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In this paper, we deal with the (n+1)-dimensional generalized Kadomtsev-Petviashvili equation 
(dgKPE). This is an important model in nonlinear science, with applications in various fields. Its 
integrability and rich soliton dynamics continue to attract researchers interested in the field of 
nonlinear partial differential equations (NLPDEs). We are interested in the new auxiliary equation 
method (NAEM). We reduce the equation to an ordinary differential equation (ODE) with the help of an 
appropriate wave transformation and search for different types of soliton solutions. Additionally, we 
demonstrated the efficacy of the NAEM as a straightforward yet powerful mathematical instrument 
for handling challenging issues, highlighting its potential to resolve the challenging problems related 
to the study of nonlinear equations. This technique yields several types of solutions for (n+1)-dgKPE, 
including trigonometric, hyperbolic, shock wave, singular soliton, exponential, and rational functions. 
A range of graphs showcasing the results are reviewed, as well as the wave behavior for the solutions in 
different circumstances. The obtained data provide important information for studying hydrodynamic 
waves, plasma fluctuations, and optical solitons. They also aid in understanding the behavior of the 
KPE in different physical situations. We clarify in this article how the (n+1)-dgKPE, when combined with 
NAEM, can result in better data transmission rates, optimized optical systems, and the advancement 
of nonlinear optics toward more dependable and efficient communication technologies. The obtained 
information clarifies the equation and opens up new avenues for investigation. To our knowledge, 
for this equation, these methods of investigation have not been utilized before. The accuracy of each 
solution has been verified using the Maple software program.

Keywords  Mathematical model, (n+1)-dimensional generalized, Soliton solutions, New auxiliary equation 
method (NAEM)

Nonlinear phenomena are useful in many fields, such as physics, mathematics, science, and engineering. 
One of the most important tasks in the study of nonlinear science is the explicit solution of NLPDEs. Many 
integral strategies are commonly used by researchers to find soliton solutions for these equations. Some of 
the primary techniques employed in this process are covered in this presentation. The unified method1 , the 
Kudryashov method2,3 , the new extended auxiliary equation method4 , the Khater II (Khat II) method5 , the 
Jacobi elliptic wave function method6 , the modified sub-equation method7–9 , modifed exponential rational 
functional method10 , Lie symmetry analysis11,12 , the extended sinh-Gordon equation expansion method13 , the 
exp-function method14 , modified extended auxiliary equation mapping method15 , the modified F-expansion 
method16 , the unified Riccati equation expansion method17 and much more.

Solitons are phenomena that arise in some solutions of evolution equations and reflect a careful balance 
between dispersion effects and nonlinear interactions. The literature discusses various varieties of solitons, 
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such as lump, moving wave, single, and dark-bright solitons. A single-soliton solution, additionally known as 
a solitary wave, changes into one while maintaining its shape and speed throughout propagation when it is 
separated from other solitons18 .

This research indicates that numerous soliton-type wave solutions have been created for the (n+1)-dgKPE. 
Established thanks to Kadomtsev and Petviashvili19 , this equation was initially devised as a higher-dimensional 
expansion for the Korteweg-de Vries (KdV) equation to the examination of soliton solutions under modest 
transverse disturbances. Ever since it was introduced, the KPE has become the subject of numerous inquiries. 
By examining the integrability for the (n+1)-dgKPE, Xu and Wazwaz20 intended to offer a more thorough 
foundation for the traditional KPE.

This study focuses to the (n+1)-dgKPE20–22 :

	
(Φt + 2θ1ΦΦx1 + θ2Φx1x1x1 )x1

+ θ3Φx2x2 +
R∑

k=1

ΘkΦx1xk = 0.� (1)

In the aforementioned equation, Φ denotes a differentiable function taking into account the temporal variable 
t and the spatial variables x. R ≥ 2 is an integer. The subscripts in the formula indicate the partial derivatives 
of the functions. Xu and Wazwaz state that θ1, θ2, θ3, and Θk (k = 1, 2, 3 . . . R) are constant parameters20 . 
Among other domains, dynamics of fluids, plasma physics, and non-linear optics all heavily rely on the (n+1)-
dgKPE. Its exceptional adaptability for simulating multidimensional wave events substantially facilitates the 
study of a broad spectrum of physical systems. Because of its intricate mathematical structure and broad range 
of solutions, it is a crucial issue for researchers interested in mathematical science or nonlinear dynamics.

The KPE can be used to describe things like solitons, intricate wave interactions, and particles acting like 
particles. Its ability to depict and capture complex processes outside the scope of linear models is enhanced 
by its nonlinear characteristics. Therefore, the (n+1)-dgKPE is an especially powerful and insightful tool for 
examining complex behaviors in higher-dimensional scenarios.

The N-soliton solution and significant integrability features are shown by the (n+1)-dgKPE, as reported by 
Xu and Wazwaz’s study20 . Using the dual Bell polynomial technique and the singularity manifold analysis, 
the equation’s complete integrability is shown by Bäcklund transformations, the Painlevé property, a Lax pair, 
and an infinite number of conservation laws. Raza et al.21 concentrated their investigation on getting Auto-
Bäcklund transformations to the model via the extended homogeneous balance (HB) technique. They could also 
solve exponential functions by creating a bilinear Bäcklund transformation depending on the Hirota bilinear 
form. In addition, they looked at complexiton solutions for the KPE using the bilinear form and the extended 
transformed rational function approach.

This study emphasizes how new methods of problem-solving are required to identify the mathematical 
patterns that underlie actual physical systems. We offer an effective analytical method that generates novel and 
efficient wave solutions for the (n+1)-dgKPE via finite series expansion, demonstrating previously unreported 
outcomes. These techniques are useful resources for researchers working on complicated mathematical issues 
in various scientific domains. By offering efficient solutions, particularly for complex and high-dimensional 
systems, the proposed method addresses the constraints of the present approaches. In this sense, it provides 
useful and appropriate solutions to problems that are commonly found in the literature. Researchers can also 
create novel approaches and provide previous theories with more depth thanks to it.

This study is organized as follows: Sect. 2 gives a description of the NAEM. In Sect. 3, the offered method is 
applied to discover analytical solutions of the (n+1)-dgKPE. Comparisons are provided in Sect. 4. Numerical 
representations are given in Sect. 5 and Conclusions are presented in Sect. 6.

The NAEM
Consider the following NLPDE:

	 P (Φ, Φt, Φx1 , Φx2 , . . . , ΦR, . . . ) = 0,� (2)

where an unknown function with its partial derivatives given x1, x2, ..., xR and t is indicated by the expression 
Φ = Φ(x1, x2, ..., xR, t).

Thanks to the following wave transformation

	
Φ(x1, x2, ..., xR, t) = Q(ξ), ξ =

R∑
k=1

xk − wt,� (3)

Eq. (2) is reduced to an ordinary differential equation (ODE) as follows:

	 D(Q, Q′, Q′′, Q′′′, . . . ) = 0.� (4)

In Eq. (3), w is the wave speed.
The following will be the processes that are given for implementing the NAEM23 :
Step 1. Eq. (4) has the following solution form:
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Q(ξ) =

R∑
i=0

hiL
gi(ξ),� (5)

in which the real constants hi and the function g(ξ) satisfy the first-order ODE given by:

	
∂g(ξ)

∂ξ
=

(
µL−g(ξ) + y + λL−g(ξ))

ln (L) , L ̸= 1, L > 0.� (6)

Using λ, y, and µ are real constants, the application of Eq. (6) is described below:
Step 2. The principle of balance can be applied to Eq. (4) to determine the value of R.
Step 3. After Eq. (5) and its derivatives are inserted into Eq. (4) utilizing the wave transformation specified by 

Eq. (6), Lg(ξ) becomes a polynomial. A system of equations is created by simplifying and setting as terms to zero. 
Computer algebra programs like Maple software can solve this system of equations effectively. The analytical 
solutions to Eq. (4) are obtained by solving this system.

Step 4. Finally, by using the transformation method from Eq. (3) and the solutions discovered from Eq. 
(4), we discover a range for analytical solutions to Eq. (2). Determine the solutions to Eq. (6) by employing a 
particular method.

Type 1. If λ ̸= 0 and 4λµ − y2 < 0, then

	
Lg(ξ) = − y

2λ
+

√
4λµ − y2 tan

(√
4λµ−y2ξ

2

)

2λ
,
� (7)

	
Lg(ξ) = − y

2λ
−

√
4λµ − y2 cot

(√
4λµ−y2ξ

2

)

2λ
.
� (8)

Type 2. If λ ̸= 0 and 4λµ − y2 > 0, then

	
Lg(ξ) = − y

2λ
−

√
−4λµ + y2 tanh

(√
−4λµ+y2ξ

2

)

2λ
,
� (9)

	
Lg(ξ) = − y

2λ
−

√
−4λµ + y2 coth

(√
−4λµ+y2ξ

2

)

2λ
.
� (10)

Type 3. If −4µ2 − y2 < 0, λ = −µ and λ ̸= 0, then

	
Lg(ξ) = y

2µ
−

√
−4µ2 − y2 tan

(√
−4µ2−y2ξ

2

)

2µ
,
� (11)

	
Lg(ξ) = y

2µ
+

√
−4µ2 − y2 cot

(√
−4µ2−y2ξ

2

)

2µ
.
� (12)

Type 4. If 4µ2 + y2 > 0 and λ = −µ, then

	
Lg(ξ) = y

2µ
+

√
4µ2 + y2 tanh

(√
4µ2+y2ξ

2

)

2µ
,
� (13)

	
Lg(ξ) = y

2µ
+

√
4µ2 + y2 coth

(√
4µ2+y2ξ

2

)

2µ
.
� (14)

Type 5. If 4µ2 + y2 < 0 and λ = µ, then

	
Lg(ξ) = − y

2µ
+

√
4µ2 − y2 tan

(√
4µ2−y2ξ

2

)

2µ
,
� (15)

	
Lg(ξ) = − y

2µ
−

√
4µ2 − y2 cot

(√
4µ2−y2ξ

2

)

2µ
.
� (16)

Type 6. If −4µ2 + y2 > 0 and λ = µ, then
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Lg(ξ) = − y

2µ
−

√
−4µ2 + y2 tanh

(√
−4µ2+y2ξ

2

)

2µ
,
� (17)

	
Lg(ξ) = − y

2µ
−

√
−4µ2 + y2 coth

(√
−4µ2+y2ξ

2

)

2µ
.
� (18)

Type 7. If y2 = 4µλ, then

	
Lg(ξ) = −yξ + 2

2λξ
.� (19)

Type 8. If µλ < 0, λ ̸= 0 and y = 0, then

	
Lg(ξ) = −

√
−µ

λ
tanh

(√
−λµξ

)
,� (20)

	
Lg(ξ) = −

√
−µ

λ
coth

(√
−λµξ

)
.� (21)

Type 9. If µ = −λ and y = 0, then

	
Lg(ξ) = −1 + exp (−2λξ)

1 − exp (−2λξ) .� (22)

Type 10. If µ = λ = 0, then

	 Lg(ξ) = sinh (yξ) + cosh (yξ) .� (23)

Type 11. If µ = K = y and λ = 0, then

	 Lg(ξ) = exp(Kξ) − 1.� (24)

Type 12. If λ = K = y and µ = 0, then

	
Lg(ξ) = exp(Kξ)

1 − exp(Kξ) .� (25)

Type 13. If y = λ + µ, then

	
Lg(ξ) = −1 − µ exp ((µ − λ) ξ)

1 + λ exp ((µ − λ) ξ) .� (26)

Type 14. If y = −λ − µ, then

	
Lg(ξ) = exp ((µ − λ) ξ) − µ

exp ((µ − λ) ξ) − λ
.� (27)

Type 15. If µ = 0, then

	
Lg(ξ) = y exp (yξ)

1 − λ exp (yξ) .� (28)

Type 16. If λ = y = µ ̸= 0, then

	
Lg(ξ) =

√
3 tan

( √
3µξ
2

)

2 − 1
2 .

� (29)

Type 17. If λ = y = 0, then

	 Lg(ξ) = µξ.� (30)

Type 18. If µ = y = 0, then

	
Lg(ξ) = − 1

λξ
.� (31)
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Type 19. If µ = λ and y = 0, then

	 Lg(ξ) = tan (µξ) .� (32)

Type 20. If λ = 0, then

	
Lg(ξ) = exp (yξ) − n

l
.� (33)

Here l and n are named deformation parameters and they are positive.

Extraction of soliton solutions
In this section, we develop the analytic solutions of the Eq. (1) using the NAEM.

Consider the following transformation:

	
Φ(x1, x2, ..., xR, t) = Q(ξ), ξ =

R∑
k=1

xk − wt.� (34)

Substituting Eq. (34) into the Eq. (1), we get

	

(
−wQ′ + 2θ1QQ′ + θ2Q′′′)′ + θ3Q′′ +

R∑
k=1

ΘkQ′′ = 0.� (35)

Here, θ1, θ2, θ3 and Θk(k = 1, 2, 3 . . . , R) denote constant parameters. We integrate Eq. (35) twice concerning 
the variable ξ, assuming that the constants of integration are zero, to arrive at the following result:

	

(
θ3 − w +

R∑
k=1

Θk

)
Q + θ1Q2 + θ2Q′′ = 0.� (36)

Implementing the NAEM
In the event that Q2 and Q′′ are balanced, R = 2 will be the outcome. Using Eq. (5), we obtain

	 Q(ξ) = h0 + h1Lg(ξ) + h2
(
Lg(ξ))2

.� (37)

Let m =
R∑

k=1
Θk  to simplify things. We derive the subsequent algebraic equations:

	




(
Lg(ξ))4

: 6λ2h2θ2 + h2
2θ1 = 0,

(
Lg(ξ))3

: 2λ2h1θ2 + 10λyh2θ2 + 2h2θ1h1 = 0,
(
Lg(ξ))2

: 8h2λµθ2 + 3yλh1θ2 + 4h2y2θ2 + 2h0h2θ1 + θ1h2
1 + mh2 − wh2 + h2θ3 = 0,

(
Lg(ξ))1

: 2λµh1θ2 + 6h2yµθ2 + y2h1θ2 + 2h0h1θ1 + mh1 − wh1 + h1θ3 = 0,
(
Lg(ξ))0

: 2θ2h2µ2 + θ2h1µy + θ1h2
0 + mh0 − wh0 + θ3h0 = 0.

� (38)

We find two clusters of solutions by solving the Eq. (38):
Cluster 1.

	

{
w = −4λµθ2 + y2θ2 + m + θ3, h0 = −6λµθ2

θ1
, h1 = −6λyθ2

θ1
, h2 = −6λ2θ2

θ1
.

}
� (39)

Eq. (1) is solved for the cases covered in the preceding section by using Eqs. (7)–(33) in conjunction with Eqs. 
(34) and (37). The following solutions occur in this situation:

Type 1. If λ ̸= 0 and 4λµ − y2 < 0, then the next trigonometric solutions are obtained:

	
Φ01 (x1, x2, ..., xR, t) = −

3θ2

(
tan

(√
4λµ−y2ξ

2

)2
+ 1

) (
4λµ − y2)

2θ1
,

� (40)

	
Φ02 (x1, x2, ..., xR, t) = −

3θ2

(
cot

(√
4λµ−y2ξ

2

)2
+ 1

) (
4λµ − y2)

2θ1
.

� (41)

Scientific Reports |        (2025) 15:14542 5| https://doi.org/10.1038/s41598-025-99080-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Type 2. If λ ̸= 0 and 4λµ − y2 > 0, then the subsequent shock solution is expressed:

	
Φ03 (x1, x2, ..., xR, t) =

3θ2

(
tanh

(√
−4λµ+y2ξ

2

)2
− 1

) (
4λµ − y2)

2θ1
.
� (42)

The singular solution is discovered as:

	
Φ04 (x1, x2, ..., xR, t) =

3θ2

(
coth

(√
−4λµ+y2ξ

2

)2
− 1

) (
4λµ − y2)

2θ1
.
� (43)

Type 3. If −4µ2 − y2 < 0, λ = −µ and λ ̸= 0, then the following trigonometric solutions are obtained:

	

Φ05 (x1, x2, ..., xR, t) = −3θ2λ

θ1µ2




−
λ

(
4µ2 + y2)

tan
(√

−4µ2−y2ξ

2

)2

2

+ µy2 + λy2

2 + 2µ3

− y
√

−4µ2 − y2 (λ + µ) tan

(√
−4µ2 − y2ξ

2

)




, � (44)

	

Φ06 (x1, x2, ..., xR, t) = −3θ2λ

θ1µ2




−
λ

(
4µ2 + y2)

cot
(√

−4µ2−y2ξ

2

)2

2

+ µy2 + λy2

2 + 2µ3

− y
√

−4µ2 − y2 (λ + µ) cot

(√
−4µ2 − y2ξ

2

)




. � (45)

Type 4. If 4µ2 + y2 > 0 and λ = −µ, then the next shock wave solution is found:

	

Φ07 (x1, x2, ..., xR, t) = −3θ2λ

θ1µ2




λ
(
4µ2 + y2)

tanh
(√

4µ2+y2ξ

2

)2

2

+ µy2 + λy2

2 + 2µ3

+ y
√

4µ2 + y2 (λ + µ) tanh

(√
4µ2 + y2ξ

2

)




. � (46)

The singular solution is reached as:

	

Φ08 (x1, x2, ..., xR, t) = −3θ2λ

θ1µ2




λ
(
4µ2 + y2)

coth
(√

4µ2+y2ξ

2

)2

2

+ µy2 + λy2

2 + 2µ3

+ y
√

4µ2 + y2 (λ + µ) coth

(√
4µ2 + y2ξ

2

)




. � (47)

Type 5. If 4µ2 + y2 < 0 and λ = µ, then the subsequent trigonometric solutions are obtained:

	

Φ09 (x1, x2, ..., xR, t) = 3θ2λ

θ1µ2




λ

(
y2

2 − 2µ2
)

tan

(√
4µ2 − y2ξ

2

)2

+ µy2 − λy2

2 − 2µ3

− y
√

4µ2 − y2 (−λ + µ) tan

(√
4µ2 − y2ξ

2

)




,� (48)
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Φ10 (x1, x2, ..., xR, t) = 3θ2λ

θ1µ2




λ

(
y2

2 − 2µ2
)

cot

(√
4µ2 − y2ξ

2

)2

+ µy2 − λy2

2 − 2µ3

− y
√

4µ2 − y2 (−λ + µ) cot

(√
4µ2 − y2ξ

2

)




.� (49)

Type 6. If −4µ2 + y2 > 0 and λ = µ, then the following shock wave solution is attained:

	

Φ11 (x1, x2, ..., xR, t) = 3θ2λ

θ1µ2




λ

(
−y2

2 + 2µ2
)

tanh

(√
−4µ2 + y2ξ

2

)2

+ µy2 − λy2

2 − 2µ3

+ y
√

−4µ2 + y2 (−λ + µ) tanh

(√
−4µ2 + y2ξ

2

)




. � (50)

The singular solution is discovered as:

	

Φ12 (x1, x2, ..., xR, t) = 3θ2λ

θ1µ2




λ

(
−y2

2 + 2µ2
)

coth

(√
−4µ2 + y2ξ

2

)2

+ µy2 − λy2

2 − 2µ3

+ y
√

−4µ2 + y2 (−λ + µ) coth

(√
−4µ2 + y2ξ

2

)




. � (51)

Type 7. If y2 = 4µλ, then the next only one solution is given:

	
Φ13 (x1, x2, ..., xR, t) = −

3θ2
(
4λµξ2 − ξ2y2 + 4

)
2θ1ξ2 . � (52)

Type 8. If µλ < 0, λ ̸= 0 and y = 0, then the subsequent shock wave solution is reached:

	
Φ14 (x1, x2, ..., xR, t) =

6λθ2

(√
− µ

λ
tanh

(√
−λµξ

)
y + tanh

(√
−λµξ

)2
µ − µ

)

θ1
.

� (53)

The singular wave solution is attained as:

	
Φ15 (x1, x2, ..., xR, t) =

6λθ2

(√
− µ

λ
coth

(√
−λµξ

)
y + coth

(√
−λµξ

)2
µ − µ

)

θ1
.

� (54)

Type 9. If µ = −λ and y = 0, then the next plane solution is obtained:

	
Φ16 (x1, x2, ..., xR, t) = −6θ2λ ((λ + µ + y) exp (−4λξ) + (2λ − 2µ) exp (−2λξ) − y + λ + µ)

θ1(−1 + exp (−2λξ))2 . � (55)

Type 10. If µ = λ = 0, then the subsequent mixed hyperbolic solutions are found:

	
Φ17 (x1, x2, ..., xR, t) = −

6
(
2 cosh (yξ)2λ + (2λ sinh (yξ) + y) cosh (yξ) + y sinh (yξ) + µ − λ

)
θ2λ

θ1
. � (56)

Type 11. If µ = K = y and λ = 0, then the following plane solution is obtained:

	
Φ18 (x1, x2, ..., xR, t) = −6 ((λ + µ − y) exp (2Kξ) + (y − 2µ) exp (Kξ) + µ) θ2λ

θ1(−1 + exp (Kξ))2 . � (57)

Type 12. If λ = K = y and µ = 0, then the next plane solution is found:
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Φ19 (x1, x2, ..., xR, t) = − λ2θ2exp (Kξ)

θ1 (−1 + exp(Kξ))2 . � (58)

Type 13. If y = λ + µ, then the subsequent plane solution is reached:

	
Φ20 (x1, x2, ..., xR, t) =

6




λµ (y − µ − λ) exp (−2 (λ − µ) ξ)
+ ((−y + 4µ) λ − yµ) exp ((−λ + µ) ξ)
+ y − µ − λ


 θ2λ

θ1 (exp ((−λ + µ) ξ) λ − 1)2 .

� (59)

Type 14. If y = −λ − µ, then the following plane solution is attained:

	
Φ21 (x1, x2, ..., xR, t) = −

6




(y + µ + λ) exp (−2 (λ − µ) ξ)
+ µλ (y + µ + λ)
+ ((−y − 4µ) λ − yµ) exp ((−λ + µ) ξ)


 θ2λ

θ1 (− exp ((−λ + µ) ξ) + λ)2 .

� (60)

Type 15. If µ = 0, then the next plane solution is discovered:

	
Φ22 (x1, x2, ..., xR, t) = −

6
(
exp (2yξ) λ2µ +

(
−2λµ + y2)

exp (yξ) + µ
)

θ2λ

θ1(exp (yξ) − 1)2 . � (61)

Type 16. If λ = y = µ ̸= 0, then the subsequent trigonometric solutions is given:

	
Φ23 (x1, x2, ..., xR, t) = −

3θ2

(
3 tan

( √
3µξ
2

)2
λ

2 +
√

3 (y − λ) tan
( √

3µξ
2

)
− y + 2µ + λ

2

)
λ

θ1
.

� (62)

Type 17. If λ = y = 0, then the following only one solution is yield:

	
Φ24 (x1, x2, ..., xR, t) = −

6λµθ2
(
λµξ2 + yξ + 1

)
θ1

. � (63)

Type 18. If µ = y = 0, then the next only one solution is obtained:

	
Φ25 (x1, x2, ..., xR, t) = −

6θ2
(
λµξ2 − yξ + 1

)
θ1ξ2 . � (64)

Type 19. If µ = λ and y = 0, then the subsequent trigonometric solutions is discovered:

	
Φ26 (x1, x2, ..., xR, t) = −

6λθ2
(
tan (µξ)2λ + tan (µξ) y + µ

)
θ1

. � (65)

Type 20. If λ = 0, then the following plane solution is reached:

	
Φ27 (x1, x2, ..., xR, t) = −

6λθ2
(
exp (2yξ) l2λ + exp (yξ) l2y − 2 exp (yξ) lλn + µl2 − ln y + λn2)

θ1l2 . � (66)

Note: For solutions Eqs. (40)–(66), ξ is given by ξ =
R∑

k=1
xk −

(
−4λµθ2 + y2θ2 + m + θ3

)
t.

Cluster 2.

	

{
w = 4λµθ2 − y2θ2 + m + θ3, h0 = −

(
2λµ + y2)

θ2

θ1
, h1 = −6λyθ2

θ1
, h2 = −6λ2θ2

θ1
.

}

Utilizing the above parameters, we construct the following solutions:
Type 1. If λ ̸= 0 and 4λµ − y2 < 0, then we get

	
Φ28 (x1, x2, ..., xR, t) = −

θ2

(
3 tan

(√
4λµ−y2ξ

2

)2
+ 1

) (
4λµ − y2)

2θ1
,
� (67)
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Φ29 (x1, x2, ..., xR, t) = −

θ2

(
cot

(√
4λµ−y2ξ

2

)2
+ 1

) (
4λµ − y2)

2θ1
.
� (68)

Type 2. If λ ̸= 0 and 4λµ − y2 > 0, then we obtain

	
Φ30 (x1, x2, ..., xR, t) =

θ2

(
3 tanh

(√
−4λµ+y2ξ

2

)2
− 1

) (
4λµ − y2)

2θ1
,
� (69)

	
Φ31 (x1, x2, ..., xR, t) =

θ2

(
3 coth

(√
−4λµ+y2ξ

2

)2
− 1

) (
4λµ − y2)

2θ1
.
� (70)

Type 3. If −4µ2 − y2 < 0, λ = −µ and λ ̸= 0, then we reach

	
Φ32 (x1, x2, ..., xR, t) = −

θ2




−
3λ

(
4µ2 + y2)

tan
(√

−4µ2−y2ξ

2

)2

2

+ µ2y2 + 3λ2y2

2 +
(
2µ3 + 3µy2)

λ

+ 3yλ
√

−4µ2 − y2 (λ + µ) tan

(√
−4µ2 − y2ξ

2

)




θ1µ2 ,

� (71)

	
Φ33 (x1, x2, ..., xR, t) = −

θ2




−
3λ

(
4µ2 + y2)

cot
(√

−4µ2−y2ξ

2

)2

2

+ µ2y2 + 3λ2y2

2 +
(
2µ3 + 3µy2)

λ

− 3yλ
√

−4µ2 − y2 (λ + µ) cot

(√
−4µ2 − y2ξ

2

)




θ1µ2 .

� (72)

Type 4. If 4µ2 + y2 > 0 and λ = −µ, then we discover

	
Φ34 (x1, x2, ..., xR, t) = −

θ2




3λ2 (
4µ2 + y2)

tanh
(√

4µ2+y2ξ

2

)2

2

+ µ2y2 + 3λ2y2

2 +
(
2µ3 + 3µy2)

λ

+ 3yλ
√

4µ2 + y2 (λ + µ) tanh

(√
4µ2 + y2ξ

2

)




θ1µ2 ,

� (73)

	
Φ35 (x1, x2, ..., xR, t) = −

θ2




3λ2 (
4µ2 + y2)

coth
(√

4µ2+y2ξ

2

)2

2

+ µ2y2 + 3λ2y2

2
+

(
2µ3 + 3µy2)

λ

+ 3yλ
√

4µ2 + y2 (λ + µ) coth

(√
4µ2 + y2ξ

2

)




θ1µ2 .

� (74)

Type 5. If 4µ2 + y2 < 0 and λ = µ, then we find
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Φ36 (x1, x2, ..., xR, t) = −

θ2




λ2
(

−3y2

2 + 6µ2
)

tan

(√
4µ2 − y2ξ

2

)2

+ µ2y2 + 3λ2y2

2 +
(
2µ3 − 3µy2)

λ

+ 3λy
√

4µ2 − y2 (−λ + µ) tan

(√
4µ2 − y2ξ

2

)




θ1µ2 ,

� (75)

	
Φ37 (x1, x2, ..., xR, t) = −

θ2




λ2
(

−3y2

2 + 6µ2
)

cot

(√
4µ2 − y2ξ

2

)2

+ µ2y2 + 3λ2y2

2 +
(
2µ3 − 3µy2)

λ

− 3λy
√

4µ2 − y2 (−λ + µ) cot

(√
4µ2 − y2ξ

2

)




θ1µ2 .

� (76)

Type 6. If −4µ2 + y2 > 0 and λ = µ, then we get

	
Φ38 (x1, x2, ..., xR, t) = −

θ2




λ2
(

3y2

2 − 6µ2
)

tanh

(√
−4µ2 + y2ξ

2

)2

+ µ2y2 + 3λ2y2

2 +
(
2µ3 − 3µy2)

λ

− 3λy
√

−4µ2 + y2 (−λ + µ) tanh

(√
−4µ2 + y2ξ

2

)




θ1µ2 ,

� (77)

	
Φ39 (x1, x2, ..., xR, t) = −

θ2




λ2
(

3y2

2 − 6µ2
)

coth

(√
−4µ2 + y2ξ

2

)2

+ µ2y2 + 3λ2y2

2 +
(
2µ3 − 3µy2)

λ

− 3λy
√

−4µ2 + y2 (−λ + µ) coth

(√
−4µ2 + y2ξ

2

)




θ1µ2 .

� (78)

Type 7. If y2 = 4µλ, then we attain

	
Φ40 (x1, x2, ..., xR, t) = −

θ2
(
4λµξ2 − ξ2y2 + 12

)
2θ1ξ2 . � (79)

Type 8. If µλ < 0, λ ̸= 0 and y = 0, then we discover

	
Φ41 (x1, x2, ..., xR, t) =

θ2

(
6λy

√
− µ

λ
tanh

(√
−λµξ

)
+ 6λµ tanh

(√
−λµξ

)2 − 2λµ − y2
)

θ1
,
� (80)

	
Φ42 (x1, x2, ..., xR, t) =

θ2

(
6λy

√
− µ

λ
coth

(√
−λµξ

)
+ 6λµ coth

(√
−λµξ

)2 − 2λµ − y2
)

θ1
.
� (81)

Type 9. If µ = −λ and y = 0, then we yield

	
Φ43 (x1, x2, ..., xR, t) = −

θ2




(
6λ2 + 2 (3y + µ) λ + y2)

exp (−4λξ)

+ 2
(
6λ2 − 2λµ − y2)

exp (−2λξ)

+ 6λ2 + 2 (−3y + µ) λ + y2




θ1 (−1 + exp (−2λξ))2 .

� (82)
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Type 10. If µ = λ = 0, then we have

	
Φ44 (x1, x2, ..., xR, t) = −

(
12 cosh2 (yξ) λ2 + 6λ (2λ sinh (yξ) + y) cosh (yξ)
+ 6λy sinh (yξ) + y2 + 2λµ − 6λ2

)
θ2

θ1
.

� (83)

Type 11. If µ = K = y and λ = 0, then we reach

	
Φ45 (x1, x2, ..., xR, t) =

2




(
−3λ2 + (3y − µ) λ − y2

2

)
exp (2Kξ)

+
(
(−3y + 2µ) λ + y2)

exp (Kξ)

− y2

2 − λµ




θ2

θ1 (−1 + exp (Kξ))2 .

� (84)

Type 12. If λ = K = y and µ = 0, then we obtain

	
Φ46 (x1, x2, ..., xR, t) = −

λ2θ2
(
exp(λξ)2 + 4exp(λξ) + 1

)

θ1 (−1 + exp(λξ))2 . � (85)

Type 13. If y = λ + µ, then we have

	
Φ47 (x1, x2, ..., xR, t) = −




λ2 (
2λµ + 6µ2 − 6yµ + y2)

exp (−2 (λ − µ) ξ)
− 2λ ((−3y + 8µ) λ + y (y − 3µ)) exp ((−λ + µ) ξ)
+ 6λ2 + (−6y + 2µ) λ + y2


 θ2

θ1 (λ exp ((−λ + µ) ξ) − 1)2 .

� (86)

Type 14. If y = −λ − µ, then we obtain

	
Φ48 (x1, x2, ..., xR, t) = −




λ2 (
6λ2 + (2µ + 6y) λ + y2)

exp (−2 (λ − µ) ξ)
+ ((−6y − 16µ) λ − 2y (y + 3µ)) exp ((−λ + µ) ξ)
+

(
6µ2 + (6y + 2µ) λ + y2)

λ


 θ2

θ1 (− exp ((−λ + µ) ξ) + λ)2 .

� (87)

Type 15. If µ = 0, then we get

	
Φ49 (x1, x2, ..., xR, t) = −




2λ3µ exp (2yξ) + λ2y2 exp (2yξ)
− 4λ2 exp (yξ) + 4λy2 exp (yξ)
+ 2λµ + y2


 θ2

θ1 (λ exp (yξ) − 1)2 .

� (88)

Type 16. If λ = y = µ ̸= 0, then we reach

	
Φ50 (x1, x2, ..., xR, t) = −

θ2




9 tan2
( √

3µξ
2

)
λ2

2

+ 3λ
√

3 (y − λ) tan
(√

3µξ

2

)

+ (−3y + 2µ) λ + 3λ2

2 + y2




θ1
.

� (89)

Type 17. If λ = y = 0, then we attain

	
Φ51 (x1, x2, ..., xR, t) = −

θ2
(
6λ2µ2ξ2 + 6λµξy + 2λµ + y2)

θ1
. � (90)

Type 18. If µ = y = 0, then we yield
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Φ52 (x1, x2, ..., xR, t) = −

θ2
(
2λµξ2 + ξ2y2 − 6yξ + 6

)
θ1ξ2 . � (91)

Type 19. If µ = λ and y = 0, then we have

	
Φ53 (x1, x2, ..., xR, t) = −

θ2
(
6λ2 tan (λµ)2 + 6yλ tan (λµ) + 2λµ + y2)

θ1
. � (92)

Type 20. If λ = 0, then we obtain

	
Φ54 (x1, x2, ..., xR, t) = −

θ2




6 exp (2yξ) l2λ2 + 6 exp (yξ) l2λy

− 12 exp (yξ) lλ2n + 2µλl2

+ l2y2 − 6lλny + 6λ2n2




θ1l2 .

� (93)

For solutions Eqs. (67)–(93), ξ is given by ξ =
R∑

k=1
xk −

(
4λµθ2 − y2θ2 + m + θ3

)
t.

Comparisons
In this section, we will emphasize the importance of our proposed method. Xu and Wazwaz20 examined the 
governing model and used the binary Bell polynomial method and singularity manifold analysis to find several 
analytical solutions. Even though they resulted in distinct wave models, our proposed method changes this 
approach to give a range of innovative soliton solutions, including plane, shock, singular, mixed trigonometric, 
and mixed hyperbolic types. We show the novelty and improvement of our results, which present novel solutions 
never published before, by comparing them with those of Xu and Wazwaz20. These groundbreaking findings 
have important implications for the mathematics of physics and nonlinear optics as well as new directions to 
study higher-order PDEs. Our contributions provide a comprehensive and influential investigation of soliton 
solutions and their various wave phenomena.

Numerical representations
This part includes a detailed explanation of our findings using 3D and 2D figures, as well as a comprehensive 
analysis of density plots through parameter adjustments. The assumption used to generate graphs is that 
x2, ..., xM = 0. In the past few years, a wide range of fields have shown a great deal of interest in the research 
of analytical solutions for NLPDEs and modeling of solitary wave phenomena, particularly optical science, 
plasma physics, and the biological sciences. We provide a study that looks at the physical characteristics of these 
solutions and considers their uses.

The research data highlight several noteworthy physical properties. The transformations selected for the 
variables and coefficients are essential to understanding the model’s analytical solutions as well as their practical 
applications. These results suggest that different types of solitary wave solutions are generated in optical fibers 
by maintaining the form and speed of the waves during propagation while balancing nonlinear interactions and 
dispersive effects. By carefully choosing the settings, these solitons can be handled effectively.

Conclusions
This work aims at the (n+1)-dgKPE, which describes a wide variety of applications in a variety of physical 
systems, including fluid physics, plasma physics, Bose-Einstein condensates, and optical fibers. In this study 
we used NAEM. Numerous soliton solutions, including singular periodic wave solutions, shock wave solutions, 
mixed trigonometric solutions, exponential function solutions, and hyperbolic solutions, were obtained as 
possible results of the NAEM. 3D, 2D, and density plots that enhance the visualization of the solution set under 
various parameter changes, Fig. 1, 2, 3, 4, and 5 supporting the main results of the study. Figure 1 shows that 
we achieve a bright soliton for the trigonometric function solution Eq. (40) for different parameter values, 
while Figure 2 shows that we find a kink soliton solution for the shock wave solution Eq. (50). Figure 3 shows 
that we attain a periodic soliton for the singular wave solution of Eq. (54). Figure 4 shows the existence of the 
dark soliton, which is observed as a plane solution in the solution of Eq. (57). Figure 5 shows that we attain a 
plane solution for the bright soliton solution of Eq. (59). A thorough overview of the solutions was given by 
these graphs. Appropriate parameter values are essential to avoiding infinities and achieving realistic findings, 
which are necessary for physically meaningful results. Furthermore included is a comparison of the outcomes. 
In addition to its many uses in simulating the propagation and interaction of soliton waves, (n+1)-dgKPE is 
essential for comprehending wave behavior in fluid dynamics, plasma physics, and optical fibers. The (n+1)-
dgKPE solutions that are developed in this context serve as a crucial foundation for future study and applications 
in related domains and aid in our understanding and control of complicated dynamics in physical systems. 
Efficient approaches have been employed in several investigations to get analytic solutions, and the resulting 
outcomes have made significant contributions to both mathematics and physics. When the findings are displayed 
visually and are the subject of comparison analysis, these investigations are more thorough and accurate. Future 
studies could examine the various behaviors of these solutions and the effects of other parameters or approaches 
on the proposed model to discover novel phenomena.
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Fig. 3.  A graphical depiction of Φ15(x1, t) for Eq. (54) is shown, (a) 3D plot, (b) 2D plot, and (c) density plot 
when λ = 1, θ3 = 1, θ2 = 1, m=1, θ1 = 1, µ = 1, y = 1.

 

Fig. 2.  A graphical depiction of Φ11(x1, t) for Eq. (50) is shown, (a) 3D plot, (b) 2D plot, and (c) density plot 
when θ3 = 1.5, θ2 = 2, λ = 2, m=1, θ1 = 1, µ = 2, y = 5.

 

Fig. 1.  Visual interpretations of solution Φ01(x1, t) for Eq. (40) is presented. (a) 3D plot, (b) 2D plot, and (c) 
density plot, where θ3 = 3, θ2 = 2, λ = 2, m = 10, θ1 = 1, µ = 3, y = 5.
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