on chest radiographs.3 Similarly, the Inception-v3 model9 was utilized to detect NG tube malposition on chest 
radiographs.7 Additionally, EfficientNet10 and U-Net11 (with EfficientNet backbone) architectures have been 
employed to identify the presence and position of central venous catheters, NG tubes, and endotracheal tubes on 
chest X-ray images.4 However, previous studies3–11 have predominantly concentrated on classification models, 
which posed limitations on explaining and visualizing the NG tube position through methods such as Grad-
CAM. This limitation arises because classification models typically provide a probabilistic output indicating the 
presence or absence of a feature (e.g., a misplaced tube) without giving a detailed spatial representation of the 
tube’s position. Consequently, these earlier models presented challenges for clinical practitioners who needed to 
accurately determine whether the NG tube placement was complete (and thus safe for patients) or incomplete 
(posing safety risks to patients) in a clinical setting. To address these limitations, the authors have conducted 
a comprehensive deep-learning research endeavor aimed at enabling all healthcare providers, regardless of 
their radiological expertise, to intuitively assess the completeness (safety) or incompleteness (risk) of NG tube 
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positions for patient care. This research involved not only segmenting the nasogastric(NG) tube locations 
directly but also performing multiple stages of concatenation and classification. By integrating segmentation 
techniques, the research advances the field by providing more detailed visualizations and explanations of the 
tube positions, which are crucial for clinical decision-making.

The segmentation approach allows the model to delineate the exact location and trajectory of the NG tube 
within the chest radiograph, thereby offering a visual guide that clinicians can easily interpret. This method 
enhances the interpretability of the model’s predictions, making them more practical for real-world clinical 
applications. Our main contributions can be summarized as follows:

•	 We collected and curated a comprehensive dataset of chest X-rays from patients, specifically annotated for 
NG tube positioning. This ensured data diversity and quality, enhancing the generalizability and robustness 
of the model.

•	 We developed a novel dual-stage model combining nnU-Net for segmentation and ResNet50, pre-trained 
with MedCLIP, for classification. The model achieved significant performance metrics, including a Dice Sim-
ilarity Coefficient of 65.35% and an AUC of 99.72%, demonstrating high accuracy and reliability.

•	 We created a functional prototype that can be integrated into clinical workflows, providing real-time assis-
tance for NG tube positioning in chest radiographs. The prototype was validated in a clinical setting, high-
lighting its potential for improving patient safety and treatment effectiveness. The prototype is available at 
https://ngtube.ziovision.ai.

Materials and methods
Ethics approval and consent to participate
This retrospective study was approved by the Institutional Review Board (IRB) of Chuncheon Sacred Hospital, 
which waived the requirement for informed consent (approval number: CHUNCHEON 2023-12-006) and all 
methods were performed following applicable guidelines and regulations

Study population
In this study, We curated a dataset of 2,627 anonymized patient X-ray images from three healthcare institutions: 
Hallym University Sacred Heart Hospital, Gangneung Asan Hospital, and Kangwon National University 
Hospital, collected between April 2011 and January 2023. Specifically, the dataset includes 263 images from 
Hallym University Sacred Heart Hospital, 1,986 images from Gangneung Asan Hospital, and 378 images from 
Kangwon National University Hospital. Data from Hallym University Sacred Heart Hospital and Gangneung 
Asan Hospital were used as our internal dataset, with 450 images randomly selected as the test set. The data from 
Kangwon National University Hospital was exclusively used for external validation. All images were meticulously 
extracted and stored in DICOM format using an advanced Picture Archiving and Communication System 
(PACS). For a more detailed understanding of the patient characteristics within the dataset, a straightforward 
overview is provided in Table 1

Variable Training & validation dataset Internal testing dataset External testing dataset P-value

Total (n) 1799 450 378

Label (n, %) 0.12

Complete 1566 (87.1) 391 (86.9) 314 (83.1)

Incomplete 233 (12.9) 59 (13.1) 64 (16.9)

Sex (n, %) 0.77

Male 974 (54.1) 275 (61.1) –

Female 600 (33.4) 175 (38.9) –

Unknown 225 (12.5) – –

Age (years, mean ± SD) 77.50 ± 11.20 77.51 ± 10.96 - 0.98†

Manufacturer (n, %) 0.0001

Canon 608 (33.8) 176 (39.1) –

DongKang 582 (32.3) 166 (36.9) –

DK Medical Systems 156 (8.7) 44 (9.8) –

Samsung 66 (3.7) 21 (4.7) 172 (45.5)

SIEMENS – – 158 (41.8)

Other 387 (21.5) 43 (9.6) 48 (12.7)

Table 1.  Data characteristics including patient demographics, image properties, and data sources. Values with 
a plus/minus sign represent the means ± standard deviation. Note that the values of age and sex in the external 
testing set are not provided because they were de-identified before data collection. χ2 test was used for P-value 
of categorical variables such as label, sex, and manufacturer. Analysis of variance (marked as †) was used for 
age.
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Ground truths
To obtain the labeled data, clinical experts annotated the regular insertion of the NG tube as ‘complete’ and the 
abnormal state as ‘incomplete’ in the opinion of 4 qualified specialists (MKM, KHG, HJY, and HJW). Three 
respiratory medicine experts (MKM, HJY, and HJW) with over 10 years of clinical experience, along with one 
radiology expert (KHS), collected a Chest X-ray dataset of 2249 cases labeled for NG tube placement. All cases 
were classified as either ‘complete’ or ‘incomplete.’ Clinically, NG tube positions where patients could receive 
medication or proceed with enteral feeding were categorized as ‘complete’ and defined as normal NG tube 
positions. Cases, where NG tube use for medication or feeding was not possible, were classified as ‘incomplete’ 
and defined as abnormal NG tube position. The tip position was measured at least 3 cm distal to the diaphragm 
on Chest X-ray PA or AP views for cases where the NG tube did not enter the airway. In situations where 
one clinical expert found it difficult to classify as ‘complete’ or ‘incomplete,’ all four experts gathered together 
to review the NG tube position on the Chest X-ray simultaneously. If they all agreed, the case was labeled as 
‘complete’ and considered to have a normal NG tube position.12 Through this process, we used 1957 complete 
samples and 292 incomplete samples for model training and testing.

Workflow overview
In a clinical setting, doctors find a NG tube in a chest X-ray image and then use it and surrounding information 
to identify abnormalities in the tube’s location. We intend to implement similar methodologies. Our algorithm 
expands in three key stages: segmentation, concatenation, and classification, each contributing to the 
comprehensive workflow illustrated in Fig. 1. In the segmentation stage, a deep learning-based segmentation 
model is employed to delineate NG tube masks from X-ray images, showcasing the model’s proficiency in 
segmenting relevant structures. The generated masks from the segmentation model are combined with their 
corresponding X-ray images. This approach facilitates the shape information of the images by feeding the 
combined images to a model used in the next stage. Finally, in the classification stage, a specialized model 
suggests whether a NG tube is fully and safely inserted. The harmonious integration of these stages culminates 
in a robust and effective approach for NG tube analysis from X-ray images.

Segmentation
The proposed methodology begins with the primary objective of segmenting NG tube lines, which imparts 
shape awareness to the subsequent classification model. For this task, we introduced a dedicated segmentation 
model denoted as fθ , specifically designed to identify NG tube masks, including lines and tips within X-ray 
images. The model fθ  operates to generate masks of a line ml ∈ {0, 1}H×W  and a tip mt ∈ {0, 1}H×W  from 
a pre-processed and normalized image x with respect to sample index i:

	 ms∈{l,t}
i = argmax(Φ(fθ(xi))),� (1)

Fig. 1.  Workflow of multi-stage classification on chest X-ray images: (a) Segmentation stage, (b) input 
concatenation stage, (c) classification stage.
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where Φ denotes the post-processing of nnU-Net13. This process ensures the extraction of appropriate 
information regarding the NG tube lines, setting the stage for enhanced shape awareness in preparation for the 
subsequent stages of our method.

We employed nnU-Net, a state-of-the-art framework based on U-Net architecture for biomedical 
segmentation, as our segmentation model fθ  to achieve precise NG tube detection. To enhance the accuracy 
of our segmentation model, we strategically employed a pre-training technique. Specifically, the model fθ  
underwent pre-training on the RANZCR CLiP dataset.14

Classification
While traditional convolutional neural networks often rely on predictions based on individual intact images, 
recent studies have highlighted the advantages of leveraging the outcomes of neural networks as inputs for 
subsequent neural networks, resulting in improved performance15–17. Inspired by these findings, our approach 
incorporates this concept by employing a concatenation operation (⊙) to aggregate images and masks, thereby 
creating a more informative input.

	 zi = xi ⊙ ms∈{l,t}
i .� (2)

where xi is the X-ray image and ms∈{l,t} is the segmented mask. We believe that this concatenated input z 
significantly improves the model’s understanding of anatomical structures and NG tube masks in X-ray images. 
In the classification stage, we utilized this improved input to train our model, denoted as gθ , to accurately predict 
abnormalities in the position of the NG tube. The concatenated results z were fed into the model gθ , which then 
calculated the probabilities p of NG tube malposition as pi = σ(gθ(zi)), with σ being the activation function. 
These probabilities were optimized using the cross-entropy loss function, enabling the model to classify positions 
as either’satisfactory’ or’malposition’.

To improve the model’s generalization and robustness, we applied a set of augmentations in the training 
pipeline, including horizontal flipping, random brightness and contrast adjustments, and geometric 
transformations such as shift, scale, and rotation with border mode handling. These enhancements were 
designed to introduce variations in the data set, reducing possible biases and enhancing the model’s ability to 
learn relevant features from diverse input distributions.

We used ResNet-based architectures18, which are the most widely used neural networks in image analysis, as 
the model gθ . For more accurate performance, we also used a pre-trained MedCLIP model19, a state-of-the-art 
medical vision text pre-training model, for the classification network gθ .

Furthermore, to improve the interpretability of our model and to understand the decision-making process 
behind its predictions, we incorporated Gradient-weighted Class Activation Mapping (Grad-CAM)20. Grad-
CAM provides a visual explanation for the model’s decisions, highlighting the specific areas in the X-ray images 
that the model focuses on when determining NG tube positioning. This approach not only helps validate the 
accuracy and reliability of the model, but also helps identify potential areas for further training or refinement, 
thus contributing to the continuous improvement of the model’s performance.

Implementation details
We employed the PyTorch framework to implement all networks and experimental settings. Our segmentation 
model underwent training via a five-fold cross-validation to enhance robustness, and an ensemble strategy was 
employed to ensure precise segmentation results. Due to significant differences in image sizes, we set the input 
patch size to 512 × 512. We apply similar implementation details of the nnU-Net, such as the optimizer and data 
augmentation techniques. In the classification stage, all networks were trained on a single NVIDIA RTX 3090 
GPU, and all network parameters were optimized by SGD optimizer on stratified five-fold cross-validation. We 
set a learning rate of 0.0005 for the feature extractors in the classification model, which is ten times lower than 
that of the classifiers that consist of a single MLP layer. All networks are trained for 100 epochs with a batch 
size of 16, and we initialize the feature extractor’s weights by MedClip’s ResNet-50 and classifiers with random 
weights. All models’ inputs were uniformly resized to 512 × 512, and a random horizontal flip was applied with 
a probability of 0.5 for training. We split the training dataset into training (80%) and validation (20%) datasets, 
and all hyperparameters were tuned in the validation phase.

Results
Experimental settings
1,799 and 450 images were used in the training and testing datasets, respectively. During the segmentation 
phase, the training dataset was used as a 5-fold cross-validation (stratified cross-validation in the classification 
stage), and the testing set was used to report the model’s performance. We also used 378 images from Kangwon 
National University Hospital for external validation to further assess the robustness and generalizability of our 
classification model

Performance metrics
As our method includes two models with different abilities (i.e. segmentation, classification), we reported six 
metrics to evaluate each of them. To evaluate the segmentation model, we first employed Dice and Jaccard 
coefficient metrics, which present similarities between predictions and ground truth. We formulate the metrics 
by true positive, false positive, and false negative denoted TP, FP, and FN, respectively.

	
Dice = 2T P

2T P + F P + F N
, � (3)
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Jaccard = T P

T P + F P + F N
. � (4)

Considering imbalanced class distribution, we also reported macro F1-score, balanced accuracy (B-ACC), area 
under the receiver operating characteristics (AUC-ROC), and area under the precision-recall curve (AUC-PR) 
for evaluation of the classification model. F1-score and B-ACC are formulated as below:

	
F1-score =2 × Precision × Recall

Precision + Recall
, � (5)

	
B-ACC =Sensitivity + Specificity

2 . � (6)

Segmentation performance
We applied the Exponential Moving Average (EMA) to track performance and find the best model during the 
validation stage. To make robust and precise predictions, we ensemble the logit of the trained models in five folds 
to evaluate the testing dataset. The segmentation model achieved a Dice of 65.35% and a Jaccard of 57.49% on 
the testing dataset, as shown in Table 2

Classification performance
As seen in Table 3, methods utilizing the concatenated input with segmented masks (ml or mt) consistently 
enhanced the model’s classification ability on all metrics: F1-score, B-ACC, AUC-ROC, and AUC-PR. Compared 
with the method using only original images, the combination of image and line mask (x + ml) showed increased 
performance by 1.74%, 3.71%, 1.79%, and 2.09%, respectively. Similarly, the combination of the image and 
all masks (x + ml + mt) showed increased performance by 0.66%, 2.14%, 1.55%, and 1.5%. Although all 
combinations of the masks helped improve the model’s performance, leveraging all masks (x + ml + mt

) showed lower performance by 1.08%, 1.57%, 0.24%, and 0.59% than using line masks alone. From these 
observations, we believe that the concatenated input with only line masks is more suitable than others. As shown 
in Table 4, ResNet-50 outperformed other architectures, except MedCLIP pre-trained ResNet-50. From these 
observations, we can confirm that ResNet-50 is more suitable in our experiment setting. Next, the MedCLIP pre-
trained ResNet-50 showed improved performance than the vanilla ResNet-50 by 2.11% 1.79% 0.38% and 0.85%
, respectively. These results suggest the possibility of detecting incorrect insertions of NG tube through deep 
learning-based methods. In addition, the external validation indicates F1-score, B-ACC, AUC-ROC, and AUC-
PR values of 78.99%, 83.94%, 92.27%, and 86.78%, respectively. This not only reinforces the model’s capability in 
a broader clinical context but also highlights its potential in diverse healthcare settings.

Methods Macro F1-score B-ACC AUC-ROC AUC-PR

ResNet-18 (x + ml) 94.36±7.20 96.27±4.64 97.98±3.85 93.61±12.09

ResNet-34 (x + ml) 93.95±7.51 95.44±5.09 97.78±3.62 93.38±11.82

ResNet-50 (x + ml) 95.72±3.98 97.04±1.61 99.57±0.35 99.04±0.85

ResNet-50 (pre-trained w/ MedCLIP) (x + ml) 97.83±1.09 98.83±0.66 99.96±0.03 99.89±0.11

ResNet-50 (pre-trained w/ MedCLIP) (x + ml) (external) 78.99±2.37 83.94±3.23 92.27±2.59 86.78±3.62

Table 4.  Stratified 5-fold cross-validation results for NGT positioning classification on the testing and external 
datasets. Results are reported as mean ± standard deviation (SD).

 

Methods Macro F1-score B-ACC AUC-ROC AUC-PR

x ,mean ± SD 96.09±1.02 95.12±2.17 98.17±1.04 97.80±0.61

x + ml  , mean ± SD 97.83±1.09 98.83±0.66 99.96±0.03 99.89±0.11

x + ml + mt  , mean ± SD 96.75±1.31 97.26±0.31 99.72±0.14 99.30±0.33

Table 3.  Performances for combinations of images and masks. All experiments are based on ResNet-50 with 
MedCLIP. Results are reported as mean ± standard deviation (SD).

 

Tube Tip Mean

Dice, mean ± SD 91.52 ± 0.14 39.16 ± 0.40 65.35 ± 0.25

Jaccard, mean ± SD 85.63 ± 0.22 29.37 ± 0.31 57.49 ± 0.21

Table 2.  5-Fold cross-validation results for NGT segmentation on the testing dataset.
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Visualization of model predictions using grad-CAM
In our analysis, the utilization of Grad-CAMs revealed both the strengths and limitations of our model in 
discerning the placement of NG tubes within radiographs. The model accurately identified properly positioned 
tubes as shown by targeted Grad-CAM activations. However, our model faced challenges in identifying 
malpositioned tubes, often failing to detect tubes that were not correctly placed. Additionally, Grad-CAM 
occasionally highlighted areas unrelated to the tube, such as irrelevant text or peripheral regions, suggesting that 
the model might be influenced by non-essential features. These results are illustrated in Fig. 2.

Prototype implementation
To address the clinical applicability of our research, we have implemented a functional prototype of our solution. 
This prototype is designed to be integrated into clinical workflows, providing real-time assistance for NG tube 
positioning in chest radiographs. The prototype has been developed to facilitate seamless adoption in healthcare 
settings, offering intuitive user interfaces and robust performance. An example of the prototype user interface is 
shown in Fig. 3. The prototype is available at https://ngtube.ziovision.ai

Discussion
In this paper, we present a deep learning model for the segmentation and classification of NG tube in chest 
radiographs, achieving a Dice Similarity Coefficient of 65.35±0.25, an AUC of 99.72, and an AUPRC of 99.30. 
This performance highlights the effectiveness of our model. Our model integrates segmentation and classification 
to improve the analysis of NG tube in chest radiographs. We used nnU-Net for segmentation and Resnet50 pre-
trained with MedClip for the classification task. This pre-training enables the model to interpret and analyze 
the intricate patterns in chest X-rays, improving its accuracy in confirming the positioning of the NG tube. A 
key improvement of our model is the combination of the segmentation mask generated by nnU-Net with the 
chest X-ray input to the Resnet50 classification model. This approach improves the accuracy of the model by 
incorporating additional contextual information from the segmentation data, thereby increasing the reliability 
of NG tube positioning.

Several studies have proposed deep learning-based methods for detecting NG tube malposition in chest 
radiographs.5 used 5475 radiographs to train and test CNN models, with the pre-trained Inception V3 achieving 
an AUC of 0.87.3 trained a DenseNet-based model on 4693 radiographs, showing high accuracy with AUCs 

Fig. 2.  Visualization results of prediction masks and class activation map (Grad-CAM) on external validation 
datasets. Prediction masks are extracted from nnU-Net and Grad-CAM results are from MedCLIP pre-trained 
ResNet-50. (a) X-ray images, (b) label of the segmentation model, (c) results with the sum of (a) and prediction 
of the segmentation, (d) Grad-CAM results. The top two low are the incorrectly predicted cases(incomplete, 
complete) and the bottom two low(incomplete, complete) are the correctly predicted cases.
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of 0.90 and 0.92 for internal and external validation.6 introduced a CNN with a unique pre-training strategy, 
improving AUC from 0.56 to 0.76 and accuracy from 0.69 to 0.79 using 175 radiographs.7 trained a model 
on 7081 radiographs, achieving an AUC of 0.90 and improving agreement between junior physicians and 
radiologists. These studies highlight the potential of deep learning in improving NG tube placement accuracy 
and patient safety.

Most previous studies have primarily focused on classifying NG tube malposition. However, to enhance 
the model’s reliability and assist medical professionals in making informed decisions, it is crucial to not only 
provide information about malposition but also localize the NG tube. We addressed this need by integrating 
segmentation with classification. As a result, we not only obtained segmentation information but also achieved 
improved classification performance through this integration.

The utilization of Grad-CAMs provided valuable insights into the model’s decision-making process. Grad-
CAM activations demonstrated the model’s capability to correctly identify properly positioned tubes. However, 
challenges were observed in accurately identifying incomplete tubes, with some instances of the model being 
influenced by non-essential features. This highlights areas for further refinement, particularly in improving the 
model’s sensitivity to incomplete tubes.

Our study has several limitations. First, the segmentation performance for the NG tube tip is suboptimal, 
likely due to inconsistencies in its definition. Initially, we considered both the start and end of the tube as the 
tip, but in reality, the tip refers to the most distal visible point in X-ray images. This broad definition may have 
introduced ambiguity, making accurate segmentation more difficult. To address this issue, it is necessary to 
refine the annotation process by labeling only the clearly visible distal tip.

Second, the interpretability of the model’s decision-making process remains a challenge. While Grad-CAM 
was used to visualize the model’s attention, it sometimes highlights irrelevant regions, such as textual artifacts 
or non-essential structures in X-ray images. To address this, developing quantitative evaluation methods and 
considering strategies like bounding-box constraints or an auxiliary attention-gating network could help 
improve interpretability and reduce irrelevant focus. Additionally, alternative interpretability techniques such as 
self-attention visualization or feature attribution analysis could provide complementary insights.

Third,The difference in X-ray equipment across datasets may have contributed to the model’s performance 
degradation in the external test set. As shown in Table  1, the distribution of imaging manufacturers varies 
significantly between the training, validation, and external test datasets. This variation in imaging devices 
introduces a domain shift, which can negatively affect model generalizability. Previous research7 has 
demonstrated that model performance can be biased by differences in imaging equipment, further supporting 
the need to address this issue. Moreover, differences in imaging equipment can introduce bias not only in model 
performance but also in its interpretation of X-ray images. Variations in imaging conditions, such as contrast, 
resolution, and noise levels, may cause the model to learn spurious correlations rather than clinically relevant 
features, leading to systematic errors in decision-making. To mitigate this problem, future work should consider 
domain adaptation techniques or dataset augmentation strategies that account for variability in imaging sources, 
thereby reducing both performance degradation and interpretational bias.

Fourth, class imbalance in our dataset presents a significant challenge. The proportion of malpositioned 
NG tube cases is significantly lower than that of correctly positioned tubes, with an approximate ratio of 
7:1. This imbalance can lead to biased model predictions, particularly underrepresenting the minority class. 
Various approaches have been explored to address this issue, including uncertainty calibration, class-adaptive 
network calibration, and methods to correct overconfidence in dynamic neural networks. These techniques aim 
to enhance model reliability and improve performance in imbalanced settings. Future research should focus 
on developing more refined strategies to address class imbalance in medical imaging datasets and optimizing 
methods to improve model generalization in such challenging scenarios.

Fig. 3.  Prototype user interface for nasogastric tube positioning analysis.
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Fifth, our dual-stage model, which combines nnU-Net for segmentation and ResNet50 for classification, has 
demonstrated promising performance. nnU-Net was chosen for its automated preprocessing and optimization 
capabilities, providing strong baseline performance across various medical imaging tasks. However, future 
research should explore the potential benefits of evaluating the latest segmentation mode21–25 for further 
performance improvements. Additionally, integrating hybrid approaches that combine deep learning with 
traditional image processing techniques, such as edge detection or contour-based refinement, may further 
enhance segmentation accuracy.

Sixth, while our study focused on NG tube positioning, the proposed dual-stage approach can be extended 
to other types of lines and tubes, such as central venous catheters or endotracheal tubes. Given the structural 
similarities among these medical devices, our segmentation-classification framework could be adapted to assist 
in their localization and classification. Future work should explore this broader applicability, which could 
enhance the general utility of automated medical device detection in radiology.

To explore the clinical applicability of our research, we have developed a functional prototype available 
at https://ngtube.ziovision.ai. This prototype demonstrates the feasibility of automated NG tube positioning 
assistance and has the potential to improve accuracy, reduce interpretation time, and enhance clinical workflow 
efficiency. However, real-world deployment would require addressing key challenges such as PACS integration, 
computational efficiency, and data security. Future research should focus on optimizing model inference speed 
and developing seamless PACS connectivity to facilitate broader adoption in clinical settings.

Conclusion
Our study presents a novel approach for NG tube positioning, significantly improving the detection accuracy in 
chest radiographs through advanced segmentation and classification techniques. The developed model offers a 
valuable tool for healthcare professionals, contributing to improved patient care. Future research will explore the 
application of Vision Transformer models to capture global image characteristics and expand the dataset with 
advanced cross-validation methods to further enhance the model’s generalizability and reliability.

Data availability
Data are available upon request by the corresponding author along with improvement of the data review board.

Code availability
Code is available upon request by the corresponding author.
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