Table 4 Fitness performance: the proposed algorithm comparing with evolutionary algorithms on smart IoT application.
Sr no. | No. of gen. | No. of runs | MOEA-D algo | NSGA-III | MOPSO algo | MOWOA algo | Proposed algo | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Best_Fit | Mean_Fit | Best_Fit | Mean_Fit | Best_Fit | Mean_Fit | Best_Fit | Mean_Fit | Best_Fit | Mean_Fit | |||
1 | 20 | 20 | 0.169949 | 0.144572 | 0.168411 | 0.136882 | 0.171487 | 0.146879 | 0.174563 | 0.149955 | 0.176101 | 0.151493 |
2 | 40 | 20 | 0.210834 | 0.179352 | 0.208926 | 0.169812 | 0.212742 | 0.182214 | 0.216558 | 0.18603 | 0.218466 | 0.187938 |
3 | 60 | 20 | 0.251719 | 0.214132 | 0.249441 | 0.202742 | 0.253997 | 0.217549 | 0.258553 | 0.222105 | 0.260831 | 0.224383 |
4 | 80 | 20 | 0.292604 | 0.248912 | 0.289956 | 0.235672 | 0.295252 | 0.252884 | 0.300548 | 0.25818 | 0.303196 | 0.260828 |
5 | 100 | 20 | 0.333489 | 0.283692 | 0.330471 | 0.268602 | 0.336507 | 0.288219 | 0.342543 | 0.294255 | 0.345561 | 0.297273 |
6 | 120 | 20 | 0.374374 | 0.318472 | 0.370986 | 0.301532 | 0.377762 | 0.323554 | 0.384538 | 0.33033 | 0.387926 | 0.333718 |
7 | 140 | 20 | 0.415259 | 0.353252 | 0.411501 | 0.334462 | 0.419017 | 0.358889 | 0.426533 | 0.366405 | 0.430291 | 0.370163 |
8 | 160 | 20 | 0.456144 | 0.388032 | 0.452016 | 0.367392 | 0.460272 | 0.394224 | 0.468528 | 0.40248 | 0.472656 | 0.406608 |
9 | 180 | 20 | 0.497029 | 0.422812 | 0.492531 | 0.400322 | 0.501527 | 0.429559 | 0.510523 | 0.438555 | 0.515021 | 0.443053 |
10 | 200 | 20 | 0.537914 | 0.457592 | 0.533046 | 0.433252 | 0.542782 | 0.464894 | 0.552518 | 0.47463 | 0.557386 | 0.479498 |
11 | 220 | 20 | 0.578799 | 0.492372 | 0.573561 | 0.466182 | 0.584037 | 0.500229 | 0.594513 | 0.510705 | 0.599751 | 0.515943 |
12 | 240 | 20 | 0.619684 | 0.527152 | 0.614076 | 0.499112 | 0.625292 | 0.535564 | 0.636508 | 0.54678 | 0.642116 | 0.552388 |
13 | 260 | 20 | 0.660569 | 0.561932 | 0.654591 | 0.532042 | 0.666547 | 0.570899 | 0.678503 | 0.582855 | 0.684481 | 0.588833 |
14 | 280 | 20 | 0.701454 | 0.596712 | 0.695106 | 0.564972 | 0.707802 | 0.606234 | 0.720498 | 0.61893 | 0.726846 | 0.625278 |
15 | 300 | 20 | 0.742339 | 0.631492 | 0.735621 | 0.597902 | 0.749057 | 0.641569 | 0.762493 | 0.655005 | 0.769211 | 0.661723 |
16 | 320 | 20 | 0.783224 | 0.666272 | 0.776136 | 0.630832 | 0.790312 | 0.676904 | 0.804488 | 0.69108 | 0.811576 | 0.698168 |
17 | 340 | 20 | 0.824109 | 0.701052 | 0.816651 | 0.663762 | 0.831567 | 0.712239 | 0.846483 | 0.727155 | 0.853941 | 0.734613 |
18 | 360 | 20 | 0.864994 | 0.735832 | 0.857166 | 0.696692 | 0.872822 | 0.747574 | 0.888478 | 0.76323 | 0.896306 | 0.771058 |
19 | 380 | 20 | 0.883779 | 0.751812 | 0.875781 | 0.711822 | 0.891777 | 0.763809 | 0.907773 | 0.779805 | 0.915771 | 0.787803 |
20 | 400 | 20 | 0.902564 | 0.767792 | 0.894396 | 0.726952 | 0.910732 | 0.780044 | 0.927068 | 0.79638 | 0.935236 | 0.804548 |
21 | 420 | 20 | 0.921349 | 0.783772 | 0.913011 | 0.742082 | 0.929687 | 0.796279 | 0.946363 | 0.812955 | 0.954701 | 0.821293 |
22 | 440 | 20 | 0.940134 | 0.799752 | 0.931626 | 0.757212 | 0.948642 | 0.812514 | 0.965658 | 0.82953 | 0.974166 | 0.838038 |
23 | 460 | 20 | 0.940134 | 0.799752 | 0.931626 | 0.757212 | 0.948642 | 0.812514 | 0.965658 | 0.82953 | 0.974166 | 0.838038 |
24 | 480 | 20 | 0.940355 | 0.79994 | 0.931845 | 0.75739 | 0.948865 | 0.812705 | 0.965885 | 0.829725 | 0.974395 | 0.838235 |
25 | 500 | 20 | 0.940576 | 0.800128 | 0.932064 | 0.757568 | 0.949088 | 0.812896 | 0.966112 | 0.82992 | 0.974624 | 0.838432 |