Table 5 Energy consumption cost performance: the proposed algorithm comparing with evolutionary algorithms on smart IoT application.
Sr No. | No. of gen. | No. of runs | MOEA-D algo | NSGA-III | MOPSO algo | MOWOA algo | Proposed algo | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Worst_Fit | Mean_Fit | Worst_Fit | Mean_Fit | Worst_Fit | Mean_Fit | Worst_Fit | Mean_Fit | Worst_Fit | Mean_Fit | |||
1 | 20 | 20 | 1.949441 | 1.658348 | 1.931799 | 1.570138 | 1.967083 | 1.684811 | 2.002367 | 1.720095 | 1.843589 | 1.561317 |
2 | 40 | 20 | 1.817283 | 1.545924 | 1.800837 | 1.463694 | 1.833729 | 1.570593 | 1.866621 | 1.603485 | 1.718607 | 1.455471 |
3 | 60 | 20 | 1.685125 | 1.4335 | 1.669875 | 1.35725 | 1.700375 | 1.456375 | 1.730875 | 1.486875 | 1.593625 | 1.349625 |
4 | 80 | 20 | 1.552967 | 1.321076 | 1.538913 | 1.250806 | 1.567021 | 1.342157 | 1.595129 | 1.370265 | 1.468643 | 1.243779 |
5 | 100 | 20 | 1.420809 | 1.208652 | 1.407951 | 1.144362 | 1.433667 | 1.227939 | 1.459383 | 1.253655 | 1.343661 | 1.137933 |
6 | 120 | 20 | 1.288651 | 1.096228 | 1.276989 | 1.037918 | 1.300313 | 1.113721 | 1.323637 | 1.137045 | 1.218679 | 1.032087 |
7 | 140 | 20 | 1.156493 | 0.983804 | 1.146027 | 0.931474 | 1.166959 | 0.999503 | 1.187891 | 1.020435 | 1.093697 | 0.926241 |
8 | 160 | 20 | 1.024335 | 0.87138 | 1.015065 | 0.82503 | 1.033605 | 0.885285 | 1.052145 | 0.903825 | 0.968715 | 0.820395 |
9 | 180 | 20 | 0.892177 | 0.758956 | 0.884103 | 0.718586 | 0.900251 | 0.771067 | 0.916399 | 0.787215 | 0.843733 | 0.714549 |
10 | 200 | 20 | 0.760019 | 0.646532 | 0.753141 | 0.612142 | 0.766897 | 0.656849 | 0.780653 | 0.670605 | 0.718751 | 0.608703 |
11 | 220 | 20 | 0.75361 | 0.64108 | 0.74679 | 0.60698 | 0.76043 | 0.65131 | 0.77407 | 0.66495 | 0.71269 | 0.60357 |
12 | 240 | 20 | 0.747201 | 0.635628 | 0.740439 | 0.601818 | 0.753963 | 0.645771 | 0.767487 | 0.659295 | 0.706629 | 0.598437 |
13 | 260 | 20 | 0.740792 | 0.630176 | 0.734088 | 0.596656 | 0.747496 | 0.640232 | 0.760904 | 0.65364 | 0.700568 | 0.593304 |
14 | 280 | 20 | 0.734383 | 0.624724 | 0.727737 | 0.591494 | 0.741029 | 0.634693 | 0.754321 | 0.647985 | 0.694507 | 0.588171 |
15 | 300 | 20 | 0.727974 | 0.619272 | 0.721386 | 0.586332 | 0.734562 | 0.629154 | 0.747738 | 0.64233 | 0.688446 | 0.583038 |
16 | 320 | 20 | 0.721565 | 0.61382 | 0.715035 | 0.58117 | 0.728095 | 0.623615 | 0.741155 | 0.636675 | 0.682385 | 0.577905 |
17 | 340 | 20 | 0.715156 | 0.608368 | 0.708684 | 0.576008 | 0.721628 | 0.618076 | 0.734572 | 0.63102 | 0.676324 | 0.572772 |
18 | 360 | 20 | 0.708747 | 0.602916 | 0.702333 | 0.570846 | 0.715161 | 0.612537 | 0.727989 | 0.625365 | 0.670263 | 0.567639 |
19 | 380 | 20 | 0.702338 | 0.597464 | 0.695982 | 0.565684 | 0.708694 | 0.606998 | 0.721406 | 0.61971 | 0.664202 | 0.562506 |
20 | 400 | 20 | 0.695929 | 0.592012 | 0.689631 | 0.560522 | 0.702227 | 0.601459 | 0.714823 | 0.614055 | 0.658141 | 0.557373 |
21 | 420 | 20 | 0.68952 | 0.58656 | 0.68328 | 0.55536 | 0.69576 | 0.59592 | 0.70824 | 0.6084 | 0.65208 | 0.55224 |
22 | 440 | 20 | 0.683111 | 0.581108 | 0.676929 | 0.550198 | 0.689293 | 0.590381 | 0.701657 | 0.602745 | 0.646019 | 0.547107 |
23 | 460 | 20 | 0.676702 | 0.575656 | 0.670578 | 0.545036 | 0.682826 | 0.584842 | 0.695074 | 0.59709 | 0.639958 | 0.541974 |
24 | 480 | 20 | 0.670293 | 0.570204 | 0.664227 | 0.539874 | 0.676359 | 0.579303 | 0.688491 | 0.591435 | 0.633897 | 0.536841 |
25 | 500 | 20 | 0.663884 | 0.564752 | 0.657876 | 0.534712 | 0.669892 | 0.573764 | 0.681908 | 0.58578 | 0.627836 | 0.531708 |