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Neuroblastoma presents a wide variety of clinical phenotypes, demonstrating different levels of 
benignity and malignancy among its subtypes. Early diagnosis is essential for effective patient 
management. Computed tomography (CT) serves as a significant diagnostic tool for neuroblastoma, 
utilizing machine vision imaging, which offers advantages over traditional X-ray and ultrasound 
imaging modalities. However, the high degree of similarity among neuroblastoma subtypes 
complicates the diagnostic process. In response to these challenges, this study presents a modified 
version of the You Only Look Once (YOLO) algorithm, called YOLOv8-IE. This revised approach 
integrates feature fusion and inverse residual attention mechanisms. The aim of YOLO-IE is to improve 
the detection and classification of neuroblastoma tumors. In light of the image features, we have 
implemented the inverse residual-based attention structure (iRMB) within the detection network of 
YOLOv8, thereby enhancing the model’s ability to focus on significant features present in the images. 
Additionally, we have incorporated the centered feature pyramid EVC module. Experimental results 
show that the proposed detection network, named YOLO-IE, attains a mean Average Precision 
(mAP) 7.9% higher than the baseline model, YOLO. The individual contributions of iRMB and EVC 
to the performance improvement are 0.8% and 3.6% above the baseline model, respectively. This 
study represents a significant advancement in the field, as it not only facilitates the detection and 
classification of neuroblastoma but also demonstrates the considerable potential of machine learning 
and artificial intelligence in the realm of medical diagnosis.
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Neuroblastoma, a neoplasm that arises from the sympathetic nervous system, represents the most prevalent 
and lethal extracranial solid malignant tumor in pediatric populations. The incidence of neuroblastoma is 
approximately 10.2 cases per million children under the age of 15, making it the most frequently diagnosed 
cancer during the first year of life1. The clinical manifestations of neuroblastoma can vary significantly, ranging 
from spontaneous regression without intervention to benign mature ganglioneuromas, as well as malignant 
cases with multiple systemic metastases or a combination of both benign and malignant components1. Different 
clinical phenotypes of neuroblastoma necessitate different treatment strategies and are associated with varying 
prognoses. Consequently, early diagnosis and accurate classification of neuroblastoma are critical for the 
advancement of diagnostic approaches. The diagnosis of neuroblastoma typically involves a combination of 
laboratory tests, radiological imaging, and pathological evaluation2. While pathology remains the gold standard 
for neuroblastoma diagnosis, tissue biopsy presents significant challenges, including the risk of incomplete 
sampling or rupture of tumors, as well as considerable safety concerns. In some cases, patients may require 
surgical intervention under general anesthesia. Therefore, the development of novel diagnostic modalities to 

1Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 
450000, China. 2Department of Electronic information, Zhengzhou University Cyberspace Security College, 
Zhengzhou450000, Henan, China. 3Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou 
University, Zhengzhou 450000, Henan, China. email: zhd1000@126.com

OPEN

Scientific Reports |        (2025) 15:14652 1| https://doi.org/10.1038/s41598-025-99451-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-99451-5&domain=pdf&date_stamp=2025-4-26


effectively differentiate among the various clinical phenotypes of neuroblastoma is essential for optimizing 
therapeutic management.

Deep learning models have profoundly impacted various areas of medical informatics, especially in 
applications based on computer vision. Numerous researchers have developed a range of deep learning models 
to address diverse medical tasks, including assisted diagnosis, disease screening, and lesion detection3. Artificial 
intelligence (AI)-driven deep learning algorithms are widely used in medical informatics for their outstanding 
data processing capabilities. Notably, these algorithms have demonstrated considerable advancements in 
tumor detection, diagnosis, and characterization. For instance, Mathivanan et al. employed transfer learning 
techniques to achieve an impressive accuracy of 99.75% in the detection of various brain tumors4. Furthermore, 
AI plays a pivotal role in surgical planning by accurately delineating tumor boundaries and normal tissues, 
thereby facilitating a balance between intervention and the preservation of quality of life. Furthermore, AI can 
predict complications, recurrence rates, and treatment responses. It can guide optimal follow-up strategies and 
provide personalized recommendations to patients through customized screening programs5. However, it is 
noteworthy that there is a scarcity of deep learning models specifically designed for the detection and diagnosis 
of extracranial tumors. This study aims to address this gap by focusing on the detection and diagnosis of 
extracranial neuroblastoma across different subtypes, utilizing an enhanced deep learning-based YOLO (You 
Only Look Once) model. The YOLO model is a sophisticated deep learning framework characterized by its 
robust image analysis and target detection capabilities, enabling the localization of multiple targets within a 
single image6. The YOLO algorithm operates as an end-to-end, single-stage prediction model based on a unified 
neural network, allowing for direct predictions of coordinates and object positions from input images. This 
model exhibits superior universality and transferability compared to traditional convolutional neural networks 
(CNNs)7. Consequently, the YOLO model holds significant promise for applications in medical classification 
and diagnostic tasks.

To date, there has been no available CT dataset for neuroblastoma that is suitable for classification tasks.
The primary contributions of this paper are fourfold.

	(1)	 An NB-CT dataset comprising 233 cases was developed for the classification of neuroblastoma. This dataset 
includes 141 patients diagnosed with neuroblastoma, 37 patients with ganglioneuroma, and 55 patients si-
multaneously possessing ganglioneuroblastoma. In comparison to other datasets, our dataset offers several 
advantages: it encompasses a larger number of cases, integrates multiple classification tasks, and is exclu-
sively focused on the NB-CT domain.

	(2)	 The YOLOv8-IE model is developed based on the YOLOv8 architecture to integrate both global and local 
information for the classification of neuroblastoma. The classification results obtained from the NB-CT 
dataset indicate that the YOLOv8-IE model outperforms the baseline model.

	(3)	 The results highlight the effectiveness of the proposed model in classifying extracranial neuroblastoma, 
suggesting its potential to improve diagnostic accuracy in medical image analysis.

	(4)	 The proposed model represents a significant advancement in the field of neuroblastoma diagnosis, indicat-
ing that artificial intelligence has the potential to transform the existing paradigm of medical diagnosis.

This paper is organized in the following manner. In Section “Related work”, we provide a review of the relevant 
literature. Section “Materials” outlines the specific process involved in constructing our dataset, along with 
the associated treatments. Section “Methods” details the methodology employed for conducting benchmark 
experiments on this dataset, as well as our proposed YOLO-IE method. Section “Results” presents an analysis of 
the experimental results. Section “Discussion” encompasses the discussion segment of this paper, while Section 
“Conclusion and prospect” concludes with a summary of findings and suggestions for future research.

Related work
Image enhancement
In this study, we employ the Image Data Generator, a pivotal technology, to augment the dataset for training 
a deep learning model aimed at the diagnosis of neuroblastoma. By generating modified copies of images that 
incorporate noise, blurring, scaling, gamut transformations, equalization, and color dithering, the model is 
exposed to a broader spectrum of variations, thereby enhancing its capacity to process novel data. This is critical 
for variability in medical imaging, especially in data-limited medical fields. An illustrative example is presented 
in Fig. 1, which displays an image prior to and following the application of blurring.

This enhancement strategy contributes to the acquisition of a more extensive and diverse training dataset, 
which facilitates improved generalization of the model across different scenarios. The utilization of the Image 
Data Generator during the training of models offers two primary advantages. Firstly, it ensures that deep learning 
models are exposed to a more enriched training set, which aids in the learning of intricate patterns and features. 
Secondly, the automatic generation of augmented images diminishes the risk of model overfitting and enhances 
the model’s resilience to variations in input, thereby augmenting its robustness. This enhancement-oriented 
approach has been acknowledged for its effectiveness in improving the overall performance of deep learning 
models, consequently enhancing their accuracy and adaptability in real-world applications8.

Attention mechanisms
The attention mechanism has been proposed to mitigate the computational complexity associated with image 
processing while simultaneously enhancing performance by employing a model that concentrates on specific 
regions of an image rather than the entirety of the image9,10. Attention mechanisms have been applied across 
various visual tasks, including image classification11, target detection12, semantic segmentation13, 3D vision14, 
and so on. Existing attention methods can be categorized into three primary types: channel attention15, spatial 
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attention16, and combined channel and spatial attention17. Channel attention addresses the issue of determining 
which information warrants focus, whereas spatial attention pertains to identifying the specific locations that 
require attention. Spatial attention emphasizes global location information over local location information to 
resolve the issue of spatial positioning. Medical images, known for their high resolution and intricate details, 
offer opportunities to improve the attention mechanism’s ability to focus on specific regions. This is particularly 
important for detecting tumor targets that may appear randomly within the context of this study.

Characteristic pyramid network architecture
Feature Pyramid Network (hereinafter referred to as FPN) is a network architecture designed to construct multi-
scale feature representations, primarily addressing the challenges posed by variations in target scale in tasks such 
as object detection and image segmentation. FPN generates multi-scale feature representations enriched with 
semantic information by integrating feature maps across different scales, so as to improve the performance of the 
model in detecting or segmenting targets at different scales. Li et al. introduced the Cross-Layer Feature Pyramid 
Network (CFPN), which integrates multi-scale features from different levels into feature maps, which can access 
both high-level and low-level information for a more comprehensive contextual understanding. Direct cross-
layer communication can improve the progressive fusion of salient target detection and reduce the loss of 
important information during the feature fusion process18. Furthermore, the Quasi-Balanced Pyramid Network 
introduced by Song et al. utilizes an implicit function to model a balanced state of the feature pyramid at infinite 
depth, creating a more realistic convergence state model that significantly improves network performance19. 
Furthermore, Dang et al. proposed a new Hierarchical Attention Feature Pyramid Network (HA-FPN), which 
employs multi-scale convolutional features and self-attention mechanisms to capture contextual information 
among markers. The Channel Attention Mechanism (CAM) is utilized to select channels with rich information, 
thereby reducing the loss of channel data. HA-FPN markedly improves the accuracy of bounding box detection, 
leading to enhanced recognition and localization of target objects20. Medical images often present at various 
scales (e.g., cells, tissues, organs) exhibit distinct features and sizes, necessitating reliance on global and local 
information. This scenario highlights the potential for further advancements in the feature pyramid structure.

YOLO
YOLO models are widely used in target detection, computer vision, and other fields. For example, Gope et 
al. compared different versions of the YOLO model and found that YOLOv8 showed excellent performance 
in detecting green coffee beans21. YOLO models are also widely used in the medical field. Rong et al. used 
a histology-based YOLO detection model (HD-YOLO), a new method for significantly accelerating the 
segmentation of cell nuclei and TME quantification. The study demonstrated that HD-YOLO outperforms 
existing WSI analysis methods in terms of nuclei detection, classification accuracy, and computation time. 
The advantages of the system were validated on three different tissue types: lung, liver, and breast cancer. For 
breast cancer, the nuclei feature of HD-YOLO was more significant in terms of prognostic significance than 
both estrogen receptor status and progesterone receptor status by immunohistochemistry22. Xie et al. proposed 
SMLS-YOLO, an instance segmentation method based on YOLOv8n-seg. The study demonstrated that SMLS-
YOLO has a promising application in image segmentation of pathologic myopia23. Zhang et al. proposed an 
automatic model (MA-YOLO) for MA detection in fluorescein angiography (FFA) images. The results showed 
that the MA-YOLO model had the best performance in MA detection with the best metrics including recall, 
precision, F1 score, and AP of 88.23%, 97.98%, 92.85%, and 94.62%, respectively. The proposed MA-YOLO 
model is generally suitable for the automatic detection of MA in FFA images, which helps ophthalmologists 
diagnose the progression of diabetic retinopathy24.

Fig. 1.  Picture enhancement (A) Picture before blurring. (B) Picture after blurring.
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In addition to this, the YOLO model has also been applied in the field of tumor detection and diagnosis. 
Dinesh et al. aimed to analyze the medical imaging data (mainly CT scans) by analyzing the medical data, 
and using a convolutional neural network (CNN) and a CNN based on the YOLO model. YOLO-based CNN 
(YCNN) model to identify important features and cancerous growths in the pancreas, to create a deep learning 
based system for early prediction of pancreatic cancer. The YCNN method was shown to perform well by a 
percent accuracy compared to other modern techniques in a thorough review of comparative findings25.

Materials
Data collection
The study was conducted in accordance with the guiding principles outlined in the Declaration of Helsinki. Due 
to the retrospective nature of the enrollment process, the Ethics Committee of the First Affiliated Hospital of 
Zhengzhou University agreed that we waived informed consent.The study protocol received approval from the 
Ethics Committee of the First Affiliated Hospital of Zhengzhou University (2024-KY-1520).

We collected electronic medical record data from patients diagnosed with neuroblastoma at the First 
Affiliated Hospital of Zhengzhou University between January 2019 and January 2024. The inclusion criteria for 
cases were as follows: (1) Pathologically confirmed diagnoses of neuroblastoma, ganglion cell neuroblastoma, 
and both neuroblast and neuroectodermal components. (2) Completion of enhanced computed tomography 
(CT) examinations at our hospital prior to surgery, which included the non-contrast-enhanced phase (NC 
phase), arterial phase (ART phase), and portal venous phase (PV phase). The exclusion criteria were as follows: 
(1) An interval exceeding 90 days between pathological findings and preoperative CT; (2) Poor image quality 
resulting in a lack of clarity; (3) Absence of specific staging in preoperative enhanced CT. We meticulously 
screened the cases in accordance with the established inclusion and exclusion criteria and incorporated them 
into the diagnostic dataset.

CT acquisition protocol
All patients underwent either 16-slice or 64-slice spiral computed tomography (CT). Each patient fasted for more 
than four hours prior to the CT scan. Due to significant individual differences among children, the parameters 
for contrast-enhanced CT (CECT) may vary. The key parameters include:

	– Detector collimation: 1 mm.
	– Pitch: 0.9.
	– Gantry rotation: 0.5 s.
	– Tube voltage: 80–120 kV.
	– Tube current: 110–240 mA.
	– Matrix size: 512 × 512.
	– Slice thickness: 0.625–5 mm.
	– Reconstruction interval: 1 mm.

Scans were performed at fixed equilibrium times of 25 s and 65 s during the arterial and portal venous phases, 
respectively, following the intravenous injection of 100 mL of iodinated contrast at a rate of 3 mL/s using an 
autoinjector. The polyphase-enhanced CT images were exported from the Image Archiving and Communication 
System (PACS) and saved as BMP files. We manually extracted the three-phase CT image slice that displayed 
the largest cross-sectional area of the tumor, which was then used as the CT feature image for the corresponding 
patient. Finally, we applied a transformation function to normalize all CT images and resized them to 224 × 224 
pixels to meet the input requirements for the model.

Image labeling
YOLO (You Only Look Once) is a deep learning algorithm utilized for target detection and classification. 
Consequently, it is essential to manually delineate the target regions, as illustrated in Fig. 2. We employed a 
labeling tool developed in Python to annotate the tumor lesion regions in all computed tomography (CT) 

Fig. 2.  Picture annotation (A) Image prior to labeling. (B) Image following the application of labels.
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images. To ensure the accuracy of the annotations, two radiologists, each possessing over ten years of clinical 
experience, were engaged to label each case independently.

Methods
Inverse residual attention module (iRMB)
Inverse Residual Attention Module (iRMB) is a deep learning architecture designed for image classification and 
object detection, which integrates the benefits of both inverse residual and attention mechanisms. In iRMB, 
the term refers to the inversion of the conventional residual block, where the convolution operation and batch 
normalization are placed at the end of the block. This configuration enhances the model’s capacity for nonlinear 
representation while simultaneously reducing the number of parameters. Furthermore, iRMB also incorporates 
an attention mechanism that employs two parallel convolutional branches: one dedicated to global information 
extraction and the other to local information extraction. The outputs from these two branches are subsequently 
fused through adaptive pooling and a channel attention mechanism, enabling the model to prioritize significant 
features. The architecture of the model is illustrated in Fig. 3.

By integrating the lightweight characteristics of Convolutional Neural Networks (CNN) with the dynamic 
modeling capabilities of Transformers, the Inverted Residual Mobile Block (iRMB) is well-suited for intensive 
prediction tasks on mobile devices. The iRMB employs an inverted residual block design alongside the Meta-
Mobile Block. This approach not only extends the traditional Inverted Residual Block (iRMB) of CNNs to an 
attention-based model but also enhances the model’s flexibility and efficiency through the application of various 
scaling ratios and efficient operators. Consequently, this study incorporates the iRMB into the C2F board of 
YOLOv8, thereby enabling the model to focus more effectively on critical features26.

Neuroblastoma has a variety of imaging manifestations, and its tumor morphology may be irregular, 
sometimes with unclear borders, and may occur in various parts of the sympathetic nervous system, such as 
the adrenal glands, the neck, the chest, the abdomen, etc. The relationship between different parts and the 
surrounding tissues varies, which makes it difficult to accurately identify and classify the tumor. The relationship 
between the tumor and the surrounding tissues varies in different parts of the body, which increases the 
difficulty of accurate identification and classification. Tumors may have necrosis, hemorrhage, calcification, and 
other components that are intertwined in the image, making it difficult to accurately extract and analyze the 
features for classification and identification27. iRMB can capture multi-dimensional features, and can learn and 
extract neuroblastoma image features from both spatial and channel dimensions at the same time. For example, 
in CT images, attention can be paid to the spatial features such as shape, size, and location of the tumor, as 
well as the characteristics of different tissues and cell types associated with the tumor in the channel, so as 
to more comprehensively portray the characteristics of the tumor, and provide rich information for accurate 
identification. iRMB can highlight the key features, and through the attentional mechanism, automatically learn 
and amplify the feature information in the images of neuroblastoma, which is significant to the classification 
and identification, such as the information of the tumor in the channel, the information of the neuroblastoma 
in the image of the neuroblastoma. iRMB can highlight key features, through the attention mechanism, it can 
automatically learn and amplify the feature information in the neuroblastoma image that is important for 
classification and recognition, such as the edge of the tumor, the internal texture, etc., and at the same time, it 
suppresses the interference information in the background and irrelevant areas, so that the model focuses on the 
tumor features and improves the recognizability of the features28.

Centralized feature pyramid enhanced visual computing
The centered feature pyramid EVC module primarily facilitates the fusion of local and global features. It 
comprises two parallel interconnected components: a lightweight multi-layer perceptron (MLP) and a learnable 
visual centroid mechanism. The lightweight MLP is designed to capture global long-range dependencies, thereby 
extracting global information, while the learnable visual centroid mechanism focuses on preserving critical local 
region information from the input image. By integrating both global and local feature information, the EVC 
module effectively generates rich visual centroid data for subsequent global centralized conditioning (GCR). This 
data is instrumental in enhancing shallow feature conditioning, which can effectively obtain a comprehensive 

Fig. 3.  A schematic diagram illustrating the structure of the inverse residual block (iRMB).
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and discriminative feature representation. The introduction of the EVC module into the YOLOv8 architecture 
not only achieves efficient feature fusion, but also enhances the model’s accuracy.

Traditional feature fusion is achieved by multi-layer feature pyramids and multi-scale fusion, but this usually 
increases the loss of feature resolution and computational cost. The introduction of the CFP and EVC modules 
within the centralized feature pyramid of YOLOv8 enhances the quality of the feature pyramid while preserving 
low computational complexity. The CFP and EVC modules are designed to effectively manage targets of varying 
sizes while simultaneously emphasizing both globally and locally significant details. Consequently, YOLOv8 
demonstrates superior performance in detecting small-sized objects or targets within complex scenes, making 
it particularly suitable for intricate medical imaging classification tasks. The structure of YOLOv8 is illustrated 
in Fig. 429.

YOLOv8-IE
YOLOv8 represents a significant advancement in the domain of object detection, building upon the strengths 
of its predecessors within the YOLO series. As a result, YOLOv8 exhibits enhanced performance in identifying 
small objects or targets within complex scenes, making it especially well-suited for intricate medical imaging 
classification tasks. The architecture of YOLOv8 is depicted in Fig. 4. This innovative design not only enhances 
the model’s detection accuracy but also increases its adaptability. Furthermore, YOLOv8 employs a decoupled 
head structure to distinctly separate the tasks of classification and detection. The network architecture of 
YOLOv8 effectively extracts and fuses features by integrating design principles from CSPNet and PANet. 
Additionally, the decoupling of the head structure, along with the implementation of the DFL loss function, 
contributes to improved prediction accuracy and classification performance in relation to object localization. 
With these improvements, YOLOv8 can now perform exceptionally well in target detection tasks, obtaining 
excellent detection accuracy and speed30–33.

Neuroblastoma in the early stage is small in size, and the imaging performance may be atypical, only 
showing localized nodules or slight density changes, which are easy to be missed or misdetected. YOLOv8 
abandons the traditional anchor boxes, and directly predicts the center coordinates, width, and height of the 
target. This approach avoids the problem of missed or erroneous detection caused by the mismatch between 
the preset size and scale of anchor boxes in the early identification of neuroblastoma, and is more adaptable to 
the scale change and irregular shape of early neuroblastoma, and can locate the small target more accurately. 
Advanced neuroblastoma often invades the surrounding tissues and organs and develops distant metastasis, 
and the complexity of the tumor’s imaging manifestations makes it difficult to accurately determine the tumor’s 
origin and extent of invasion. Some metastatic tumors of other malignant tumors may also involve the common 
metastatic sites of neuroblastoma, such as the liver and other organs, and their imaging manifestations may be 
similar to those of neuroblastoma metastatic tumors, which increases the difficulty of classification. During 
the training process of YOLOv8, the mosaic data enhancement in the input module enables the model to 
better adapt to complex neuroblastoma images with different morphologies, sizes, and locations. The multi-
scale prediction of YOLOv8 can predict the target at multiple scales, so as to extract more effective features 
and improve the detection accuracy of neuroblastoma. Due to the fact that ganglioneuroblastoma has both 
neuroblastoma and ganglioneuroma components, the imaging performances are complicated and diverse, and 
it is easy to misdetect it as simple neuroblastoma or ganglioneuroblastoma. Path Aggregation Network (PANet) 
of YOLOv8 is used as a feature fusion module to fuse the features of different levels of the backbone network of 
the model, transfer the semantic information of the high-level features to the low-level network, and at the same 

Fig. 4.  A schematic diagram illustrating the structure of the centralized feature pyramid within the EVC 
framework.
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time, transfer the semantic information of the low-level features to the low-level network. Network and transfer 
the semantic information of the low-level features to the low-level features to the high level, so that the model 
can learn richer and more representative target features, and thus improve the detection ability of ganglion cell 
neuroblastoma27,34–36.

Given the benefits of YOLOv8 for detection and classification tasks, we improved the YOLOv8 framework by 
adding the centered feature pyramid (EVC) structure and the inverse residual attention module (iRMB) in the 
c2f slab. The integration of these two components facilitates the efficient detection of tumor targets. The specific 
architecture is illustrated in Fig. 5.

Results
Parameter configuration
In this experiment, all models were trained on the Ubuntu 18.04 operating system. The GPU utilized was the 
NVIDIA GeForce RTX 4090, which is equipped with 24 GB of video memory. The CUDA version employed was 
11.1, while Python version 3.8 and PyTorch version 1.9.0 were used as the deep learning framework.

Utilizing a computed tomography (CT) dataset of neuroblastoma patients admitted to Zhengzhou 
University’s First Affiliated Hospital between 2019 and 2024, we examined the identification and categorization of 
neuroblastoma in this study. The dataset included 141 cases of neuroblastoma, 37 cases of ganglioneuroblastoma, 
and 55 cases of both neuroblast and neuroectodermal components, as detailed in Table  1. Frame-by-frame 
labeling of the CT images was done with great care; neuroblastoma was labeled as “NT”, ganglioneuroma as 
“GLA”, and ganglioneuroblastomaas “GNT”. Out of the tagged photos, 38,971 images and their associated 
JSON files were produced. The dataset was partitioned into training, testing, and validation sets in a ratio of 
8:1:1, resulting in 27,279 images for the training set, and 5496 images each for the test and validation sets. The 
experimental parameters for the training process are presented in Table 2. The experimental workflow of this 
study is illustrated in Fig. 6.

Evaluation of indicators
mAP0.5
Target detection algorithms are typically assessed using metrics such as Precision, Recall, mean Average Precision 
at IoU threshold 0.5 (mAP0.5), and mean Average Precision across multiple IoU thresholds (mAP0.5:0.95). 
Precision quantifies the likelihood that an image is accurately detected among samples with positive predictions, 
while Recall indicates the probability that all targets within the image are correctly identified among samples 
with true positive predictions. The mean Average Precision (mAP) serves as a comprehensive measure of the 
effectiveness of the target detection model. The specific formulas for these indices are presented below. In 
Eqs.  (1) and (2), true positives, which refer to the total number of target images accurately identified by the 

Tumour subtypes Quantity Percentage

Neuroblastoma 141 60.5%

Ganglioneuroma 37 15.8%

Ganglioneuroblastoma 55 23.6%

Table 1.  The statistical data for the NT-CT dataset.

 

Fig. 5.  A schematic diagram illustrating the structure of the YOLOv8-IE model.
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Fig. 6.  A schematic diagram illustrating the process employed in this study.

 

Parameter name Parameter values

Initial learning rate 0.001

Batch size 16

Momentum 0.937

Non-extremely suppressed 0.5

Learning rate decay factor 0.1

The number of iterations 300

Table 2.  Description of network parameters.
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model. False positives represent the total number of target images incorrectly identified as positive by the model. 
False negatives correspond to the total number of target images that were not identified as positive by the model. 
Furthermore, Eq. (3) represents Precision, the Recall rate, and the total number of sample categories.

	
P recision = T P

T P + F P
� (1)

	
Recall = T P

T P + F N
� (2)

	
mAP =

∑N

n=1

∫ 1
0 p(r)dr

N
� (3)

Confusion matrix
The confusion matrix offers a comprehensive overview of the results, detailing the counts of true positives, true 
negatives, false positives, and false negatives for each category. This matrix provides valuable insights into the 
model’s performance across various categories. The P-R curve serves as another visual representation of the 
test machine’s performance. By analyzing the shape and dynamics of the curves, one can assess the model’s 
performance in terms of precision and recall at different thresholds, thereby facilitating the selection of the 
optimal threshold for prediction.

F1 curves
F1 curves are usually obtained by calculating F1 scores at different confidence thresholds. In object detection, a 
confidence threshold is used to determine whether a prediction is considered valid object detection. The abscissa 
usually represents the confidence threshold, which generally ranges from 0 to 1. As the confidence threshold 
increases, the number of positive examples (detected objects) predicted by the model will increase. The ordinate 
represents the F1 score, which is an indicator that combines precision and recall. Its value is also between 0 and 
1. The higher it is, the better the balance between precision and recall of the model is.

The loss function
In the YOLO model, the loss function is mainly composed of three parts: bounding box loss, class loss, and 
confidence loss. The abscissa usually represents the iteration of the training (Epochs) or the number of training 
steps. With the abscissa, the model is constantly training and updating parameters. The ordinal coordinate 
represents the loss value, which is a synthesis of position loss, category loss, and confidence loss. The lower the 
loss value, the closer the predicted results of the model are to the real results, and the better the performance of 
the model. Figure 7 below shows the loss curve of our proposed model YOLO-IE.

Fig. 7.  YOLO-IE-loss graph.
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The visual presentation of the prediction results
The visual presentation of the prediction results of the model is also essential. It shows how the model predicts 
the tumor target in the image in a batch of the validation set. In this image, we can visually see which tumors the 
model believes are in the image, as well as the location and category of these tumors in the image.

Analysis and comparison of results
In this paper, we present a series of enhancements to the YOLOv8 model, culminating in the development of a 
high-precision variant, designated as YOLOv8-IE. The mean Average Precision (mAP) of the YOLOv8-IE model 
is 89.3%, representing a substantial improvement over the original YOLOv8 model, which achieved a mAP of 
81.4%. This reflects an enhancement of 7.9% compared to the pre-improved version. Notably, we also evaluated 
the performance of YOLOv8-iRMB, which incorporates the iRMB module independently, as well as YOLOv8-
EVC, which integrates the EVC module independently.

The results indicate that the mean Average Precision (mAP) of the YOLOv8-iRMB model is 82.2%, 
which represents an improvement of 0.8% over the baseline model. This enhancement may be attributed to 
the inverse residual structure, which reduces computational demands while simultaneously increasing the 
model’s expressiveness. This is achieved by initially expanding the number of channels before performing the 
convolution operation, in contrast to traditional inverse residual architectures. Such a structure effectively 
preserves the feature information of the input image and facilitates the detection of subtle lesion characteristics, 
making it particularly suitable for medical classification tasks. Furthermore, the model incorporates an attention 
mechanism that adaptively focuses on critical regions, such as lesion areas or key features, within the input 
image. This not only bolsters the model’s robustness and generalization capabilities when dealing with complex 
medical image data but also significantly enhances the representation of lesion features, thereby improving 
classification accuracy.

The mAP of the YOLOv8-EVC model is reported at 85%, which is 3.6% higher than that of the baseline 
model. This improvement is attributed to the centered feature pyramid structure, which effectively extracts 
features at various scales, thereby enhancing the representation of objects of differing sizes and shapes within the 
image. In the context of medical classification tasks, this capability allows the model to more effectively capture 
multi-scale features of the lesion region, thereby improving classification accuracy. Additionally, the centered 
feature pyramid structure facilitates the fusion of features across different scales, optimizing the utilization of 
multi-scale information present in the image. This comprehensive understanding of the lesion area contributes 
to increased reliability in classification outcomes. The YOLOv8-IE model combines the benefits of the centered 
feature pyramid with the inverse residual iRMB, showing notable gains in the diagnostic tasks related to 
neuroblastoma classification and detection. The overall performance results of the four sub-models, as evaluated 
on the training and validation sets, are presented in Table 3.

The confusion matrix is a specific square tabular representation utilized primarily for visualizing the 
performance of algorithms, particularly in classification tasks. It offers an intuitive framework for understanding 
the accuracy of model predictions, the nature of errors, and the degree of confusion among categories. This 
matrix provides a comprehensive overview of model performance. Table 4 contains the formulas related to the 
confusion matrix, where TP denotes true positives, FP represents false positives, FN indicates false negatives, 
and TN signifies true negatives. In this context, the tumor categories were systematically labeled, with each letter 
identifier corresponding to a specific tumor type. This systematic labeling approach provides a clear indication 
of the classification outcomes of the model. A detailed examination of the confusion matrix reveals that the 
performance of the YOLOv8-IE model is commendable. Specifically, the model accurately identified 5225 
images categorized as “NT”, classified 1127 images as “GNT”, and recognized 460 images as “GLA”, as illustrated 
in Fig. 8. The Precision-Recall (P-R) curve for the proposed model is shown in Fig. 9.

The F1 curve can be used to compare the four YOLO models we proposed (such as YOLOv8, YOLOv8-iRMB, 
YOLOv8-EVC, YOLOv8-IE, etc.). Under the same data set and task, we compared their F1 curves and found that 
in this task, the YOLO-IE model has better overall performance in precision and recall (Figs. 10, 11).

Positive projections Predicting negative numbers

Actual positive numbers TP FN

Actual negative numbers FP TN

Table 4.  Formulas for the confusion matrix.

 

Submodels Pr Rc mAP-0.5 mAP-0.5:0.95

YOLOv8 0.82 0.74 0.81 0.49

YOLOv8-iRMB 0.82 0.76 0.82 0.54

YOLOv8-EVC 0.85 0.77 0.85 0.57

YOLOv8-IE 0.86 0.84 0.89 0.72

Table 3.  The comprehensive training outcomes are derived from both the training and validation datasets.
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Multi-model comparison experiments
In order to verify the detection performance of the proposed model for neuroblastoma subtypes, the model is 
compared with the current mainstream targeting algorithms SSD, Faster R-CNN, YOLOv3-tiny, YOLOv5-s, 
YOLOv7-tiny, YOLOv10, and the improved YOLOv8-IE based on the same dataset with the experimental 
environment. The experimental results are shown in Table 5.

SSD is a classical single-stage target detection and classification model. It usually uses pre-trained 
convolutional neural networks such as VGG16, Res Net, Mobile Net, etc., as the feature extractor, and extracts 
the feature maps of the image in different layers of the base network to obtain the multi-scale features. Faster 

Fig. 9.  The Precision-Recall (P-R) curves for the YOLOv8-IE model.

 

Fig. 8.  Confusion matrix. (A) The YOLOv8 baseline model. (B) The YOLOv8-iRMB model after the 
introduction of the inverse residual attention iRMB in YOLOv8. (C) The YOLO-EVC with the introduction of 
the centred eigenpyramid EVC module. (D) The YOLOv8-IE.

 

Scientific Reports |        (2025) 15:14652 11| https://doi.org/10.1038/s41598-025-99451-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 11.  Visualization of YOLO-IE model prediction results.

 

Fig. 10.  F1 curves of four models. (A) YOLOv8. (B) YOLOv8-iRMB. (C) YOLOv8-EVC, DYOLO-IE.
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R-CNN is a classical two-stage target detection algorithm, which usually uses pre-trained deep convolutional 
neural networks such as VGG16, Res Net, etc., as the backbone for feature extraction. It usually uses pre-trained 
deep convolutional neural networks such as VGG16, Res Net, etc., as the backbone for feature extraction. After 
a series of convolutional layers and pooling layers, different levels of feature maps are obtained.

Compared with Faster-RCNN and SSD, YOLO-IE has less parameter counts and computational power, while 
Precision, Recall, and mAP are greatly improved, and mAP is improved by 14% and 7%, respectively. At the 
same time, Precision, Recall, and mAP are greatly improved, and mAP is improved by 14% and 7% points, 
respectively. YOLO-IE is lower than YOLOV3-tiny in terms of parameter and computation, and the mAP value 
is 7% points higher than that of YOLOv3-tiny, which is an obvious improvement in precision. YOLO-IE is more 
accurate than YOLOv5-s. YOLOv7-tiny and YOLOv10, and YOLOv7-tiny and YOLOv10 are more precise than 
YOLOv7-tiny, YOLO-IE, compared with YOLOv5-s, YOLOv7-tiny and YOLOv10, the number of parameters 
and computation amount are slightly increased, but the mAP accuracy is increased by 3%, 6%, and 5% points, 
respectively, which improves the accuracy of the detection and meets the demand of real-time detection on 
the premise of slightly increasing the number of parameters and computation amount. In summary, YOLO-
IE has excellent performance in terms of parameter count and accuracy, and also has certain advantages in 
terms of computational resources and storage space. YOLO-IE can be applied to the detection of neuroblastoma 
subtypes. In this paper, we summarize the results of YOLO-IE.

Discussion
It is widely recognized that a definitive diagnosis is a crucial prerequisite for the individualized treatment of 
patients with tumors. Complete surgical resection of primary tumors constitutes a significant component of 
the treatment for abdominal solid tumors in pediatric patients and serves as a vital method for establishing a 
definitive diagnosis37. Pathological examination of surgically resected specimens is currently regarded as the 
gold standard for diagnosing neuroblastoma; however, this approach is more invasive. Distinguishing between 
neuroblastoma and ganglioneuroma, as well as identifying cases with ganglioneuroblastoma that show favorable 
clinical regression, poses challenges due to their similar clinical manifestations and laboratory findings. To address 
this issue, we have developed a preclinical model utilizing multiphase enhanced computed tomography (CT) for 
the preoperative detection and classification of neuroblastoma. This advancement enhances the management of 
neuroblastoma and represents a groundbreaking development in the field, potentially transforming our clinical 
diagnostic paradigm through the application of artificial intelligence.

The YOLO model plays a crucial role in this study by facilitating image segmentation, specifically by 
delineating tumor regions from background areas. However, tumor regions within an image are often continuous 
and exhibit complex geometries. Consequently, the target frames identified by the model, whether through 
automated detection or manual labeling, frequently do not correspond precisely to the actual tumor lesion areas. 
To develop models that achieve higher precision and recall in tumor region segmentation, convolutional neural 
network (CNN) architectures, such as U-Net or Deep Lab, may be employed Nevertheless, the object region 
labeling associated with these models is generally more intricate than that of the YOLO model.

The YOLO model is an advanced object detection algorithm that has demonstrated good performance in 
the classification and diagnosis of neuroblastoma subtypes, but it also has some limitations. The acquisition 
of medical image data is often subject to various restrictions, such as patient privacy protection and high data 
collection costs. Compared to other fields, the number of medical images available for training is relatively 
small, which may lead to the YOLO model being unable to fully learn the characteristics of various diseases 
during the training process, thereby affecting its diagnostic accuracy and generalization ability. To pursue real-
time detection speed, the YOLO model has undergone certain simplifications in its network structure, which 
may result in insufficient learning capability for subtle lesion features in abnormal sample images. Lesions in 
medical images often exhibit diversity and complexity; for instance, the morphology, size, location, boundaries 
of tumors, and their relationship with surrounding tissues all require precise identification and judgment. The 
YOLO model may not be able to fully capture these abnormal feature information34.

Medical diagnosis relies not only on image information but also requires a comprehensive assessment that 
includes the patient’s clinical symptoms, medical history, family history, and other information. The YOLO 
model focuses solely on object detection within images and cannot directly integrate other clinical context 
information, which somewhat limits its practical application value in clinical diagnosis. In the medical field, 
doctors need to have a clear understanding and explanation of the diagnostic results in order to communicate 
them to patients and other healthcare personnel. However, as a deep learning model, the internal decision-

Model Params/M Flops/G mAP0.5 Size/MB

SSD 24.5 59.4 0.75 104.4

Faster-RCNN 165 47.9 0.82 186.5

YOLOv3-tiny 8.7 12.9 0.82 17.4

YOLOv5s 7.1 16.5 0.86 14.4

YOLOv7-tiny 6.02 13.0 0.83 12.3

YOLOv10 8.04 24.5 0.84 16.6

Ours 8.5 11.5 0.89 14.1

Table 5.  Multi-model comparison experiments.
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making process of the YOLO model is complex and difficult to interpret, making it challenging for doctors to 
intuitively understand how the model arrives at its diagnostic conclusions. This may affect the doctors’ trust and 
acceptance of the model’s results.

In summary, our proposed YOLOv8-IE model has an impressive accuracy of 89.3%. This suggests that the 
model can effectively identify and predict the presence of neuroblastoma cells in CT images, and is an important 
tool to assist diagnosis.

Conclusion and prospect
In this study, we developed the YOLOv8-IE model utilizing multiphase-enhanced computed tomography 
(CT) for the differential diagnosis of various subtypes of neuroblastoma. The YOLOv8-IE model represents 
a promising tool for clinicians, facilitating the clarification of tumor diagnoses and enabling a comprehensive 
assessment of the child’s condition. This capability can significantly inform clinical decision-making regarding 
treatment options, ultimately enhancing the overall prognosis for children diagnosed with neuroblastoma.

Future research endeavors could investigate the applicability of the proposed model to other imaging 
modalities, such as magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasound. 
Such exploration would not only yield a more comprehensive understanding of the model’s suitability and 
validity across a broader spectrum of medical imaging data but also enable a thorough evaluation of the model’s 
performance. Each imaging modality possesses distinct strengths and characteristics; thus, the exploration of 
multiple imaging modalities not only enhances the model’s capabilities but also has the potential to expand its 
impact within the realm of medical image classification. In conclusion, our YOLOv8-IE model demonstrates 
significant potential in advancing medical image classification and substantially improving clinical diagnostic 
processes. However, this study is not without limitations. It did not assess the model’s performance on alternative 
datasets, and the dataset employed may not adequately represent the full spectrum of patient types, which 
could lead to biased predictions. Additionally, the study did not address the costs associated with training 
and implementing the model, which may pose challenges for its application in clinical settings. Despite these 
limitations, future work will focus on enhancing the model’s precision and recall, exploring various model 
architectures to achieve higher performance metrics, and investigating the impact of U-Net on segmentation 
in CT images.

Data availability
The datasets generated and analyzed during the current study are not publicly available due to privacy and ethi-
cal restrictions; however, they can be obtained from the corresponding author upon reasonable request.
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