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Most cancers are genetically and phenotypically heterogeneous. This includes subpopulations of 
cells with different levels of sensitivity to chemotherapy, which may lead to treatment failure as 
the more resistant cells can survive drug treatment and continue to proliferate. While the genetic 
basis of resistance to many drugs is relatively well characterised, non-genetic factors are much less 
understood. Here we investigate the role of non-genetic, phenotypic heterogeneity in the response 
of glioblastoma cancer cells to the drug temozolomide (TMZ) often used to treat this type of cancer. 
Using a combination of live imaging, machine-learning image analysis and agent-based modelling, we 
show that even if all cells share the same genetic background, individual cells respond differently to 
TMZ. We quantitatively characterise this response by measuring the doubling time, lifespan, cell cycle 
phase, area and motility of cells, and determine how these quantities correlate with each other as well 
as between the mother and daughter cell. We also show that these responses do not correlate with the 
cellular level of the enzyme MGMT which has been implicated in the response to TMZ.
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Cancer is a disease in which genetic or epigenetic alterations cause cells to proliferate in an uncontrolled way. 
While many cancers can be attributed to extrinsic factors (smoking, radiation, exposure to UV), more than half 
are thought to be “bad luck” caused by errors during DNA replication1,2.

One of the most common modes of cancer treatment, alongside surgery and radiotherapy, is chemotherapy. 
Traditional (non-targeted) cytotoxic chemotherapy works because cancer cells have a different proliferation or 
drug uptake rate compared to normal cells, and are thus more susceptible to the drug3. By carefully adjusting the 
drug dose, cancer cells can be eliminated while minimising the effect on healthy cells. However, the difference 
between a dose toxic to cancer cells and a dose toxic to normal cells is often small, and even a minor increase 
in the resistance of cancer cells or the existence of a slightly more resistant subpopulation can lead to treatment 
failure. Resistance to anticancer drugs can come about in different ways4 such as genetic mutations which lead 
to decreased drug uptake, increased drug efflux, changes in metabolism, or cell death inhibition5. Resistance 
can also be caused by tumour microenvironment – a complex network of interactions between cancer cells and 
the surrounding normal tissue6–8. All these mechanisms can lead to substantial heterogeneity in the response of 
different cells within the tumour to chemotherapy.

Although we now have a very good understanding of genetic heterogeneity in cancer9–15, this is not paralleled 
by the understanding of non-genetic mechanisms that cause diverse phenotypic responses to drugs. In general, 
many different mechanisms can cause phenotypic diversity in eukaryotic cells. Two of them, stochasticity in 
gene expression16  and epigenetic regulation via chromatin modifications17, are particularly well established. 
However, their effect on cancer chemotherapy is not entirely clear.

Phenotypic diversity and its relationship to therapeutic response has been investigated in glioblastoma 
multiforme (GBM), an aggressive brain cancer. GBM is usually treated with surgery, followed by adjuvant 
radio- and/or chemotherapy. Chemotherapy typically involves alkylating agents such as temozolomide (TMZ) 
or carmustine (also called BCNU). In particular, TMZ adds methyl groups to guanine in the DNA; an attempt 
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by the cell to repair damaged base pairs sometimes leads to DNA double-strand breaks occurring during cell 
replication. A large number of methyl adducts thus leads to DNA fragmentation and cell death18. However, cells 
express the enzyme MGMT (O-6-methylguanine-DNA methyltransferase) which removes methyl groups from 
guanine19. Early studies demonstrated that MGMT promoter CpG methylation (natural regulatory mechanism, 
different to TMZ- induced methylation), which reduces the expression of MGMT, correlates with better treatment 
outcome in TMZ chemotherapy20. Indeed, MGMT promoter methylation predicts TMZ sensitivity in in vitro 
clonogenic assays21. However, it seems that MGMT promoter methylation is not the only factor; the authors 
of22 have shown that while there is heterogeneity in MGMT promoter methylation in tumours, it does not 
fully correlate with MGMT expression. They have also detected genetic mutations in other pathways implicated 
in resistance to TMZ. A recent analysis of single cells harvested from GBM tumours showed the presence of 
many genetic and epigenetic alterations, and demonstrated that individual clones responded differently to TMZ, 
which could at least partially be explained by epigenetic alterations in regulatory regions of relevant genes23.

In this work, we characterise the response of single glioblastoma cells to TMZ. We culture the cells in 
vitro, expose them to TMZ, and optically monitor their behaviour. Taking the advantage of machine-learning 
approaches to phenotyping24, we track individual cells and perform quantitative analysis of their behaviour. We 
confirm that there is significant heterogeneity in cell phenotype (division rate, motility, death rate). We then 
investigate the hypothesis that phenotypic, non-genetic heterogeneity in MGMT expression can cause different 
cells to respond differently to TMZ. Using a fluorescently-tagged MGMT, we show that there is no correlation 
between the intracellular concentration of MGMT and cell fate. We conclude that other mechanisms that do 
not involve MGMT may be more relevant for the observed diversity in the sensitivity of genetically-identical 
glioblastoma cells to TMZ.

Results
To investigate the response of glioblastoma cells to temozolomide (TMZ), we used the U-87 MG cell line25. We 
first performed a clonogenic assay to select an appropriate range of TMZ concentrations for subsequent live-
imaging experiments (SI Fig. S1A). The assay showed that the proportion of cells surviving TMZ treatment was 
close to zero for 500 µM TMZ whereas 10 µM was sufficient to cause a detectable reduction in proliferation. 
Based on this result, we selected 0, 10, and 500 µM TMZ as the control, low, and high TMZ concentrations. For 
reference, 10 µM is typical and 50 µM is at the upper end of what has been measured in vivo following TMZ 
chemotherapy, but some in vitro studies use concentrations higher than 500 µM26,27.

The design of live-imaging experiments is schematically shown in Fig. 1A. We seeded U-87 MG cells in a 24-
well plate. After an initial incubation period (16 h), we replaced the cell culture medium with the same medium 
containing different concentrations of TMZ (0, 10 or 500 µM), and imaged the cells for up to 150 h using a wide-
field epi-fluorescent microscope. We then used machine-learning image segmentation to count the number of 
cells N (t) at each time point t. Figure 1B shows the fold-change N (t) /N (0) (t =0 h corresponding to when 
TMZ was added) for the control (DMSO without TMZ) and TMZ-treated populations. The control population 
continues to grow at all times. In contrast, growth slows down in TMZ-treated populations and eventually 
approaches zero net growth for 500 µM TMZ.

The cells showed a delayed response to TMZ. Although this has been anticipated based on the known 
mechanism of action of TMZ28, the response was somewhat faster than expected. Previous research29 suggested 
that TMZ should lead to cell death during the 2nd replication cycle since the TMZ exposure. We observed 
reduced growth after less than one doubling time (Fig. 1B), which may confirm recent suggestions30 that DNA 

Fig. 1.  (A) Schematic of the live-imaging experiment. Cells are incubated in the wells of a 24-well plate and 
imaged through the bottom. Multiple fields of view (FOV) are acquired to cover a large fraction of each well. 
Imaged cells are detected using a machine-learning segmentation algorithm. (B) Growth curves (fold change 
as a function of time) of U-87 MG treated with different concentrations of TMZ. The exponential growth rate 
of the control population is 0.02 h−1, which corresponds to the population doubling time 35 ± 1 h. The inset 
shows a zoomed-in version of the same plot, in linear scale. All curves represent averages of n = 3 replicates, 
error bars = standard error of mean (SEM).
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methylation is not the only mechanism of TMZ-induced cytotoxicity, or that other forms of DNA damage 
manifest much earlier through, e.g., cell cycle arrest.

A reduction in the growth rate was also observed if TMZ-containing medium was replaced with no-drug 
medium after 2 h (SI Fig. S1C), whereas a slightly weaker but very similar response was induced by treating 
cells with TMZ for only 30 min (SI Fig. S1D). This is consistent with the drug half-life of about 2 h31, hence 
the effective exposure time to TMZ is very short even if the drug is not replaced by the drug-free medium. 
Curiously, the response seen in SI Fig. S1C is stronger than that in Fig. 1B – we attribute this to slightly different 
experimental conditions (see Materials and Methods and the caption of Fig. S1C).

To elucidate the effect of TMZ on individual cells, we tracked the cells and reconstructed cell relatedness 
from the tracking data (Fig. 2A). Figure 2BC shows the per-cell birth and the death rate as a function of time, 
for the control and 500 µM TMZ populations. In agreement with population-wide results, we observe that cells 
continue to divide in the control population; the average birth rate is about 0.035 h−1, and the death rate is about 
0.003 h−1 initially, and increases to about 0.013 h−1 towards the end of the experiment. The difference between 
the birth and death rates is very close to the exponential growth rate 0.02 h−1 from Fig. 1B. The TMZ-treated cells 
replicate initially with the same rate as the control cells, but growth slows down significantly after the first 24 h. 
Figure 2C shows that the death rate is only slightly larger in the treated versus the control population, therefore 
the reduction in growth observed in Fig. 1B is predominantly caused by reduced replication (Fig. 2B) rather than 
increased death. This shows that TMZ is mostly cytostatic32 during the first days of treatment. However, as the 
two-week long clonogenic assay shows (SI Fig. S1A), high TMZ concentrations eventually lead to cell death; this 
is not visible in Fig. 2C due to the increasing cell density making cell tracking difficult after four days. However, 
Fig. 1B suggests that cytostatic effects of a single dose of TMZ continue for at least 6 days.

We also determined cell trajectory lifespan, defined as the time since cell’s birth to either death, division, or 
the end of the experiment, whichever comes first. Figure 2D shows that untreated cells have shorter trajectory 
lifespans compared to treated cells. However, branch length, defined as time between two divisions, shows no 
difference between control and treated cells (Fig. 2E). This could indicate that those cells which continued to 
divide, behaved similarly in both conditions.

Next, we determined the motility of treated and control cells. Figure 3A shows that the average speed, with 
which cells in the control population moved, slowly increased over time. However, the average speed of cells 

Fig. 2.  (A) Example of a lineage tree from the control experiment. Arrows indicate two selected divisions and 
“x” mark two death events; the doubling time (“branch length”) is the period of time between two divisions 
along a single branch of the tree. (B, C) Birth and death rates versus time (n = 3 replicates), obtained from 
the number of observed birth and death events as Nevents (t) /(∆ t Ncells (t)) where ∆ t is the time interval 
in which the events occurred. In each replicate, between 350 and 1000 births were manually tracked. (D) 
Probability distribution of trajectory lifespan for the control (green) and 500 µM TMZ (red). (E) Probability 
distribution of branch length in the lineage tree (“cell doubling time”). In panels (D, E) each curve is an 
individual replicate ( n = 3) with between 2.5k and 11k trajectories analysed.
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treated with 500 µM TMZ initially increased faster and then started to slowly decrease towards the end of the 
experiment (Fig. 3A). In the mid-phase of the experiment (t = 40 − 60 h), TMZ-treated cells were more motile 
than cells in the control population. Figure 3B shows the distribution of cell velocities divided by the mean 
velocity, from the control and 500 µM TMZ populations; the distributions are very similar. This could mean that 
treatment increases the motility of each cell by a similar factor as opposed to, e.g., making only a fraction of the 
population more motile, which would change the shape of the distribution. A small but statistically significant 
difference visible at later times ( pvalue < 0.001 for t = 60 − 80 h) could mean that, eventually, cells destined 
for survival or death have slightly different motilities but this effect shows up only for much longer trajectories 
than sampled in our experiments.

Interestingly, there is a difference in motility between treated and non-treated cells that do not divide for 
at least 2 average doubling times (Fig. 3C). Moreover, motility correlates with cell area differently for control 
(positive correlation) than treated (negative correlation) cells. Treated and non-treated cells with short branches 
(division events separated by less than one average doubling time) do not show this reciprocal correlation, except 
for the largest cells (Fig. 3C).

Those cells that continued to divide showed a small negative correlation between branch length (time 
between divisions) and motility in the control population (Pearson’s r = −0.19) but no correlation in the 
treated population (Fig. 3D)); the two populations were statistically different (2D KS test pvalue < 10−6). The 
lack of strong proliferation-motility correlation is interesting, as previous research suggested a trade-off between 
proliferation and motility, i.e. faster-moving cells would be expected to divide less often than slowly-moving 
cells, or that some sort of division of labour should exist in the population of cancer cells33–35. Although we 
found evidence for a small potential trade-off in the control experiment, this effect was absent in treated cells. 
Since Fig. 3D shows only proliferating cells and the control and treated populations have a similar distribution 
of division rates and velocities, this suggests that treated and non-treated subpopulations of proliferating cells 
share a similar phenotype. This could mean that cells have different sensitivity to TMZ, and treatment selects a 
subpopulation of cells (which continue to divide) that are less sensitive.

There is no correlation between the trajectory lifespan of mother and daughter cells (Fig. 3E), but we have 
found a statistically significant correlation between the motility of mother and daughter cells in the control 
population (Fig. 3F, R = 0.64; pvalue < 10−12), which suggests that cell phenotype is heritable to some extent. 
A similar but slightly weaker correlation is visible for TMZ treated cells (Fig. 3F, R = 0.58, pvalue < 10−12).

Fig. 3.  (A) Mean speed (averaged over all tracked cells) as a function of time, for the control and 500 µM 
TMZ population. (B) Probability distributions of finding a cell with a given speed relative to the mean speed at 
that time point, in the control and treated populations, for different times. Between 3.5k and 20k trajectories 
have been analysed. (C) Speed versus cell size for short (t < 33 h) and long (t > 66 h) branches. Long 
branches represent cells with cell cycle arrest. (D) Average speed versus branch length (inter-division time), 
for individual cellular trajectories (points). Lines represent mean values of the distributions. (E) Mother and 
daughter cells’ trajectory lifespans. (F) Correlation between the mother and daughter average velocities. Points 
represent individual cells; lines are linear fits. In all plots, green = control, red = 500 µM TMZ, and n = 3 
replicates have been analysed. Errors = SEM.
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These results suggest heritable phenotypic heterogeneity in U-87 MG cells undergoing TMZ treatment. 
Since, as we indicated in the introduction, MGMT has been implicated in resistance to TMZ, we hypothesised 
that intracellular variations of MGMT may be responsible for the observed heterogeneous response to TMZ.

To further quantify this heterogeneity, we classified cellular trajectories into short (duration < 33 h, approx. 
1 average doubling time in the control experiment) and long (duration > 66 h, approx. two doubling times). We 
obtained that, in the control population, 91 ± 1% and 1 ± 0.3% of cells had short/long trajectories, whereas in 
the TMZ-treated population the proportions were 76 ± 3% and 3 ± 1%, respectively. Therefore, TMZ treatment 
increased the fraction of slowly-dividing or arrested cells.

We also plotted cell area versus time for single-cell trajectories (SI Fig. S2BC). These trajectories clearly show 
strong population heterogeneity, both in the control and treated populations.

To gain a better insight into how TMZ was affecting proliferation and death, we used the FUCCI system36 
to determine the position of each cell in the cell cycle, and correlated this with cell fate (Fig. 4). We observed 
that, while control cells that successfully divided typically went through a single phase of the cell cycle, treated 
cells often attempted to divide, but failed to separate after the end of the G2 phase (Fig. 4CE). Cells that failed to 
divide showed much slower oscillations of the FUCCI reporters (CDT1 and Geminin). The comparable intensity 
of the two signals, in particular at the end of the trajectory, suggests cell cycle arrest at the end of the G1 phase.

To see if varying the intracellular concentration of MGMT affected the response of individual cells to TMZ, 
U-87 MG cells (approx. 2500/well) were seeded in a 24-well plate and transfected with a plasmid containing a 
fluorescently tagged MGMT. We imaged the cells for 48 h until some of them started showing bright fluorescence 
in the nucleus (MGMT exhibits nuclear localization, SI Fig. S3), and then replaced the medium with a fresh 
growth medium supplemented with 500 µM TMZ. We continued imaging the cells for another ∼ 70 h, tracked 
individual cells and, using automated image analysis, calculated the total fluorescence in each cell (a proxy for 
intracellular MGMT concentration). The drawbacks of this approach were (i) not accounting for endogenous, 
untagged MGMT, (ii) much higher levels of tagged MGMT compared to the WT cells, (iii) MGMT concentration 
varying in time. However, since MGMT expression was significantly enhanced in this cell line, we reasoned that 
any effect of MGMT heterogeneous expression on cell fate should be easy to detect, thus providing a simple test 
of our hypothesis that MGMT and cell fate are correlated.

Figure 5AB shows trajectory lifespan (defined above) and motility versus the time-averaged fluorescence of 
MGMT-C-GFPspark in single cells. We see that, despite a very significant (three orders of magnitude) difference 
in fluorescence, there is no correlation between motility and fluorescence (control pvalue = 0.32, treated 
pvalue = 0.91), but there is a small correlation between lifespan and fluorescence (control pvalue = 0.003, 
treated pvalue = 0.01). However, this correlation is present in both control and treated cells, and the two data 
sets are statistically the same ( pvalue = 0.06). This suggests that the correlation is not caused by treatment. A 
possible explanation is that cells that live longer accumulate more MGMT, so the causation is opposite to what 
we would expect based on our hypothesis. This means that, at least for the specific cell line used here (U-87 MG), 
MGMT does not seem to contribute towards resistance against TMZ during the first 72 h post-TMZ exposure.

Mathematical model provides insight into the mechanism of TMZ action
To further confirm our understanding of the population dynamics of TMZ-treated cells, we have developed a 
simple agent-based model that can reproduce the population-level response from Fig. 1B. The model assumes 
that TMZ methylates some vital components of the cell; the model is agnostic to whether this is DNA or some 
other molecules such as RNA, histones, or other proteins. Each cell in the model is a separate object with its own 
internal state, describing the current phase in the cell cycle and whether TMZ-induced methylation has already 
occurred or not. The cell cycle is divided into three phases; their lengths T1, T2, T3 are the parameters of the 
model. Cells are methylated only during the second phase with rate rdrug which depends on the dose of TMZ; 
rdrug = 0 when simulating the control experiment. Cells replicate (if not methylated) or die (if methylated) 
at the end of the cycle. Figure 6A shows the main steps of the computer algorithm used to simulate the model.

The model fits the data reasonably well (Fig.  6B). Best-fit parameters are: cell cycle duration T = 33
h, methylation starting at the beginning of the cell cycle, T1 = 1.5 h, T2 = 0.5 h, and methylation rate 
rdrug = 1.025 h−1 (500 µM TMZ) and 0.582 h−1(10 µM TMZ). This gives us a potentially interesting insight 
into the mechanism of action of TMZ. Since the model does not assume that cell death must occur in the 2nd 
round of replication due to irreparable double-stranded DNA breaks (DSBs) as suggested by earlier works, but 
it may occur already during the 1st replication round, the agreement between the model and the experimental 
data supports the idea that TMZ-induced DNA methylation causes cell cycle arrest/cell death even before 
damaged basepairs are converted into DSBs, or that TMZ has also non-DNA targets. The latter also agrees with 
the observed lack of correlation between MGMT level and cell fate, because MGMT is not expected to remove 
methyl adducts other than those on the DNA. Indeed, there is already evidence30,37 that TMZ may have cellular 
targets other than the DNA.

Conclusion
In this work we have investigated how glioblastoma multiforme cancer cells respond to in vitro chemotherapy 
with temozolomide (TMZ). We cultured a population of U-87 MG cells in multi-well plates, exposed them to 
TMZ and imaged for several days using an automated microscope. We observed a heterogeneous response to 
TMZ, i.e., some cells continued to replicate whereas others stopped growing or even died. After some time, 
growth practically ceased but most surviving cells remained motile. Treated cells also become more motile than 
the untreated control population. Cells that kept dividing exhibited correlations between the phenotype of the 
mother and daughter cell (similar motility). This complements earlier work on the motility of different GBM cell 
lines in the absence of therapy38 or during targeted therapy39.
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Treated cells slowed down replication after less than a single doubling of the control population. This response 
was faster than expected based on the suggested mechanism of action of TMZ: DNA methylation followed by 
failed repair before the first cell division, followed by double-strand breaks and death during the second round 
of replication.

We also performed an experiment in which cells were transfected with a plasmid containing a fluorescently-
tagged MGMT protein. The protein was expressed to very different levels in different cells (fluorescence varying 
by three orders of magnitude) and exhibited nuclear localization typical of the native MGMT. However, we could 
not find any correlation between the phenotype (motility, doubling time, cell fate) and fluorescence that could 
be attributed to the action of TMZ.

Fig. 4.  Cell-cycle fluorescence reporter system FUCCI shows failed replication cycles in TMZ-treated cells. 
(A) FUCCI uses two fluorescent proteins (green and red) to indicate the position in the cell cycle. Two lineage 
trees from the control experiment show how the fluorescence signal changes along each branch. A plot below 
shows an example of the red R (t) and green G (t) fluorescence for a cell that successfully divided at t = 35 
h. (B) Histograms of the “cell cycle phase” φ  calculated as φ = G (t) /(G (t) + R (t)). Between 0.5k and 
4.3k cells have been analysed. A peak close to zero represents cells in the G1 phase, whereas a peak close to 
1 represents cells in the G2/M phase. As time progresses, the control population develops a third, smaller 
peak close to φ ≈ 0.7 (arrow), whereas treated cells do not exhibit this peak. (C-F) Average red and green 
fluorescence along trajectories that end up with a division (panels C, E) or cell death/detachment (panels D, F), 
for the control and 500 µM TMZ. The time before division is calculated as t − t0, where t is the time at which 
fluorescence was obtained and t0 is the time of division ( t0 > t), hence the negative values on the horizontal 
axis. Shaded areas indicate G1 and G2/M phases. The plot for treated cells that went on to divide shows the 
evidence of failed earlier divisions. In treated cells that did not divide, FUCCI signals vary much more slowly, 
indicating a possible cell cycle arrest. A single biological replicate has been analysed and only human-verified 
trajectories have been included ( n = 28,35,14,10, respectively). Errors = SEM.
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This, together with the observation that the response to TMZ is faster than expected based on DNA damage-
induced cell death, suggests that there must be other mechanisms of action of TMZ that either do not rely on 
DSBs causing cell death, or do not involve DNA damage at all. This also means that protection against TMZ 
does not rely on MGMT alone. For example, an important protection mechanism against DNA damage is the 
base excision repair system (BER), which removes other types of DNA methyl adducts that MGMT cannot 
handle40. Although cell-to-cell variations in the strength of BER response could be responsible for the observed 
heterogeneous response to TMZ, there is evidence that in U-87 MG cells treated with TMZ, growth arrest is 
independent of BER41. Other, non-DNA damage mechanisms may therefore be at play here.

Our conclusions are further supported by a mathematical model, which shows that early damage induced by 
TMZ is sufficient to explain the observed growth curves of control and treated cells.

Our research has several potential shortcomings that could be rectified in future studies:

•	 No information about the level of endogenous MGMT: we did not fluorescently tag the endogenous MGMT 
and hence could not determine how diverse its expression was among the cells. However, MGMT expression 
in U-87 MG is supposedly low42. Moreover, the overexpression experiment did not show any correlation 
between fluorescently tagged MGMT and the response to TMZ. We would therefore not expect endogenous 

Fig. 6.  (A) A schematic of the computer algorithm used to simulate the mathematical model. (B) 
Experimental growth curves (fold-change versus time) compared to the prediction of the model. Points 
= experimental growth curves from Fig. 1, lines = computer model (average of 4 replicates per condition).

 

Fig. 5.  (A) Trajectory lifespan versus mean fluorescence of MGMT-C-GFPspark, for single cells from the 
control (green) and treated (red) populations. (B) As in (A) but for mean speed versus mean fluorescence. Data 
points come from two replicate experiments (control) and a single replicate (treated cells).
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MGMT to behave differently. This may be different in other cell lines or different concentrations/dosage of 
TMZ.

•	 Treatment too short to observe long-term TMZ effects: while the clonogenic assay showed no surviving 
clones at 500 µM TMZ, only a small fraction of cells died 72 h post-TMZ in live-cell imaging experiments. 
Longer experiments could be possible but they would be challenging due to the medium being used up, evap-
oration, and cell crowding.

Regarding the observed lack of correlation between MGMT and the TMZ-induced phenotype, we identified the 
following potential problems:

•	 MGMT-C-GFPspark protein may not be active due to misfolding caused by the fluorescent tag. We did not 
test the enzymatic activity of tagged MGMT. However, others have shown that a similarly fluorescently tagged 
MGMT exhibited activity towards O6-G methyl groups43.

•	 The concentration of overexpressed MGMT is so high that it efficiently repairs all O-6-methylguanine DNA 
lesions, and the only effect of TMZ we observe is due to other type of damage that MGMT is unable to repair. 
Testing this hypothesis would require expressing MGMT at a much lower level, which could not be done 
without deleting the native MGMT, or replacing it with a fluorescently-tagged variant. We attempted replac-
ing endogenous MGMT with the MGMT-C-GFPspark construct, but could not detect the fluorescent protein 
in the nucleus using both wide-field and confocal microscopy, despite extensive troubleshooting.

As for the broader significance of our work, phenotypic heterogeneity in the absence of genetic changes has 
been proposed to be responsible for failure of some anticancer therapies44. Phenotypic diversity may generate 
resistant cells that can repopulate the tumour when sensitive cells are removed by therapy, or can provide a 
temporary “safe haven” for cancer cells to evolve genetic resistance – a possibility that has been suggested by 
others45and independently investigated theoretically by us46. However, evolutionary dynamics of non-genetic 
heterogeneity has not been investigated experimentally in a quantitative way that would enable one to build 
predictive mathematical models. Here, we attempted to quantify phenotypic heterogeneity in the response 
to chemotherapy and to determine how it is passed onto offspring cells. While we did not fully succeed in 
elucidating the mechanism of short-term response to TMZ, our results suggest that MGMT is not involved.

We also obtained quantities such as the distributions of division times, death rate, and cell motility, that could 
be used to construct more advanced models of glioblastoma treatment. Mathematical modelling is increasingly 
being used in oncology47–49. However, to predict cancer growth and evolution in individual patients, theoretical 
models must be based on experimentally verified assumptions and carefully measured parameters and their 
distributions in a population of cancer cells. Most published data cannot be integrated into mathematical 
models in this way due to different parameters measured for different cell lines, conditions, and experimental 
approaches. We believe that the quantitative characterization (similar to what we have attempted here) of each 
patient-derived cancer clone will be required to develop truly predictive models of cancer.

Materials and methods
Cell culture
U-87 MG (ECACC 89081402) cells were cultured in EMEM medium (Corning; catalogue number: 10-009-
CV) supplemented with 10% foetal bovine serum (FBS) and 1% penicillin-streptomycin solution. Cells tested 
negative for mycoplasma contamination (Applied Biological Materials Inc, catalogue number: G238).

In preparation for live-imaging in vitro chemotherapy experiments, cells were trypsinized with 1 ml trypsin-
EDTA solution for 5 min at 37 °C, and centrifuged for 5 min at 300G in EMEM medium. The supernatant 
was discarded and the cell pellet was resuspended in EMEM medium. 10 µl of the cell suspension was used to 
estimate the number of cells by an automated cell counter (BioRad TC20). Based on this, 2500 cells/well were 
seeded in a 24-well plate in 500 µl of EMEM medium per well. The cells were then left overnight in the incubator 
(Binder) at 37 °C and 5% CO2.

Image acquisition
The 24-well plate with cell cultures was moved from the incubator to the microscope stage. Images were acquired 
using Nikon Eclipse Ti2-E epi-fluorescent microscope with an automated XY stage, Andor Zyla 4.2 SCMOS 
camera (Oxford Instruments, UK), CO2 incubator (OKO lab), and the Perfect Focus System (Nikon), and 
controlled by MicroManager 2.050. While imaging, the plate was incubated at 37 °C, with continuous flow of 
humidified air with 5% CO2. Each well was divided into a number of overlapping fields of view (FOV) on a 
regular 10 × 10 grid, with 10% overlap between neighbouring FOVs. Table 1 shows the specific settings for each 
experiment. Perfect Focus System was used to adjust for the thermal drift during imaging. Images were analysed 
using machine learning algorithms described below.

Drug treatment
After an initial period of image acquisition, imaging was paused and plates were removed from the microscope 
stage. The medium was discarded and replaced with 1.5 ml fresh EMEM medium containing either 0.25% DMSO 
(Sigma Life Science; catalogue number: D2650-100ML) or the desired concentration of the drug temozolomide 
(TMZ, Sigma-Aldrich, catalogue number: T2577-25MG). The concentration of DMSO was adjusted to be the 
same for all conditions (control and treated populations). Non-DMSO controls were replaced with EMEM 
medium. Plates were put back on the microscope stage and imaging was continued. The exact time of drug 
addition (different for each experiment) was recorded and used in the subsequent analysis.
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Clonogenic assay
Cell culture dishes (60 mm) were seeded with approx. one thousand of U-87 MG cells/dish in 5 ml EMEM 
medium. After overnight incubation, the medium was replaced with fresh medium containing either 0.25% 
DMSO or the desired concentration of TMZ. The concentration of DMSO was adjusted to be the same for all 
conditions. Non-DMSO controls were replenished with EMEM medium. All the dishes were kept in the incubator 
for 2 weeks. After the incubation, the medium was replaced with 4% paraformaldehyde for 20 min to fix the cells. 
Cells were then washed with PBS and stained using 0.5% crystal violet solution for 20 min. After 20 min, cells 
were washed with water to remove excess crystal violet stain. The dishes were dried at room temperature and the 
number of colonies formed (visible with a naked eye) were counted manually. The experiment was performed in 
triplicate, each replicate starting at the end of the previous one.

Expression plasmid and transient transfection
Eukaryotic expression plasmid for human MGMT tagged with GFPspark was purchased from SinoBiological 
(HG12077-ACG). Fugene HD transfection reagent (Promega; catalogue number: E231 A) was used for transient 
transfections. 250 ng of plasmid DNA was used with the transfection reagent in a 3:1 ratio for 24-well plates. 
Transfection was done following the manufacturer’s protocol.

Lentivirus transduction and cell cycle reporter stable cell generation
1 million U-87 MG cells in a 6-well plate were transduced with VSV-G pseudotyped Fluorescent Ubiquitination-
based Cell Cycle Indicator (FUCCI)-Puro lentiviral particles (LipExoGen Biotech; catalogue number: LTV-
0052–1 S) according to manufacturer’s recommendation. After 48 h of lentiviral infection, cells were trypsinized 
and transferred to a T-25 cell culture flask with 7 ml EMEM medium. 2.5 µg/ml puromycin was added to the 
flask after 14–16 h of incubation. Puromycin containing EMEM medium was replaced every 48 h till the flask 
was 60–80% confluent. These cells were further trypsinized and seeded in a T-75 cell culture flask containing 17 
ml EMEM medium with puromycin. The medium was discarded every 48 h and fresh EMEM with puromycin 
was added until the cells reached a confluency of 70–90% in the flask. When the desired confluency was reached, 
cells were trypsinized and stored for future use. Since there was no clonal amplification, the FUCCI-expressing 
cells obtained were polyclonal. For experiments evaluating the effect of TMZ on cell cycle, 2500 cells/well were 
seeded in a 24-well plate with 500 µl EMEM medium. Treatment with the drug was performed as described 
above.

Image and data analysis
All live-imaging experiments generated data in the form of µManager TIFF datasets. We processed these images 
in different ways, depending on whether the total count or individual tracks were required:

•	 Image segmentation. Individual bright-field FOVs were first stitched in ImageJ Grid/Collection Stitching pl-
ugin51 using a custom-made script for batch processing of all FOVs from all time points. Pixel binning (2 × 2) 
was used to reduce image size and the run time of the algorithm. Stitched images were segmented in Cellpose 
3 (version 3.0.11)52,53 using the “cyto3” pretrained model able to deal with images of dense populations of cells 
(especially important for later timepoints). Processing stitched images instead of individual FOVs helped to 
avoid problems with segmenting cells present at the edge of adjacent FOVs. The algorithm outputted image 
masks, with all pixels belonging to each detected cell assigned a label unique to that cell. A visual comparison 
of a few segmented original and binned images showed that pixel binning did not adversely affected segmen-
tation quality.

•	 Cell number versus time. To obtain the number of cells in each time frame, we counted the number of unique 
labels in the masks outputted by the above procedure.

•	 Automated cell tracking. Labelled masks of segmented images were imported into Mastodon v1.0.0-beta-34 
(https://mastodon.readthedocs.io/en/latest/). Mastodon first generated spatio-temporal coordinates (“spots”) 
(x, y, t) of each cell. Next, individual “spots” were connected into tracks using the build-in LAPtracker al-

gorithm. The output was a collection of tracks in the Mastodon data format. A single track represented a 
sequence of (x, y, t) coordinates along the trajectory of a cell. Each track begun at some time t1 when it sep-
arated from its mother cell, or at t1 = 0 if the cell was present already at t = 0. The track ended at some time 
t2 representing either (i) the next division event, (ii) cell death, (iii) the end of the experiment, (iv) the cell 

Experiment Plate type and grid size Objective Duration Imaging frequency/channels

Figures 1, 2 and 3; 3 replicates Sarstedt 83.3922; 10 × 10 FOVs 20x, N.A. 0.45
Rep1: ~189 h
Rep2: ~185 h
Rep3: ~186.5 h

Every 10 min/BR

Figure 5;
2 replicates Sarstedt 83.3922; 10 × 10 FOVs 20x, N.A. 0.45 ~ 116 h Every 10 min/BR

Every 3 h/FITC

Figure 4;
1 replicate Sarstedt 83.3922; 8 × 8 FOVs 20x, N.A. 0.45 ~ 117 h

Every 10 min/BR
Every 3 h/FITC
Every 3 h/TRITC

Table 1.  Imaging settings for live imaging experiments. BR = brightfield, FITC = green fluorescence filter 
457.5–487.5 nm (excitation)/502.5–537.5 nm (emission), TRITC = red fluorescence filter 532–554 nm 
(excitation)/573–613 nm (emission).
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disappearing from the FOV, or (v) not being traceable for other reasons. A small number of tracks that formed 
loops due to cells dividing but then apparently merging together were excluded from the analysis. Tracks were 
then imported into a Python notebook using MastodonReader version 0.3.1 (​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​m​a​s​t​o​​d​o​
n​-​s​​c​/​p​y​t​h​​o​n​-​m​a​s​​t​o​d​o​n​-​​i​m​p​o​r​t​e​r) for further analysis. Many Mastodon-generated tracks had gaps due to the 
failure of the image segmentation algorithm. Since some of our analysis required long, uninterrupted tracks, 
we used a custom-made Python code to close such gaps. The algorithm followed each track backward in time 
and if the track suddenly ended (which was not possible biologically), the algorithm would search for nearby 
tracks that terminated around the same time while propagating forward in time, and connected the back-
ward-propagating track to one of them. The selection process of new connections was a global optimization 
problem, in which the objective was to minimize the sum of distances between tracks’ endpoints bridged by 
the proposed connections, plus the number of forking events (divisions), multiplied by a large number ( 220) 
to strongly penalize unnecessary connections. While this approach significantly increased the number of un-
interrupted tracks, many tracks could still contain incorrectly assigned division events. For this reason, in the 
main text we used terms such as “branch length” instead of “division/doubling times” and “branching events” 
instead of “division event” to stress that the analysis was based on the structure of lineage trees and not on true 
division events, unless explicitly stated as in the case of manually-corrected tracks.

•	 Manual cell tracking. Stitched images were converted from TIFF to a format compatible with Mastodon 
v1.0.0-beta-34 (BigDataViewer format xml + h5) using a custom script. The files were opened using Masto-
don launcher. Each cell was followed in time by a human operator, and its position marked every time the cell 
visibly moved. If the cell did not move, there would be a missing point along the track at that particular time 
point. In such a case, in the subsequent analysis we assumed the position was the same as the last recorded 
position. If a track could not be continued for reasons discussed before (cell death, cell moving out of the 
FOV, etc.), a special tag was assigned to it to distinguish it from tracks ending with cell death. This procedure 
created tracks in the same format as the automated method discussed above. For data in Fig. 4, we first creat-
ed automated tracks as described above, and then manually curated them to make sure division events were 
correctly identified. All tracks were saved as *.mastodon files for further processing.

•	 Further processing of cell tracks. Tracks were imported into a Python notebook using MastodonReader and 
used to calculate motility, division times, and fluorescence as a function of time (see below). Fluorescence 
quantification (Figs. 4 and 5) required matching manually-created and manually-corrected tracks with seg-
mented images of cells so that total fluorescence could be calculated for each cell at each time point. To do 
this, for every time frame we found the centre of mass for each Cellpose-segmented cell. Next, we identified 
the closest “spot” (x, y, t) in the corresponding Mastodon dataset containing cell tracks, and associated the 
given cell with this specific “spot”. We then computed total fluorescence (see below) for the cell and appended 
it to the data record representing the “spot”. If the distance between the cell and the “spot” was larger than 
50 μm  , the match was rejected and no data was added to the “spot”.

Growth curves
Fold change in the number of cells was calculated as the ratio of the number of cells  N (t) at time t  to 
N(t = 0), where t = 0 corresponds to the time when TMZ was added to the plate.

Motility and division times
For each track, we calculated the instantaneous speed v (ti) from the difference in (x, y) coordinates at 

time ti and ti+1 as v (ti) =
√

(xi+1−xi)2+(yi+1−yi)2

ti+1−ti
. We then calculated the average speed of each cell as 

v = (1/n)
∑n−1

i=1 v (ti), and used this quantity to represent cell motility.
To obtain division times/branch lengths, we calculated the time between the consecutive division/forking 

events, i.e., DT = tn − t1 where t1 and tn are the first and last points of the track.

Fluorescence of individual cells
Uneven image illumination in wide-field fluorescent microscopy causes fluorescence to drop towards the edges 
of the FOV. Furthermore, background fluorescence tends to decay over time due to the medium changing its 
chemical composition, and photobleaching. To remove this effect, i.e., to apply flat-field correction to the image, 
we used BaSiC54, a method capable of inferring the flat-field correction from a time series of images. The method 
can account for photobleaching and other time-dependent changes in background fluorescence. We used the 
multiplicative version of the method, Im = (B + It) × F , in which Im is the measured intensity, It is the 
true intensity we want to obtain, B is the “baseline” signal which is pixel-independent but time-dependent, 
and F  is the flat-field image. The algorithm solves this equation for It and F . Next, we used binary masks of 
segmented cells to compute total fluorescence of each cell.

Statistical analysis
To compare 1D distributions, we used the two-sided Kolmogorov-Smirnov test (Python SciPy 1.10.0). To 
compare 2D distribution, we used the 2D Kolmogorov–Smirnov test using the code written by Zhaozhou Li, 
https://github.com/syrte/ndtest (version 0.1) based on Refs55,56. Error bars represent standard errors of mean.

Mathematical model
We use an agent-based model, in which each cancer cell has four state variables: an integer “clock” x = 1, ..., T  
representing the current position in the cell cycle, the current cell cycle stage s = {1,2, 3}, whether the cell is 
methylated due to the drug m = {0,1}, and whether the cell cycle has halted a = {0,1}. The parameter T  
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represents the duration of the cell cycle as the number of discrete time intervals dt = 30 min. We consider three 
stages in the cell cycle; these could (but do not have to) represent the gap 1 (G1), synthesis (S), and gap 2 (G2) 
phases. We omit the M stage as the duration of this stage is very short. The phases have durations of T1, T2, T3 
time steps, respectively. Thus, the division time is T = T1 + T2 + T3 time steps. The value of x increases by 
one every time step of the algorithm. The variable s equals 1 for 1 ≤ x < T1 , s = 2 for T1 ≤ x < T2 and 
s = 3 for x ≥ T2. When the cell has reached the end of the cell cycle, x = T , the cell divides into two daughter 
cells. The two cells start at the beginning of the cell cycle ( x = 1).

An unmethylated cell ( m = 0) becomes methylated ( m = 1) with rate rdrug  (probability per unit of time) 
during the second phase only. Methylated cells die at the end of the third phase.

The simulation starts with N0 unmethylated cells, with N0 taken from the first data point of the experimental 
data, and with x chosen from the exponential distribution p (x) = (2ln2) /T 2−x/T . This distribution is the 
steady-state distribution of x, i.e., it represents a population of cells that has been growing for sufficiently long 
time (as in the experiment prior to the addition of TMZ) for cells to have desynchronized their cell cycles.

Fitting the model to data
We fitted the model simultaneously to all growth curves shown in Fig. 6B. All parameters were assumed to be 
the same for the control, 10, and 500 µM TMZ experiments, except the parameter rdrug which was permitted 
to take different values for the three conditions ( rdrug=0 = 0 whereas rdrug=10, rdrug=500 were the fitting 
parameters).

Data availability
All software used for data analysis (Jupyter notebooks, Julia code), processed data and simulation results are 
available at ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​D​i​o​s​​c​u​​r​i​-​​C​e​n​t​​r​​e​/​p​h​e​n​​o​t​y​​p​i​​c​_​h​e​t​e​r​o​g​e​n​e​i​t​y. Due to large file sizes (several TBs), 
access to the raw image data will be provided upon reasonable request to the corresponding author.
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