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Knee osteoarthritis (KOA) is a severe arthrodial joint condition with significant global socioeconomic 
consequences. Early recognition and treatment of KOA is critical for avoiding disease progression 
and developing effective treatment programs. The prevailing method for knee joint analysis involves 
manual diagnosis, segmentation, and annotation to diagnose osteoarthritis (OA) in clinical practice 
while being highly laborious and a susceptible variable among users. To address the constraints of 
this method, several deep learning techniques, particularly the deep convolutional neural networks 
(CNNs), were applied to increase the efficiency of the proposed workflow. The main objective of this 
study is to create advanced deep learning (DL) approaches for risk assessment to forecast the evolution 
of pain for people suffering from KOA or those at risk of developing it. The suggested methodology 
applies a collective transfer learning approach for extracting accurate deep features using four pre-
trained models, VGG19, ResNet50, AlexNet, and GoogleNet, to extract features from KOA images. The 
numeral of extracted features was reduced for identifying the most appropriate feature attributes for 
the disease. The binary Greylag Goose (bGGO) optimizer was employed to perform this task, with an 
average fitness of 0.4137 and a best fitness of 0.3155. The chosen features were categorized utilizing 
both deep learning and machine learning approaches. Finally, a CNN hyper-parameter algorithm 
was performed utilizing GGO. The suggested model outperformed previous models with accuracy, 
sensitivity, and specificity of 0.988692, 0.980156, and 0.990089, respectively. A comprehensive 
statistical analysis test was performed to confirm the validity of our findings.
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Osteoarthritis (OA) is one of the most frequent and debilitating chronic illnesses, accounting for the fourth 
major cause of disability worldwide1, with the knee being the most usually smitten joint. Pain is the defining sign 
of knee OA, driving patients to seek medical care and contributing to a lower quality of life2. Knee osteoarthritis 
(KOA) is a prevalent chronic ailment recognized as degenerative knee joint arthritis that results from 'wear and 
tear’ within the ligaments that connect the femur and tibial bone3,4.

Frequently, the disease is associated with gradual structural degradation of articular cartilage, causing 
patients to suffer permanent physical impairment. Knee OA has a significant global occurrence rate, as per the 
latest literature review on the epidemiology of OA5.

Older age, obesity6, and prior injury to the knee7 are all considered risk factors for OA, which results in pain 
that impairs function and lowers life’s quality. Total knee replacement (TKR), the definitive treatment for OA, is 
costly and has a short lifespan, particularly for those who are obese8. Consequently, early recognition of OA in 
the knee is essential for starting therapy, like losing weight and workouts, which effectively stop the evolution 

1Department of Communications and Electronics Engineering, MISR Higher Institute for Engineering and 
Technology, Mansoura 35511, Egypt. 2Department of Communications and Electronics Engineering, Delta 
Higher Institute of Engineering and Technology, Mansoura 35111, Egypt. 3Department of Electronics and 
Communications Engineering, Faculty of Engineering, Mansoura University, Mansoura 35511, Egypt. 4Department 
of Electronics and Communications Engineering, Horus University, New Damietta 34517, Egypt. 5Applied Science 
Research Center, Applied Science Private University, Amman, Jordan. email: amal.galal@std.mans.edu.eg;  
sayed.kenawy@dhiet.edu.eg

OPEN

Scientific Reports |        (2025) 15:16815 1| https://doi.org/10.1038/s41598-025-99460-4

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-99460-4&domain=pdf&date_stamp=2025-5-13


of OA in the knee and delay TKR6,9. Furthermore, several studies have emphasized the negative impact of knee 
osteoarthritis on the economy in terms of GDP loss10, direct healthcare cost burden11, and yearly productivity 
cost of employment loss12,13.

KOA affects approximately one in every three individuals14,15. More than half of persons aged 65 and up have 
evidence of osteoarthritis, including that one joint. According to the World Health Organization’s (WHO) 2016 
osteoarthritis report, 9.6% of men and 18.0% of women past the age of sixty had typical osteoarthritis. Among 
them, 80% have mobility issues, and 25% find it challenging to carry out their everyday duties16. According to 
the United Nations, 130 million people will suffer from KOA by 2050, with 40 million seriously crippled by 
the condition. KOA is one of the leading five factors that cause disability, posing a growing financial strain on 
society, mainly because of missed work hours and healthcare costs17. Figure 1 depicts the healthy knee joint 
and knee joint with osteoarthritis. Clinically, it is critical to diagnose this joint and determine the afflicted areas 
appropriately. X-ray, MRI, and CT modalities are utilized for scanning these areas to detect wear and tear, as well 
as other treatments like implanting and total knee replacement.

Radiography (X-ray) imaging is preferred for assessing OA18 because of its accessibility, cost-effectiveness, 
superior spatial resolution and contrast for tissues and bones. There are several forms of OA-related segmentation 
or categorization techniques to evaluate the knee that are broadly classed as classical approaches and deep 
learning (DL) approaches19–21. In current clinical procedures, OA intensity is typically assessed visually using 
radiography images, which are prone to inter-rater heterogeneity and time-consuming for big datasets22.

Deep learning (DL), a sophisticated form of artificial intelligence, is successfully used in various medical 
imaging tasks23. DL can potentially give a new technique for designing OA risk estimation algorithms that 
predict pain progression by extracting meaningful prognostic information from imaging scans in a timely and 
automated manner. CNN and other deep learning approaches automatically extract visual aspects from the 
model architecture through a sequence of transformations to enable the learning of complicated features24,25. 
CNN belongs to a deep learning technique that falls within the machine learning field of artificial intelligence 
(AI). CNNs are flexible, relatively simple, and slick for training, as a network learns during the tuning procedure 
using fewer parameters26. CNN’s overall design consists of a layer for input, hidden layers connected by a 
sequence of image filters, feed-forward network layers that show image filters on the input image, and an output 
layer wherein the feature is retrieved20,25. Integrating CNNs and transfer learning frameworks significantly 
improves the recognition of images for knee osteoarthritis.

This research intended to create and test algorithms for DL risk evaluation for forecasting the development 
of pain among individuals who have or are susceptible to osteoarthritis in the knee. DL approaches outperform 
conventional approaches based on clinical, demographic, and radiographic risk factors regarding pain 
progression prediction. In this paper, the images were processed, improved, and normalized. The suggested CNN 
and additional pre-trained algorithms were used for the feature extraction task, and a metaheuristic optimizer 
was employed to choose the best features among them. Lastly, apply the proposed deep neural network (DNN) 
architecture for categorizing these features.

The rest of the article is structured as follows: section "Related works" addresses recent research efforts in 
KOA diagnosis; Section "Material and methods" discusses the methodology for the suggested procedure and 
the feature selector models; Section "Evaluation criteria" illustrates the study’s significant findings; Section 
"Classification results and discussion" discusses the classification results and discussion; and section "Conclusion" 
discusses the study’s conclusion and suggestions.

Research contribution
This work addresses the challenge of automatically classifying osteoarthritis in the knee using X-rays. This study 
presents the following key contributions:

	 (1)	 A novel system is proposed to assist medical specialists in diagnosing KOA and classifying its severity as 
needed.

	 (2)	 The classification models’ accuracy is boosted by implementing pre-processing methods that use a high 
pass filter to filter images in the frequency domain, highlighting the texture of trabecular bone and increas-
ing classification accuracy.

	 (3)	 The impact of the dataset’s imbalanced distribution is minimized, and a rebalancing process is also pre-
sented, dramatically increasing classification accuracy.

	 (4)	 A DL model is proposed with the lowest misclassifications in the results.

Fig. 1.  The normal knee joint and knee joint with osteoarthritis27.
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	 (5)	 The thoughtful CNN model is applied to extract the features out of the images in the dataset.
	 (6)	 The significant features are selected by a bGGO optimizer.
	 (7)	 The selected features are classified by K-nearest neighbor (K-NN), a decision tree (DT), a Multi-layer Per-

ceptron (MLP) and a convolutional neural network (CNN) classifier.
	 (8)	 A CNN hyper-parameter model is executed with a GGO.
	 (9)	 A deep neural network (DNN) model is proposed for identifying the KOA features accurately.
	(10)	 The KOA recognition performance measures are evaluated against contemporary studies and pre-trained 

algorithms.

Related works
Some studies have presented methods for classifying Knee Osteoarthritis utilizing various techniques, although 
the results are far from optimal. New OA classification algorithms are evolving as deep neural network topologies 
evolve.

In 2016, Antony et al.28 suggested an innovative technique that uses a deep convolutional neural network 
(DCNN) to categorize the intensity of OA in the knees from radiographs. The outcomes on X-ray images and 
KL grade dataset demonstrate a notable advancement over the state-of-the-art. In place of template matching, 
they suggested utilizing horizontal image gradients to train a linear SVM quicker and more precise than template 
matching. The resulting classification accuracy was 59.6%.

In 2017, Antony et al.29 presented a cutting-edge technique that automatically recognizes knee joints 
using a fully convolutional neural (FCN) network. By the weighted ratio optimization of two loss functions, 
namely category cross-entropy and mean-squared loss, they trained convolutional neural networks (CNNs) to 
evaluate the severity of knee osteoarthritis. They achieved a mean squared error of 0.898 and a multiple classes 
categorization accuracy of 60.3%.

In 2018, Tiulpin et al.30 suggested an innovative approach to identifying and classifying knee OA using 
standard radiographs. They used the deep Siamese network structure to classify OA. This architecture’s original 
purpose was to learn a similarity measure between image pairings. Two branches comprise the entire network, 
one for each input image. A probability distribution of grades across photos was utilized to assess the graded 
CAD system. They also tested a well-adjusted ResNet-34 network. The average multiclass accuracy was 66.71%.

In 2018, Suresha et al.31 trained a pre-trained networks (ImageNet) through a training approach alternating 
among object-categorization and region-proposal network fine-tuning, as shared feature across both was 
predicted to increase prediction reliability. Knee regions that were manually labeled served as ground truth for 
the region-proposal network’s training. The accuracy of their multiclass categorization was 88.2%.

In 2019, Abedin et al.32 employed Elastic Net (EN) and Random Forests (RF) to develop predicting 
approaches utilizing patient evaluation information and CNN trained only on an X-ray dataset. The within-
subject association between the two knees was modeled using linear mixed-effects models (LMMs). The CNN, 
EN, and RF algorithms have root mean squared errors of 0.77, 0.97, and 0.94, respectively.

In 2019, Tiulpin et al.33 introduced an approach based on multimodal machine learning to forecast 
osteoarthritis progression that uses clinical examination findings, raw radiography data, and the patient’s 
previous health information. This approach was confirmed using an independent test collection of 3,918 knee 
pictures among 2129 participants. This approach produced an average precision (AP) of 0.68 (0.66–0.70) and an 
area under the ROC curve (AUC) of 0.79 (0.78–0.81).

In 2019, Chen et al.34 effectively deployed two deep convolutional neural networks for automated prediction 
of KOA and its degree of seriousness. The foundational X-ray scans for this approach were received from the 
OAI. The suggested method begins by recognizing the knee joints in the images utilizing a bespoke YOLOv2 
network. They could categorize knee X-ray images into seriousness classifications utilizing the KL grading 
system after fine-tuning DenseNet, VGG, ResNet, and InceptionV3. Their knee joint identification approach 
had a recall of 92.2% and a mean Jaccard index of 0.858, while their calibrated VGG-19 model detected knee 
osteoarthritis severity with 69.7% accuracy.

In 2019, PU Patravali et al.35 developed an approach to calculate cartilage area/thickness utilizing several 
form descriptors. The generated descriptors achieved an accuracy of 99.81% for the KNN classifier and 95.09% 
for the DT classifier.

In 2019, PU Patravali et al.36 introduced an innovative method to investigate several segmentation strategies 
for the early identification of OA. The experiment employed various segmentation techniques, such as Sobel 
and Prewitt edge segmentation, Otsu’s method of segmentation, and texture-based segmentation. The various 
statistical features were calculated, analyzed, and categorized. The achieved accuracies were 91.16% for the Sobel 
approach, 96.80% for Otsu’s approach, 94.92% for the texture approach, and 97.55% for the Prewitt approach.

In 2020, Thomas et al.37 sought to develop an automated system for diagnosing the degree of severity of 
KOA using radiography. Despite using a large dataset, the approach’s effectiveness was assessed by contrasting 
its results to the opinions of radiologists specializing in musculoskeletal disorders. The radiograph images were 
enhanced automatically and then fed into a CNN model. They achieved an F1 score of 70% and overall accuracy 
of 71% over the whole tested dataset.

In 2020, Leung et al.38 introduced a KOA classification deep-learning algorithm built on sufferers’ knee 
images with complete knee replacement surgery. They contrasted it with individuals who didn’t have KOA. To 
discriminate between KL-based grade classes, a ResNet34 model with cross-validation was employed. The study 
employed a dataset of 4796 photographs obtained from the OAI. The model suggested has an accuracy rate of 
72.7%. The restricted dataset size and transfer learning usage hampered the system’s ability to implement more 
accurately.
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In 2021, Javed et al.39 evolved Resnet-14, a residual network that has been pre-trained, to forecast KL grades 
from radiograph data. A multicenter dataset has been employed to validate the network’s performance. The 
network obtained 98% accuracy and 98% AUC.

In 2021, Shivanand S. Gornale et al.40 proposed a novel method for detecting osteoarthritis by identifying 
the region of interest. A database of 1,173 knee X-rays was collected and manually graded by two independent 
medical specialists using the Kellgren and Lawrence grading system. The computation was accomplished using 
the histogram of the orientated gradient method and the local binary pattern (LBP). The calculated characteristics 
were categorized with a decision tree classifier. The proposed approach had an accuracy of 97.86% and 97.61%.

In 2022, Ribas et al.41 suggested an innovative technique for detecting early knee OA based on complicated 
network modeling and statistical data. The proposed network technique allowed for modeling the primary 
properties of the X-ray pictures while also increasing the separation between the control and OA groups. The 
suggested technique’s accuracy was 81.69%.

In 2022, Teo et al.42 introduced pre-trained InceptionV3 and DenseNet201 networks using the OAI dataset 
for extracting features from the OAI data set, which is divided into five categories based on osteoarthritis 
intensity. The SVM classifier is employed to categorize the features of the deep learning framework. The accuracy 
rate for DenseNet201-SVM is 71.33%.

In 2023, C. Guida et al.53 suggested a fusion approach that blends three distinct types: MRI, X-ray, and the 
patient’s clinical data into a single structure, increasing accuracy over the methods utilized independently. The 
fusion architecture was constructed utilizing two systems from previous studies trained using a limited dataset. 
It blended a conventional CNN for X-rays and a unique 3D MRI model. The study’s conclusions indicated 
that the utilized approach received performance accuracy ratings of 76%, which was inadequate and had to be 
improved.

In 2024, Anandh Sam Chandra Bose et al.54 utilized a CNN approach to extract characteristics by clinical 
imaging data. They utilized sophisticated approaches like PSO and Genetic Bee Colony (GBC) to uncover 
significant characteristics for improving ML models. Comparing approaches with optimized features to 
those trained with direct CNN features reveals significant accuracy, sensitivity, specificity, PPV, and NPV 
improvements across various ML techniques, such as SVM, KNN, RF, and Linear Discriminant Analysis (LDA). 
Features that GBC chose achieved 99.15% accuracy in binary categorization tasks. In multiclass classification, 
GBC characteristics paired with RF achieved an accuracy of 98.91%.

In 2024, Muhammed Yildirim and Hursit Mutlu43 created a hybrid model by extracting features utilizing 
Darknet53, Histogram of Directional Gradients (HOG), Local Binary Model (LBP), and Neighborhood 
Component Analysis (NCA). The dataset included 1650 knee images divided into five categories: standard, 
doubtful, mild, moderate, and severe—the experimental investigations compared the suggested method’s 
performance to eight distinct CNN Models. The developed model had an accuracy rating of 83.6%.

Lately, deep learning algorithms are being used in medical imaging to increase the precision of disease 
diagnosis. CNNs have been utilized in several research to classify knee osteoarthritis as either standard or 
osteoarthritis reliably.

The researchers succeeded in achieving satisfactory outcomes with a variety of approaches and materials. 
Every researcher aims to achieve the promised precision of X-ray image analysis for earlier KOA detection. 
Another thing to consider is that most current studies were conducted using osteoarthritis initiative (OAI) 
or MOST datasets, with an imbalanced data distribution. This study differs from earlier studies in that it used 
a variety of approaches and hybrid materials to achieve high accuracy, as well as an applied data-balanced 
strategy. Because it is challenging to categorize KOA images correctly, the obstacle was overcome by extracting 
characteristics from many deep neural models, selecting the best one, and then classifying them. Table 1 
summarizes relevant studies concerning the diagnosis of knee osteoarthritis.

Material and methods
The steps involved in the proposed classification approach for knee OA diagnosis in this study are the gathering 
and preparation of data, the extraction and selection of features, and the recognition of image labels; this 
is illustrated in Fig. 2. A dataset of knee x-ray images has been downloaded. The gathered dataset was then 
subjected to the preprocessing procedures. Image enhancement techniques include frequency-domain filtering, 
histogram equalization, and sharpening. After the dataset has been collected and preprocessed, four common 
deep-learning approaches, AlexNet44,45, VGG1946, ResNet-5047,48, and GoogleNet49,50, were trained, evaluated, 
and contrasted with choosing the most effective one for detecting KOA instances. The chosen model received 
the processed images, and during training, their parameters were adjusted to improve accuracy. Then, features 
are extracted from the input images by the highest-performing model. The optimal feature collection is then 
found by processing the retrieved features using the suggested feature selection procedure. An optimized CNN 
classifier is trained to utilize the optimal set of features to determine the case of the input image. The following 
subsections will thoroughly explain the suggested framework’s methodology utilizing the KOA dataset.

Dataset description
The knee osteoarthritis graded data set provided knee X-ray images utilized in this study to train the proposed 
framework. The images are accessible on Kaggle27 and collected through the Osteoarthritis Initiative (OAI). 
There are a total of 3835 knee images, separated by two grades. In the dataset, all images are carefully assessed 
by competent clinicians as usual or osteoarthritis, with the distribution of each grade displayed in Table 2. The 
dataset’s images were scaled down to 224 × 224 pixels for easier processing by the model due to their uniform 
size.
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Data preparation
The data Preparation step is essential in analyzing images due to increased standards for high-quality data and 
consistency.

i. Data Augmentation and Balancing.
Figure  3 depicts the implementation of data enhancement methods on images to boost the dataset’s size 

while preventing overfitting. The expanded data set enhanced the model’s reliability and accuracy. The flipping 

References Method Model
Dataset 
(Images) Purpose Accuracy

Antony et 
al.28

Applied a Convolutional Neural 
Network (CNN) for categorization 
utilizing:
1. A CNN pre-trained model to extract 
fixed features
2. Fine-tuning to the pre-trained CNN

-Linear SVM and sobel horizontal 
image gradients as the features
-Imagenet
-VGG16
-BVLC Caffenet
-VGG-M-128

8892
Determined the degree of knee 
osteoarthritis automatically from 
radiographs by utilizing deep 
convolutional neural networks (DCNN)

-Fine-tuned 
network:
59.6%
-Linear SVM: 
94.2%(train)
95.2%(test)

Antony et 
al.29

Utilized a fully convolutional network 
(FCN) and a convolutional neural 
network (CNN) for simultaneous 
categorization and regression of 
localized knee images

CNN model (5 layers)

Two datasets:
1.
Osteoarthritis 
Initiative 
(OAI) 3146
2.Multicenter 
Osteoarthritis 
Study (MOST) 
1300

localized the knee joints automatically, 
then classified the images of the localized 
knee joints

-Detection: 100%
99.5%
-Classification:
60.3%

Tiulpin et 
al.30

Utilized a Deep Siamese Convolutional 
Neural Network fine-tuned resnet-34 network 5960

(OAI)
Used the Kellgren-Lawrence grading 
scale to automatically score the extent 
for knee OA

66.71%

Suresha et 
al.31 Used Deep learning approaches

-Imagenet (pre-trained model)
-Fine-tune the regional proposal 
network

7549
(OAI)

- Detected the knee-region
- Assessed the extent for knee 
osteoarthritis utilizing X-ray images

-Knee-region 
detection:
99.9%
-Classification:
88.2%

Abedin et 
al.32

Used a Convolution Neural Network 
(CNN)

-Linear mixed effect models (LMM)
, Elastic Net (EN) and Random 
Forests (RF)
-Convolution neural network (CNN)

4,796 Predicted the level of KOA seriousness 
utilizing X-ray images only

Root mean square 
error for the 
CNN, EN, and RF 
frameworks equals 
0.77, 0.97 and 0.94 
respectively

Tiulpin et 
al.33

-Used Multi-modal machine learning-
based model to predict OA progress
-Used a Deep Convolutional Neural 
Network (DCNN)

Gradcam attention maps 8846 Predicted structural OA progression

-Area under ROC 
curve (AUC) = 0.79 
(0.78–0.81)
-Average Precision 
(AP) = 0.68 
(0.66–0.70)

Chen et al.34
Implemented two deep convolutional 
neural networks (DCNN) to assess knee 
osteoarthritis’s seriousness (KOA)

-One-stage yolov2 algorithm
-Fine-tuned editions of Densenet, 
Resnet, VGG, and Inceptionv3

N/A
Detected knee joints and classified 
a detected knee joint images using a 
unique alterable ordinal loss

69.7%

Thomas et 
al.37

Used Convolutional neural networks 
(CNNs) Densenet 40,000

(OAI)
Developed an automated approach 
for assessing the seriousness of knee 
osteoarthritis using radiographs

71%

Leung et al.38 Used a deep learning framework Resnet34 with cross-validation 4796
(OAI) Classified knee osteoarthritis images 72.7%

Javed et al.39

Used a convolutional neural network 
(CNN) has six distinct directions 
utilizing class balance as well as data 
augmentation

Pre-trained residual network 
Resnet-14

917
(Clinical 
hospital center 
of Rijeka)

Detected anterior cruciate ligament 
damage at its early stage 98%

Ribas et al.41 Used a complex theory of networks for 
extracting textural features

-Support Vector Machine (SVM)
-K-Nearest Neighbors (k-NN)
-Linear Discriminant Analysis (LDA)

688
(OAI)

Presented a novel technique based on 
complex theory of networks concepts for 
extracting textural information linked to 
OA from radiographic knee X-ray images 
for early knee OA detection

81.69%

Teo et al.42 Used a deep DL model
-Pre-trained inceptionv3 and 
densenet201 frameworks
-SVM model

1,000
(OAI)

Extracted the features from OAI dataset 
and then classified OAI images 71.33%

Guida et al.53 Used a deep DL model CNN To classify OA severity 76%

Anandh Sam 
Chandra 
Bose et al.54

Used a deep DL model

-Ensemble TL-ACO
-Alex-Net
-custom Isr-Net
-k-means clustering based on PCA
-ACO optimizer

OAI To grade KOA SVM: 89.89%
KNN: 85.44%

Muhammed 
Yildirim 
and Hursit 
Mutlu43

Applied a DL model -HOG, LBP, and NCA models 1650 Classified the KOA images 83.6%

Table 1.  An overview of relevant literature.
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approach was used on the dataset. It is possible to build a significantly more extensive and diverse dataset to train 
the deep learning algorithm using the data augmentation method, making it possible to create additional images 
with minimum changes to the original ones. When these methods are applied, a model can comprehend the core 
characteristics of the images since it is exposed to a broader range of permutations. After data augmentation, 
the dataset contains 5132 images. Table 3 shows the ultimate dataset utilized to train the network for this 
investigation, and Table 4 summarizes the distribution of all datasets. These knee joints are categorized as train, 
validation, and test datasets.

Dataset split-up Grade Number of images % of total

Train
Normal 810 21.12%

Osteoarthritis 1540 40.15%

Validation
Normal 210 5.47%

Osteoarthritis 430 11.21%

Test
Normal 569 14.83%

Osteoarthritis 276 7.19%

Table 2.  Distribution of knee osteoarthritis dataset.

 

Fig. 2.  The general scheme for the suggested framework.

 

Scientific Reports |        (2025) 15:16815 6| https://doi.org/10.1038/s41598-025-99460-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The dataset has a highly uneven distribution; the standard class data is significantly less than the osteoarthritis 
class in the sets for training and validation, as the osteoarthritis class data is much less than the regular class in 
the testing set. To avert biasing the training results, the suggested framework attempts to ensure data balance 
by randomly choosing an equal number of images for every category. This process is known as “data balancing” 
Ideally, each class should have a detection rate that is nearly or the same. With a balanced dataset, a model can 
achieve higher detection rates, accuracy, and precision, as demonstrated in the abovementioned examples. To 
reduce the negative impact on the results., the flipping technique artificially rebalanced the dataset.

ii. Data Pre‐processing.
The frequency domain filter is applied to the images first, and the histogram is normalized to enhance the 

features of trabecular bone texture and improve recognition accuracy. Second, image sharpening is utilized in 
a customizable function to reduce noise and equalize histograms. Figure 4 depicts the workflow for the three 
primary processes: histogram normalization, frequency-domain filtering, and image sharpening.

The non-linear histogram normalization technique improves the filtered image’s contrast since most X-ray 
images in the OAI dataset have poor contrast. The image’s intensity is then returned52. Figure  5 depicts the 
pre-processing findings of the photographs. Equation  (1) illustrates the formula for performing histogram 
equalization on the images, where 'r' represents the input pixel’s value and 's' represents the output pixel’s value. 
'L' denoted the image’s highest pixel values. Equation (2) expresses the likelihood of rj intensity level occurrence, 
where nj is the numeral of pixels with rj intensity and ‘MN’ is the whole numeral of the image’s pixels.

	
sk = T (rk) = (L − 1)

k∑
j=0

pr(rj)� (1)

Dataset No. of images before augmentation No. of images after augmentation % of total

Normal 1589 2609 50.83%

Osteoarthritis 2246 2523 49.16%

Table 4.  Distribution of all dataset.

 

Dataset split-up Grade Number of images % of total

Training set
Normal 1620 31.56%

Osteoarthritis 1540 30.00%

Validation set
Normal 420 8.18%

Osteoarthritis 430 8.37%

Testing set
Normal 569 11.08%

Osteoarthritis 552 10.75%

Table 3.  Distribution of the Rebalanced Dataset.

 

Fig. 3.  The implemented operation of data augmentation technique.
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pr(rj) = nj

MN
� (2)

Feature extraction
The main pre-trained models used for feature extraction were Alex-Net, Google-Net, VGG-Net, and ResNet50. 
Those models include layers that incorporate both linear and nonlinear processes that were learned in a 
combined manner. Extracting features from deep learning frameworks, such as ResNet50, can be divided into 
multiple steps. The data was fed into the ResNet50 model, and backpropagation was utilized to train the network, 
adjusting the neurons’ weights and biases to reduce the loss function. Here, features were extracted from images 
with pinpoint accuracy due to the strength and efficacy of deep learning algorithms like ResNet50.

Feature selection
The X-ray image features are reduced by using the feature selection technique. Increased correlation among 
characteristics improves the accuracy of classification. This study applies a Greylag Goose (GGO) optimizer to 
perform the feature selection task.

GGO algorithm
The Greylag Goose Optimization (GGO) algorithm is used for optimization in the present study. There are 
many advantages to the GGO optimizer, including the colony functions independently of any higher authority 
(Modularity), the task is completed effectively generally even if multiple agents fail (Robust), and network 
adjustments can spread quickly (Speed). However, it is difficult to predict behavior based solely on the rules 
themselves (behavior); it is impossible to understand how a colony functions without knowing how an agent 
functions (knowledge), and any departure from these fundamental norms changes the collective behavior 
(sensitivity). The GGO algorithm starts by creating a random population of individuals, each representing a 
potential fix for the problem. This population called a gaggle, has size n and is represented by the symbol Xi 
(i = 1, 2, …, n). Any individual is assessed using an objective function, Fn, of choice. The best solution, or leader, 
Xi, is found by computing the objective function of every individual (agent) and is indicated by P. Next, the 
population is dynamically divided into two categories through the GGO algorithm: an exploration group (n1) 
and an exploitation group (n2). Considering the best solution obtained, each iteration has different solutions in 
every set. 50% of the population is initially split equally between exploration and exploitation groups via the 
GGO algorithm. The numeral of agents in the exploitation group (n2) rises while the numeral of agents within 
the exploration group (n1) falls as the iterations continue. After three successive iterations, the optimal solution’s 
objective function value remains constant. The algorithm raises the number of agents within the exploration 
group to find a better solution and stay away from local optima in that scenario (n1).

Fig. 5.  Image pre‐processing steps.

 

Fig. 4.  Image pre‐processing process. (a) The input images. (b) The pre-processed images by histogram 
equalization. (c) The pre-processed images by sharpening filter. (d) The pre-processed images by a frequency 
domain high‐pass filter.
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Exploration operation
Exploration is responsible for finding intriguing sections of the search space and preventing local optimum 
stagnation by moving toward the optimal answer. Moving towards the best solution: using this strategy, the geese 
explorer will look for intriguing new places to explore near its present position. The exploration is performed by 
continually evaluating several potential neighboring possibilities to determine the most excellent fitness. For the 
A and C vectors adjusted as A = 2a.r1 − a and C = 2.r2 throughout iterations with the parameter altered linearly 
from 2 to 0. The GGO algorithm employs the formulae that follow to do this:

	 X (t + 1) = X ∗ (t) − A. |C.X ∗ (t) − X (t)|� (3)

where (t) is an agent at iteration t. The ∗ (t) is the optimal solution (leader) position. The updated position of 
the agent is  (t + 1). The r1 and r2 values change arbitrarily within the range of [0,1]. The formula that follows is 
utilized to assist in choosing three random search agents (paddlings), termed Paddle1, XPaddle2, and XPaddle3, to push 
agents not to be affected by one leader position to gain greater exploration. The current search agent’s location 
will be adjusted to correspond for ||≥ 1.

	 X(t + 1) = w1 ∗ Xpaddle 1 + z ∗ w2 ∗ (Xpaddle 2 − Xpaddle 3) + (1 − z) ∗ w3 ∗ (X − Xpaddle 1)� (4)

where [0, 2] is where the values of w1, w2, and w 3 are updated. The formula that follows is used to calculate the 
parameter z, which is decreasing exponentially.

	 z = 1 − (t/tmax)2� (5)

where t is the iteration numeral and tmax is the maximum numeral of iterations. For r3 ≥ 0.5, the second updating 
procedure, in which the values of the a and A vectors are reduced, is as follows.

	 X(t + 1) = w4 ∗ |X∗(t) − X(t)|.ebl.Cos(2πl) + [2w1(r4 + r5)] ∗ X∗(t)� (6)

where l is a random value in [− 1, 1] and b is a constant. While r4 and r5 are updating in [0, 1], the w4 parameter 
is updating in [0, 2].

Exploitation operation
The task of enhancing the current solutions falls to the exploitation team. At the end of each cycle, the GGO 
determines who is the most fit and gives them the appropriate prize. The GGO uses two distinct tactics to 
accomplish its exploitation goal, which are explained below. Moving in the direction of the best solution: The 
optimal solution is reached by using the subsequent formula. The three solutions (sentries), XSentry1, XSentry2, 
and XSentry3, direct other individuals (XNonSenttry) to adjust their positions in anticipation of the prey’s predicted 
position. The subsequent formulas illustrate the position update procedure.

	

X1 = Xsenstry 1 − A1.|C1.Xsenstry 1 − X|
X2 = Xsenstry 2 − A2.|C1.Xsenstry 2 − X|
X3 = Xsenstry 3 − A3.|C1.Xsenstry 3 − X|

� (7)

where A = 2a is used to derive A1, A2, and A3. C = 2r2 is used to determine r1 − a and C1, C2, and C3.

Searching the area around the optimal solution
When flying, the most promising option is situated near the best answer (leader). This leads certain individuals 
to look for improvements by exploring areas near the optimal response, called XFlock1. The following equation is 
used by the GGO to carry out the previously indicated procedure.

	 X(t + 1) = X(t) + D(1 + z) ∗ w ∗ (X − XF lock 1)� (8)

Selection of the best solution
The GGO has outstanding exploration capabilities since it utilizes a mutation approach and scans members 
within the exploration category. The GGO’s powerful exploring capability allow it to defer convergence. The 
GGO pseudo-code is observable and can be found in algorithm 1. We first supply population size, mutation 
rate, and number of iterations to GGO. The GGO then divides the participants to two groups: those that engage 
in exploitative labor and those who engage in exploratory work. Throughout the iterative process of identifying 
the optimal solution, the GGO approach adjusts each group’s size dynamically. Every team uses two methods 
to complete its duties. The GGO arbitrarily rearranges the responses among iterations to offer diversity and in-
depth study. A component of the solution from exploration group may move to exploitation group in a single 
iteration as seen below. The GGO’s elitism method ensures that the leader remains in place along the operation. 
Figure 6 depicts each stage of the GGO algorithm utilized to update the locations to the exploration group (n1) 
and exploitation group (n2). The parameter r1 is adjusted throughout iterations, as expressed in Eq. (9).

	 r1 = c
(
1 − t/tmax

)
� (9)

where c represents a constant, t denotes the current iteration, and tmax represents the number of iterations. GGO 
updates the agents in the search space at the end of each iteration, and their positions in the exploration and 
exploitation groups are switched around as random. GGO gives back the optimal solution in the last stage.
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Binary GGO algorithm
Feature selection is one of the most important steps in analyzing data, as feature selection aims to minimize the data’s 
high dimensionality by removing irrelevant or redundant information. They have, therefore, been applied in a range of 
fields as the fundamental goal of this feature selection optimization technique is to identify important characteristics that 
minimize classification errors. A minimized optimization problem is a mathematical description of feature selection. 
The GGO algorithm’s results will be solely binary, with values of 0 or 1, If there are any issues with feature selection. To 
facilitate the process of selecting features within the dataset, the suggested GGO method’s continuous values will be 
transformed into binary values [0, 1], as shown in the phases of Algorithm 2.

Algorithm 1: GGO Algorithm
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Algorithm 2: bGGO Algorithm

The Eq. (10) used in this study is based on the Sigmoid function and is represented as follows:

	

xt+1
d =

{ 1ifSigmoid (m) ≥ 0.5
0otherwise,

Sigmoid (m) = 1
1 + e−10(m−0.5)

� (10)

where xt+1
d  denoted the binary solution at iteration t and dimension d. The Sigmoid function is scaling the 

resultant solutions to binary ones. The value will vary to 1 if Sigmoid(m) exceeds 0.5. Alternatively, it will stay 0. 
The m parameter reflects the features selected by the algorithm.

Algorithm 2 provides a full explanation of the binary GGO method. The GGO algorithm has a computing 
complexity of O (tmax × n) and will be O (tmax × n × d) for the d dimension. The binary GGO algorithm uses 
the objective equation Fn to evaluate the quality of a solution. The following Eq. (11) formula represents the 
classifier’s error rate, Err, using Fn.

	
Fn = αErr + β

|s|
|S| � (11)

where s denotes a set of the selected feature, while S rep\/ + resents a set of missing features, β = 1—α and α ∈ [0, 
1] indicates the population relevance of the specified trait. The strategy is successful if it can offer a subset of 
features with a minimal rate of errors in categorization. The only factor in classifier selection is the shortest path 
between the training and query instances.
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Metric Formula Explanation

Average Error Avg. Error = 1— 1
M

∑M

j=1
1
N

∑N

i=1
M atch(Ci, Li)

Indicates the average number of errors caused by the characteristics selected to include in the 
subset. This statistic is crucial since it provides an approximate estimate of how the categorizing 
system performs based on the selected subset of features

Average 
Select-Size

Avg. Select Size = 1
M

∑M

j=1

Size(g∗
j

)

D

Indicates the standard numeral of features that the algorithm selects to optimize. This statistic 
can provide an approximation of the complexity of the categorizing system and the numeral of 
features necessary for satisfactory performance, making it a relevant quality indicator

Best Fitness Best Fitness = MinM
j=1g∗

j

Represents the maximum fitness value achieved by the optimized feature subset. It is significant 
since it demonstrates the categorization efficiency achievable with the given feature subset

Worst Fitness Worst Fitness = MaxM
j=1g∗

j

Represents the least fitness values attained by the selected subset of features throughout the 
optimization. This number indicates the lowest potential categorization performance that may 
be obtained with the specified feature subset, making it critically important

Standard 
Deviation 
(SD)

SD = 
√

1
M−1

∑
(g∗

j
− Mean)2 Determines the probable results obtained from the selected feature subsets during 

optimization. It is significant since it gives information on the dependability of the 
optimization technique and the prioritized feature set’s potency

Mean
Mean =  1

M

∑M

j=1
g∗

j Describes a distribution’s center or “typical” value. It is referred to as a location measure since it 
indicates where the central features are

Table 6.  The evaluation metrics used in experiments to evaluate how well the suggested optimizers select 
features for assessment.

 

Metric Abbreviations & formula Explanation

Accuracy (ACC) ACC =  T P +T N
T P +F N+T N+F P

Measures how frequently a model creates correct predictions compared to how often it 
makes wrong predictions

Sensitivity (SENS) SENS =  T P
T P +F N

Describes the rate with which a model predicts future occurrences of KOA

Specificity (SPEC) SPEC =  T P
T P +F N

Evaluate the system’s ability to predict adverse outcomes accurately

Positive predictive value (P-value) P-Value =  T P
T P +F P

Defines as the ratio of accurate optimistic KOA forecasts to total predictions of KOA. This 
metric compares the number of accurately categorized true positives to all positive samples

Negative predictive value (N-value) N-Value =  T N
T N+F N

Measures the opposite percentage

F1-score F1-score =  2T P
2T P +F P +F N

F-Measure combines accuracy and sensitivity measures using the harmonic mean

Table 5.  The description of the utilized evaluation metrics.

 

Fig. 6.  Algorithm’s steps: exploration, exploitation, and dynamic groups.
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Image classification
Finally, a categorization approach is applied to the extracted and refined collection of features. Machine learning 
and deep learning classifiers are utilized for sorting KOA images, specifically, convolutional neural network 
(CNN), decision tree (DT), K-nearest neighbor (K-NN), and multi-layer perceptron (MLP) classifiers.

Evaluation criteria
Performance metrics to the pre-trained model and classifier
Using the confusion matrix, measurements like accuracy, precision, recall, and F1-score can be calculated by 
comparing expected labels against true ones. The confusion matrix consists of four categories: True Positive 
(TP) value, True Negative (TN) value, False Positive (FP) value, and False Negative (FN) value. When the 
actual and anticipated classes are knee OA, a TP accurately forecasted and signified the case. TN relates to 
situations where the actual and projected classes do not include knee OA. FP occurs when the anticipated class 
is knee osteoarthritis. However, the actual class is different. FN is cases where knee OA is the actual class but the 
projected class differs. The most reliable method for detecting and classifying cases of osteoarthritis in the knee 
was determined to be the model that performs the best. Table 5 describes the evaluation metrics.

Performance metrics to the optimizers
The following metrics are used in experiments to assess how well the suggested algorithm selects features for 
assessment (see Table 6). If M denotes the number of repetitions, g ∗ denotes the best solution, and N indicates 
the overall numeral of points, the ideal answer is g ∗ . L represents a point’s class, C represents the classifier’s 
output, and M atcℎ indicates the degree of matching between the two inputs. g∗

j  denotes vector size, while D 
represents dataset size.

Feature extraction results
Metrics including F1-score, N-Value, P-Value, sensitivity, and accuracy are employed to assess extracted 
features’ efficacy. Suppose the extracted features exhibit superior precision, sensitivity, specificity, F1-score, and 
a low P-value. In that case, the extraction method succeeded in identifying the most significant features of the 
categorization task (see Table 7). The study’s feature extraction technique used the ResNet-50 deep learning 
model, which produced an accuracy of 88.60%. The findings shown in the table show that the feature retrieved 
using ResNet-50 outperforms other deep neural networks. As a result, the suggested methodology’s subsequent 
phases use such a network. This level of performance indicates that ResNet-50 can ideally select and include 
the most valuable features from the provided dataset, which is an essential capacity for addressing the image 
classification problem.

Accuracy Sensitivity (TRP) Specificity (TNP) P-Value (PPV) N-Value (NPV) F1-Score

Before Feature Selection 0.8860 0.9720 0.7890 0.8390 0.9610 0.9005

After Feature Selection 0.988692 0.980156 0.990089 0.999822 0.965050 0.999989

Table 9.  The classification outcomes that were attained both using and without using the suggested feature 
selection technique.

 

Metric bGGO bGWO bPSO bBA bGA bMVO bSBO bFA bWOA

Avg. Error 0.2905 0.3677 0.4015 0.4111 0.4013 0.3782 0.4098 0.3999 0.3813

Avg. Select-Size 0.3033 0.5033 0.5033 0.6427 0.6667 0.5998 0.6736 0.5378 0.4457

Avg. Fitness 0.4137 0.4299 0.4283 0.4512 0.4361 0.4580 0.4680 0.4802 0.4413

Best Fitness 0.3155 0.3502 0.4086 0.3409 0.4002 0.3832 0.4111 0.3989 0.3446

Worst Fitness 0.4140 0.4171 0.4763 0.4425 0.4763 0.5012 0.4908 0.4965 0.4597

Standard deviation-Fitness 0.2360 0.2407 0.2401 0.2500 0.2423 0.2908 0.3010 0.2769 0.2423

Table 8.  Evaluation of the suggested optimization algorithm against alternative optimization algorithms for 
the chosen set of features.

 

Model Accuracy Sensitivity (TRP) Specificity (TNP) P-Value (PPV) N-Value (NPV) F1-Score

GoogleNet 83.60% 84.30% 83% 83.70% 83.60% 0.839

ResNet-50 88.60% 97.20% 78.90% 83.90% 96.10% 0.9005

AlexNet 83.10% 78.40% 87.80% 87% 79.70% 0.8247

Vgg-19 87.52% 86.80% 88.28% 89.35% 85.55% 0.8808

Table 7.  Assessing the characteristics that were derived with CNN deep neural networks.
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This method’s feature extraction of ResNet-50 suggests that further optimization and extension into other 
domains could yield substantially greater success in the future. As a performance indicator, this shows how deep 
learning technology is developing and how well-suited it is to handle different challenging issues. Thus, future 
directions for technological progress in machine learning and artificial intelligence require that models like 
ResNet-50 be essential for obtaining improved outcomes across various domains.

Feature selection results
Feature selection strategies are employed to refine the gathered features after the feature extraction procedure. 
A range of metrics is employed to assess the selected features’ effectiveness, including best-fitness, worst-fitness, 
average error, average fitness, average select size, and standard deviation fitness. When evaluating the outcomes 
of selected features, best fitness, worst fitness, average error, average fitness, average select size, and standard 
deviation fitness can be used to gauge quality, complexity, stability, robustness, and possession of insightful 
information on the classification technique’s efficiency. The results of the criteria for evaluation rely on the 
suggested feature selection strategy are shown in Table 8, along with a comparison to the other approaches: 

Signal Classifier Accuracy Sensitivity (TRP) Specificity (TNP) P-Value (PPV) N-Value (NPV) F1-Score

Hyper parameter-CNN 0.942397937 0.960138366 0.924980909 0.947825484 0.943725052 0.943941948

MLP 0.936034846 0.946953932 0.924420909 0.931296387 0.941255926 0.939058814

KNN 0.924681538 0.929587347 0.920310909 0.91122 0.937145926 0.920310909

DT 0.919879909 0.919879909 0.919879909 0.899677889 0.936714926 0.909665404

Table 11.  The categorization findings for the suggested system using K-nearest neighbor (K-NN), a decision 
tree (DT), Multi-layer Perceptron (MLP) and parameter optimization for the convolutional neural network 
(CNN) model.

 

Fig. 7.  The results obtained by the CNN-based classifier as compared to the other optimization techniques 
when optimized with the proposed bGGO algorithm (a) Accuracy, (b) Sensitivity, (c) Specificity, (d) N-value, 
(e) P-value, and (f) F1-score.

 

Model Accuracy Sensitivity (TRP) Specificity (TNP) P-Value (PPV) N-Value (NPV) F1-Score Time(s)

GGO-CNN 0.988692 0.980156 0.990089 0.999822 0.965050 0.999989 110.7436

GWO-CNN 0.974479 0.987518 0.900202 0.983643 0.958176 0.985577 130.7436

PSO-CNN 0.969067 0.984126 0.900202 0.979320 0.948471 0.981717 137.7436

WOA-CNN 0.96545 0.981717 0.900202 0.976255 0.948040 0.978979 141.7436

BBO-CNN 0.959409 0.976935 0.910416 0.969067 0.941558 0.972985 145.7136

Table 10.  The Classification outcomes for various optimization algorithms based on CNN.
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binary Greylag Goose Optimization (bGGO), binary Firefly Algorithm (bFA), binary Satin Bowerbird 
Optimizer (bSBO), binary Grey Wolf Optimization (bGWO), binary Particle Swarm Optimization (bPSO), 
binary Bat Algorithm (bBA), binary Genetic Algorithm (bGA), binary Multi-verse Optimization (bMVO), and 
binary Whale Optimization Algorithm (bWOA). It is evident from the outcomes obtained that the suggested 
feature selection strategy is superior to any feature selection techniques found in related works. The outcomes 
demonstrate the superior performance and efficacy of the suggested approach for identifying the necessary 
feature set required to categorize KOA cases.

Classification results and discussion
Various classifiers are utilized in this study, such as K-nearest neighbor (K-NN), a decision tree (DT), Multi-layer 
Perceptron (MLP) and convolutional neural network (CNN) classifiers. Several metrics, including time, F1-
score, N-value, P-value, sensitivity, and specificity, can be employed to evaluate the effectiveness of the optimized 
classifiers. According to these measures, if the selected features are perceptive and can reliably differentiate 
between the different KOA picture classes, then the optimized classifiers can achieve high classification 
performance. The categorization results before and after selecting a feature are shown in Table 9. This table 
makes it clear that the classification outcomes with the suggested feature selection outperform the classification 
with the previous feature selection.

First, convolutional neural networks (CNN) classifiers are used. Table 10 shows the results obtained utilizing 
the suggested strategy and alternative ways of optimizing CNN using various optimizers. The GGO-CNN model 
outperformed other cutting-edge classifier models built with the CNN approach, as evidenced by its accuracy 
of 0.988692. With a 0.974479 accuracy, the GWO-CNN-based approach yielded the second-best classification 
results. It was followed with PSO-CNN-based approach, which scored 0.969067; the WOA-CNN-based model, 
which achieved a score 0.96545; and the BBO-CNN-based approach, which produced the least accurate 
outcomes, with a 0.9425 accuracy.

The chosen features are fed into the optimized classifiers since the outcomes of applying the suggested 
feature selection approach are promising. Figure  7 depicts the optimized classifiers-CNN-based model’s 
outcomes after being fed the desired feature. The attained accuracy is evaluated and displayed within this figure 
plot. The suggested methodology achieves an accuracy of 98.8692%, which is more accurate than the results 
of optimizing the CNN utilizing various optimization approaches. Table 11 presents the suggested system’s 
classification outcomes using K-nearest neighbor (K-NN), a decision tree (DT), Multi-layer Perceptron (MLP) 
and optimized-convolutional neural network (CNN) model parameters. Figure 8 depicts box plots of model 
metrics for suggested and contrasted algorithms. Figure 9 depicts a pair plot of metrics.

Table 12 illustrates the ANOVA test findings for the offered bGGO + CNN approach against the comparable 
procedures. The ANOVA tests confirmed the bGGO + CNN procedure’s efficacy.

Fig. 8.  Box plots for model metrics to the suggested and compared algorithms.

 

Scientific Reports |        (2025) 15:16815 15| https://doi.org/10.1038/s41598-025-99460-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The suggested technique was compared to recent related works investigations, as seen in Table 13, and it was 
found to outperform the current studies despite its complex structure and use of multiple approaches.

Conclusion
A deep learning technique has been presented in this paper to classify knee joint osteoarthritis automatically. KOA 
categorization was performed using a unique bGGO optimization algorithm based on CNN. The appropriate 
collection of features is obtained using deep learning and a transfer learning approach. The most prevalent 
features are taken from the dataset’s photos using various DL pre-trained models, particularly ResNet-50. The 
collected features were then optimized to minimize their number by Greylag Goose Optimization (bGGO) 
in binary form to increase accuracy and remove unnecessary features. After applying various classifiers and 
optimization algorithms to the features that GGO had chosen, classification metrics were computed; the 
suggested methodology attained an accuracy of 0.988692, a sensitivity of 0.980156, and a specificity of 0.990089. 
In contrast to similar work, the simulated outcomes outperform those. These findings support the suggested 
system’s use as an effective diagnostic tool for the early detection of KOA. On the other hand, a statistical analysis 
was carried out to demonstrate the validity of the suggested framework.

SS DF MS F (DFn, DFd) P value

Treatment (between columns) 0.02406 4 0.006016 F (4, 45) = 146.2 P < 0.0001

Residual (within columns) 0.001852 45 4.12E-05

Total 0.02591 49

Table 12.  The findings of the ANOVA for the proposed bGGO technique to categorize KOA.

 

Fig. 9.  Pair plot of metrics.
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Metric bGGO bGWO bPSO bBA bGA bMVO bSBO bFA bWOA

Avg. Error 0.31641 0.46721 0.44861 0.34041 0.34891 0.38051 0.39328 0.37178 0.32616

Avg. Select-Size 0.37471 0.60511 0.51301 0.63781 0.57051 0.64431 0.69068 0.59338 0.53996

Avg. Fitness 0.37461 0.54751 0.50861 0.40471 0.42871 0.43871 0.46558 0.45158 0.38436

Best Fitness 0.34241 0.46621 0.41191 0.39441 0.35391 0.38181 0.44728 0.37678 0.51746

Worst Fitness 0.42861 0.56381 0.52701 0.48091 0.47191 0.46151 0.43378 0.49478 0.59716

Standard deviation-Fitness 0.20991 0.34421 0.30961 0.25571 0.26151 0.27171 0.24858 0.28438 0.22736

Table 15.  Evaluation of the suggested optimization algorithm against alternative optimization algorithms for 
the chosen set of features.

 

Model Accuracy Sensitivity (TRP) Specificity (TNP) P-Value (PPV) N-Value (NPV) F1-Score

Google-Net 83.6735% 84.2105% 83.1683% 82.4742% 84.8485% 83.3333%

ResNet-50 86% 86.3158% 85.7143% 84.5361% 87.3786% 85.4167%

Alex-Net 81.4433% 81.7204% 81.1881% 80% 82.8283% 80.8511%

VGG-19 80.2083% 80.4348% 80% 78.7234% 81.6327% 79.5699%

Table 14.  Assessing the characteristics that were derived with CNN deep neural networks.

 

Fig. 10.  Samples of the utilized datasets.

 

References Dataset Purpose Accuracy

27
Two datasets:
1. OAI
2. MOST

1. localize knee joint
2. Classify images of the localized knee joint

-Detection: 
100%
99.5%
-Classification:
60.3%

28 OAI Score the extent of OA in the knee 66.71%

29 (OAI) 1.Detect the knee-region
2. Classify the KOA images 88.2%

32 N/A Detect knee joints and classified the detected knee joint images 69.7%
33 OAI Classify the KOA images 71%
34 OAI Classify KOA images 72.7%
35 Clinical hospital center of Rijeka Detect anterior cruciate ligament damage at its early stage 98%
36 OAI Detect KOA at early stage 81.69%
37 OAI Extract the features from OAI dataset and then classify OAI images 71.33%

Proposed Method OAI Extract the features from OAI dataset, select the best features from them using 
optimization and then classify images in the dataset 98.869%

Table 13.  Comparisons between the proposed solution in this paper and related works.
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Fig. 11.  Z-score heatmap of model performance metrices to the GGO-CNN and other comparable 
approaches.

 

SS DF MS F (DFn, DFd) P value

Treatment (between columns) 0.02522 3 0.008408 F (3, 36) = 250.5 P < 0.0001

Residual (within columns) 0.001208 36 3.36E-05

Total 0.02643 39

Table 18.  The findings of the ANOVA for the proposed bGGO technique to categorize KOA.

 

Model Accuracy Sensitivity (TRP) Specificity (TNP) P-Value (PPV) N-Value (NPV) F1-Score Time(s)

GGO-CNN 0.988811934 0.989010989 0.988624612 0.987925357 0.989648033 0.988467875 23.6841

GWO-CNN 0.964330153 0.965665236 0.963081862 0.960717336 0.967741935 0.963184932 28.1572

PSO-CNN 0.958121827 0.959684487 0.956663941 0.953832753 0.962171053 0.956749672 30.3117

WOA-CNN 0.950933565 0.952593918 0.949367089 0.946666667 0.955008489 0.949621043 34.3214

BBO-CNN 0.941255007 0.940054496 0.942408377 0.940054496 0.942408377 0.940054496 37.6145

Table 17.  The Classification outcomes for various optimization algorithms based on CNN.

 

Signal Classifier Accuracy Sensitivity (TRP) Specificity (TNP) P-Value (PPV) N-Value (NPV) F1-Score

CNN 0.94556 0.94675 0.94444 0.94118 0.94972 0.94395

MLP 0.92262 0.92593 0.91954 0.91463 0.93023 0.92025

KNN 0.90964 0.9125 0.90698 0.90124 0.91765 0.90683

DT 0.89571 0.89873 0.89286 0.8875 0.90361 0.89308

Table 16.  The categorization findings for the suggested system utilizing four different classifiers.
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Fig. 14.  CDF plots for metrics across models.

 

Fig. 13.  Radar plot of model performance metrics.

 

Fig. 12.  Swarm plots for metrics across model.
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Fig. 16.  Histograms with mean and standard deviation.

 

Fig. 15.  Kernel density estimation plots for model metrics.
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Fig. 18.  Cumulative distribution plots for metrics across models.

 

Fig. 17.  Histograms with normal distribution curve for metrics across models.
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Fig. 21.  Correlation heatmap of model metrics.

 

Fig. 20.  Bump chart of model rankings across different metrices.

 

Fig. 19.  Line plots with confidence intervals for metrics across models.
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Fig. 23.  Waterfall chart for model metric breakdown.

 

Fig. 22.  Strip plot with box plot overlay of model metrices.
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Fig. 26.  Stacked bar chart of metrics by model.

 

Fig. 25.  Parallel coordinates plot of model metrics.

 

Fig. 24.  Violin plots with means and median for metrics across models.
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Data availability
The data that support the findings of this study are openly available at [​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​f​a​r​​j​a​n​
a​k​a​​b​i​r​s​a​m​​a​n​t​a​/​​o​s​t​e​o​a​​r​t​h​r​i​t​​i​s​-​p​r​e​​d​i​c​t​i​o​n].

Appendix
The proposed system’s effectiveness was confirmed by testing it on other datasets.
I. Dataset Description.
The Digital Knee X-ray Images dataset (Gornale & Patravali) contains an extensive collection of knee X-ray 
images51. The dataset consists of 1650 digital X-ray pictures of the knee joint obtained from reputable hospitals 
and diagnostic centers. The X-ray images are captured using a PROTEC PRS 500E X-ray machine. The original 
photos are 8-bit greyscale images. Each radiographic knee X-ray image is manually annotated/labeled by two 
medical specialists using KL grades. Figure 10 depicts some samples from the dataset. The KL grading system 
assigns 5 grades to knee OA severity based on radiographs, with ‘Grade 0’ indicating normal knee and subse-
quent grades indicating evolution of KOA.
II. Apply the proposed approach.
III. Feature Extraction and Selection Results.
A. Feature Extraction Results.
The extraction method succeeded in identifying the most significant features of the categorization task using 
four pretrained model (see Table 14).
B. Feature Selection.
The results of the criteria for evaluation rely on the suggested feature selection strategy are shown in Table 15, 

Fig. 28.  Grouped bar plot for model metrics comparison.

 

Fig. 27.  Bar plots with error bars for metrics across models.
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along with a comparison to the other approaches: bGGO, bFA, bSBO, bGWO, bPSO, bBA, bGA, bMVO, and 
bWOA.

IV. Classification Results
The suggested methodology achieves an accuracy of 98.8692% (see Table 16), which is more accurate than the 
results of optimizing the CNN utilizing various optimization approaches.
The GGO-CNN model outperformed other cutting-edge classifier models built with the CNN approach (see 
Table 17), as evidenced by its accuracy of 0.988811934.
Table 18 illustrates the ANOVA test findings for the offered bGGO + CNN approach against the comparable 
procedures. The ANOVA tests confirmed the bGGO + CNN procedure’s efficacy.
Figure 11 depicts a Z-score heatmap of model performance metrics to the GGO-CNN and other comparable 
approaches. The attained accuracy is evaluated and displayed within this figure plot.
Figure 12 swarm plots for metrics across model metrics to the proposed bGGO + CNN and other comparable 
algorithms. Swarm plot techniques for ranking each metric category from optimum to worst. Each point repre-
sents the average outcome across the six metrics in a particular class.
Figure 13 depicts the radar plot of model performance metrics to the proposed bGGO + CNN and other com-
parable algorithms. A radar chart is a graphical technique that shows multivariate data as a two-dimensional 
chart with at least three quantitative parameters depicted on axes starting at the same position.
Figure 14 depicts Cumulative distribution function (CDF) plots for metrics across models.
Figure 15 depicts the KDE plots for model metrics. KDE is a non-parametric technique for estimating the 
probability density function of an arbitrary variable using kernels as weights. It is a form of kernel smoothing 
for probability density estimation.
Figure 16 depicts the Histograms with mean and standard deviation. It is employed to provide a summary 
of data, which is evaluated on an interval scale. It is frequently utilized to depict the data distribution’s main 
characteristics conveniently.
Figure 17 depicts the histograms with normal distribution curve for the six metrics across models.
V. Statistical Analysis and discussion.
Figure 18 depicts the cumulative distribution plots for metrics across models with mean f-score, median mean 
f-score, mean + standard deviation, mean-standard deviation, and cumulative f-score. Figure 19 depicts the line 
plots with confidence intervals for metrics across models.
Figure 20 depicts the bump chart of model rankings across different metrices. Every line within the bump 
charts represents the variance in ranking for each optimizer. As indicates from the figure that bGGO + CNN 
outperforms other optimization algorithms.
Figure 21 depicts a correlation heatmap of model metrics. A correlation heatmap is a visual representation of 
the relationship between all the variables in the dataset.
Figure 22 depicts the strip plot with box plot overlay of model metrices to the proposed bGGO + CNN and 
other comparable algorithms. A single-axis scatter plot called a “strip plot” is employed to show the distribu-
tion metric. Plotting the values as dots across a single axis allows for the overlap of dots with an identical value.
Figure 23 depicts the waterfall chart for model metric breakdown. When items are added or deleted, a waterfall 
chart displays the ongoing total.
Figure 24 depicts violin plots with means and median for metrics across models. Numerical data distributions 
for one or more categories are shown in a violin plot.
Figure 25 depicts the parallel coordinates plot of model metrics. Figure 26 Shows the stacked bar chart of 
metrics by model. Figure 27 Depicts the bar plots with error bars for metrics across models. Figure 28. Shows a 
comparison to the grouped bar plot for model metrics.

Received: 28 October 2024; Accepted: 21 April 2025

References
	 1.	 Felson, D. T. et al. The incidence and natural history of knee osteoarthritis in the elderly. Arthritis Rheum. 38(10), 1500–1505 

(1995).
	 2.	 Neogi, T. The epidemiology and impact of pain in osteoarthritis. YJOCA 21(9), 1145–1153. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​j​o​c​a​.​2​0​1​3​.​0​3​

.​0​1​8​​​​ (2013).
	 3.	 Gornale, S. S., Patravali, P. U. & Hiremath, P. S. A comprehensive digital knee x-ray image dataset for the assessment of osteoarthritis. 

JSM Biomed. Imag. Data Pap. 6, 1012 (2020).
	 4.	 Haq, I., Murphy, E. & Dacre, J. Osteoarthritis. Postgrad. Med. J. 79, 377–383. https://doi.org/10.1136/pmj.79.933.377 (2003).
	 5.	 Vina, E. R. & Kwoh, C. K. Epidemiology of osteoarthritis: Literature update. Curr. Opin. Rheumatol. 30(2), 160. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​

.​1​0​9​7​/​B​O​R​.​0​0​0​0​0​0​0​0​0​0​0​0​0​4​7​9​​​​ (2018).
	 6.	 A. Raj, S. Viswanathan, B. Ajani, and K. Krishnan, “Automatic knee cartilage segmentation using fully volumetric convolutional 

neural networks for evaluation of osteoarthritis. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) 
no. April, 2018, https://doi.org/10.1109/ISBI.2018.8363705.

	 7.	 Moustakidis, S., Christodoulou, E., Papandrianos, N., Tsaopoulos, D. & Papageorgiou, E. Exploring deep learning capabilities in 
knee osteoarthritis case study for classification. https://doi.org/10.1109/IISA.2019.8900714 (2019).

	 8.	 Norman, B., Pedoia, V., Noworolski, A., Link, T. M. & Majumdar, S. Applying densely connected convolutional neural networks for 
staging osteoarthritis severity from plain radiographs. J. Digit Imaging. 32(3), 471–477 (2019).

	 9.	 Caliva, F. et al. T 2 analysis of the entire osteoarthritis initiative dataset. Orthop. Res. 39, 74–85. https://doi.org/10.1002/jor.24811 
(2021).

	10.	 Esceo, O. et al. Health economics in the fi eld of osteoarthritis : An expert ’ s consensus paper from the European Society for Clinical 
and economic aspects of osteoporosis. Semin. Arthritis Rheum. 43(3), 303–313. https://doi.org/10.1016/j.semarthrit.2013.07.003 
(2013).

Scientific Reports |        (2025) 15:16815 26| https://doi.org/10.1038/s41598-025-99460-4

www.nature.com/scientificreports/

https://doi.org/10.1016/j.joca.2013.03.018
https://doi.org/10.1016/j.joca.2013.03.018
https://doi.org/10.1136/pmj.79.933.377
https://doi.org/10.1097/BOR.0000000000000479
https://doi.org/10.1097/BOR.0000000000000479
https://doi.org/10.1109/ISBI.2018.8363705
https://doi.org/10.1109/IISA.2019.8900714
https://doi.org/10.1002/jor.24811
https://doi.org/10.1016/j.semarthrit.2013.07.003
http://www.nature.com/scientificreports


	11.	 Palazzo, C., Nguyen, C., Lefevre-Colau, M. M., Rannou, F. & Poiraudeau, S. Risk factors and burden of osteoarthritis. Ann. Phys. 
Rehabil. Med. 59(3), 134–138. https://doi.org/10.1016/J.REHAB.2016.01.006 (2016).

	12.	 Gan, H. S., Karim, A. H. A., Sayuti, K. A., Tan, T. S. & Kadir, M. R. A. Analysis of parameters’ effects in semi-automated knee 
cartilage segmentation model: Data from the osteoarthritis initiative. AIP Conf. Proc. https://doi.org/10.1063/1.4965172 (2016).

	13.	 Sharif, B. et al. Productivity costs of work loss associated with osteoarthritis in Canada from 2010 to 2031. Osteoarthr. Cartil. 25(2), 
249–258. https://doi.org/10.1016/j.joca.2016.09.011 (2017).

	14.	 Conaghan, P. G. et al. Impact and therapy of osteoarthritis: the Arthritis Care OA Nation 2012 survey. Clin. Rheumatol. 34(9), 
1581–1588. https://doi.org/10.1007/S10067-014-2692-1 (2015).

	15.	  Vriezekolk,  J. E.,  Peters, Y. A. S.,  Steegers, M. A. H.,  Blaney Davidson, E. N.,   Van Den Ende C. H. M. (2022) Pain descriptors 
and determinants of pain sensitivity in knee osteoarthritis: a community-based cross-sectional study. Rheumatol. Adv. Pract. ​h​t​t​p​
s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​9​3​/​R​A​P​/​R​K​A​C​0​1​6​​​​​.​​​

	16.	 WHO (2006) Department of Chronic Diseases and Health Promotion.” Accessed: Jun. 08, 2024. [Online]. Available: ​h​t​t​p​s​:​​/​/​w​w​w​.​​
w​h​o​.​i​n​​t​/​h​e​a​l​​t​h​-​t​o​​p​i​c​s​/​h​​e​a​l​t​h​-​​p​r​o​m​o​t​​i​o​n​#​t​a​b​=​t​a​b​_​1

	17.	 E. Report, “The economic burden associated with osteoarthritis, rheumatoid arthritis, and hypertension: a comparative study,” no. 
May 2000, pp. 395–402, 2004, https://doi.org/10.1136/ard.2003.006031.

	18.	 Mingqian, H. & Schweitzer, M. The Role of Radiology in the Evolution of the Understanding. Radiology 273(2), 1–22 (2014).
	19.	 Razmjoo, A. et al. Semi-supervised graph-based deep learning for multi-modal prediction of knee osteoarthritis incidence. 

Osteoarthr. Cartil. 28, S305–S306. https://doi.org/10.1016/j.joca.2020.02.478 (2020).
	20.	 Seng, H. et al. From classical to deep learning : review on cartilage and bone segmentation techniques in knee osteoarthritis 

research. Artif Intell Rev https://doi.org/10.1007/s10462-020-09924-4 (2021).
	21.	 Gornale, S. S., Patravali, P. U. & Hiremath, P. S. Automatic detection and classification of knee osteoarthritis using hu’s invariant 

moments. Front. Robot. AI 7, 591827 (2020).
	22.	 Lim, J., Kim, J. & Cheon, S. A deep neural network-based method for early detection of osteoarthritis using statistical data. Int. J. 

Environ. Res. Public Heal. 16, 1281. https://doi.org/10.3390/IJERPH16071281 (2019).
	23.	 Singh, S. P. et al. 3D deep learning on medical images: A Review. Ital. Natl. Conf. Sensors 20(18), 1–24. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​S​2​

0​1​8​5​0​9​7​​​​ (2020).
	24.	 Guan, B. et al. Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 

48-MONTH follow-up period. Osteoarthr. Cartil. 28(4), 428–437. https://doi.org/10.1016/j.joca.2020.01.010 (2020).
	25.	 Chang, G. H. et al. Assessment of knee pain from MR imaging using a convolutional Siamese network. Eur. Radiol. 30(6), 3538–

3548. https://doi.org/10.1007/S00330-020-06658-3 (2020).
	26.	 Liu, F. et al. Deep learning approach for evaluating knee mr images: achieving high diagnostic performance for cartilage lesion 

detection. Radiology 289(1), 160–169. https://doi.org/10.1148/RADIOL.2018172986 (2018).
	27.	 “Osteoarthritis Prediction.” Accessed: Jun. 08, 2024. [Online]. Available: ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​a​s​e​​t​s​/​f​a​r​​j​a​n​a​k​a​​b​i​r​s​a​m​​a​n​t​a​/​​o​

s​t​e​o​a​​r​t​h​r​i​t​​i​s​-​p​r​e​​d​i​c​t​i​o​n
	28.	 J. Antony, K. McGuinness, N. E. O’Connor, and K. Moran, “Quantifying radiographic knee osteoarthritis severity using deep 

convolutional neural networks,” Proc. - Int. Conf. Pattern Recognit., vol. 0, pp. 1195–1200, Jan. 2016, ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​C​P​R​
.​2​0​1​6​.​7​8​9​9​7​9​9​​​​​.​​​

	29.	 J. Antony, K. McGuinness, K. Moran, and N. E. O’Connor, “Automatic detection of knee joints and quantification of knee 
osteoarthritis severity using convolutional neural networks,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. 
Lect. Notes Bioinformatics), vol. 10358 LNAI, pp. 376–390, 2017, ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​g​/​​1​0​.​1​0​​0​​7​/​​9​7​​​8​-​3​​-​3​1​​9​-​6​​2​​4​​1​6​​-​7​_​​2​7​/​F​​I​G​U​R​E​S​/​1​2.

	30.	 Tiulpin, A., Thevenot, J., Rahtu, E., Lehenkari, P. & Saarakkala, S. Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs: 
A Deep Learning-Based Approach. Sci. Rep. https://doi.org/10.1038/S41598-018-20132-7 (2018).

	31.	 Suresha, S., Kidziński, L., Halilaj, E., Gold, G. E. & Delp, S. L. Automated staging of knee osteoarthritis severity using deep neural 
networks. Osteoarthr. Cartil. 26, S441. https://doi.org/10.1016/j.joca.2018.02.845 (2018).

	32.	 Abedin, J. et al. Predicting knee osteoarthritis severity: comparative modeling based on patient’s data and plain X-ray images. Sci. 
Rep. https://doi.org/10.1038/S41598-019-42215-9 (2019).

	33.	 Tiulpin, A. et al. Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and 
clinical data. Sci. Rep. https://doi.org/10.1038/S41598-019-56527-3 (2019).

	34.	 Chen, P., Gao, L., Shi, X., Allen, K. & Yang, L. Fully automatic knee osteoarthritis severity grading using deep neural networks with 
a novel ordinal loss. Comput. Med. Imaging Graph. 75, 84–92. https://doi.org/10.1016/J.COMPMEDIMAG.2019.06.002 (2019).

	35.	 Gornale, S. S., Patravali, P. U. & Hiremath, P. S. Early detection of osteoarthritis based on cartilage thickness in knee X-ray images. 
Int. J. Image Graph. Signal Process. 10(9), 56 (2019).

	36.	 Gornale, S. S., Patravali, P. U., Uppin, A. M. & Hiremath, P. S. Study of segmentation techniques for assessment of osteoarthritis in 
knee X-ray images. Int. J. Image Graph. Signal Process. 11(2), 48–57 (2019).

	37.	 Thomas, K. A. et al. Automated classification of radiographic knee osteoarthritis severity using deep neural networks. Radiol. Artif. 
Intell. https://doi.org/10.1148/RYAI.2020190065 (2020).

	38.	 Leung, K. et al. Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs: 
data from the osteoarthritis initiative. Radiology 296(3), 584–593. https://doi.org/10.1148/RADIOL.2020192091 (2020).

	39.	 Awan, M. J. et al. Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning 
approach. Diagnostics 11(1), 105. https://doi.org/10.3390/DIAGNOSTICS11010105 (2021).

	40.	 Gornale, S. S., Patravali, P. U. & Hiremath, P. S. Identification of region of interest for assessment of knee osteoarthritis in 
radiographic images. Int. J. Med. Eng. Inform. 13(1), 64–74 (2021).

	41.	 Ribas, L. C., Riad, R., Jennane, R. & Bruno, O. M. A complex network based approach for knee Osteoarthritis detection: Data from 
the Osteoarthritis initiative. Biomed. Signal Process. Control https://doi.org/10.1016/j.bspc.2021.103133 (2022).

	42.	 Teo, J. C., Mohd Khairuddin, I., Mohd Razman, M. A., Abdul Majeed, A. P. P. & Mohd Isa, W. H. Automated detection of knee 
cartilage region in X-ray image. MEKATRONIKA https://doi.org/10.15282/MEKATRONIKA.V4I1.8627 (2022).

	43.	 Yildirim, M. & Mutlu, H. B. Automatic detection of knee osteoarthritis grading using artificial intelligence-based methods. Int. J. 
Imaging Syst. Technol. 34(2), e23057 (2024).

	44.	 Elbedwehy, S., Hassan, E., Saber, A. & Elmonier, R. Integrating neural networks with advanced optimization techniques for 
accurate kidney disease diagnosis. Sci. Rep. 14(1), 21740 (2024).

	45.	 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Adv. Neural 
Inf. Process. Syst., vol. 25, 2012, Accessed: Jun. 08, 2024. [Online]. Available: http://code.google.com/p/cuda-convnet/

	46.	 K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” 3rd Int. Conf. Learn. 
Represent. ICLR 2015 - Conf. Track Proc., Sep. 2014, Accessed: Jun. 08, 2024. [Online]. Available: https://arxiv.org/abs/1409.1556v6

	47.	 Hassan, E., Saber, A. & Elbedwehy, S. Knowledge distillation model for Acute Lymphoblastic Leukemia Detection: Exploring the 
impact of nesterov-accelerated adaptive moment estimation optimizer. Biomed. Signal Process. Control 94, 106246 (2024).

	48.	 K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. 
Pattern Recognit., vol. 2016-December, pp. 770–778, Dec. 2015, https://doi.org/10.1109/CVPR.2016.90.

	49.	 Hassan, E. Enhancing coffee bean classification: a comparative analysis of pre-trained deep learning models. Neural Comput. Appl. 
36(16), 9023–9052 (2024).

	50.	 C. Szegedy et al., “Going deeper with convolutions,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07–12-June-
2015, pp. 1–9, Oct. 2015, https://doi.org/10.1109/CVPR.2015.7298594.

Scientific Reports |        (2025) 15:16815 27| https://doi.org/10.1038/s41598-025-99460-4

www.nature.com/scientificreports/

https://doi.org/10.1016/J.REHAB.2016.01.006
https://doi.org/10.1063/1.4965172
https://doi.org/10.1016/j.joca.2016.09.011
https://doi.org/10.1007/S10067-014-2692-1
https://doi.org/10.1093/RAP/RKAC016
https://doi.org/10.1093/RAP/RKAC016
https://www.who.int/health-topics/health-promotion#tab=tab_1
https://www.who.int/health-topics/health-promotion#tab=tab_1
https://doi.org/10.1136/ard.2003.006031
https://doi.org/10.1016/j.joca.2020.02.478
https://doi.org/10.1007/s10462-020-09924-4
https://doi.org/10.3390/IJERPH16071281
https://doi.org/10.3390/S20185097
https://doi.org/10.3390/S20185097
https://doi.org/10.1016/j.joca.2020.01.010
https://doi.org/10.1007/S00330-020-06658-3
https://doi.org/10.1148/RADIOL.2018172986
https://www.kaggle.com/datasets/farjanakabirsamanta/osteoarthritis-prediction
https://www.kaggle.com/datasets/farjanakabirsamanta/osteoarthritis-prediction
https://doi.org/10.1109/ICPR.2016.7899799
https://doi.org/10.1109/ICPR.2016.7899799
https://doi.org/10.1007/978-3-319-62416-7_27/FIGURES/12
https://doi.org/10.1038/S41598-018-20132-7
https://doi.org/10.1016/j.joca.2018.02.845
https://doi.org/10.1038/S41598-019-42215-9
https://doi.org/10.1038/S41598-019-56527-3
https://doi.org/10.1016/J.COMPMEDIMAG.2019.06.002
https://doi.org/10.1148/RYAI.2020190065
https://doi.org/10.1148/RADIOL.2020192091
https://doi.org/10.3390/DIAGNOSTICS11010105
https://doi.org/10.1016/j.bspc.2021.103133
https://doi.org/10.15282/MEKATRONIKA.V4I1.8627
http://code.google.com/p/cuda-convnet/
https://arxiv.org/abs/1409.1556v6
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2015.7298594
http://www.nature.com/scientificreports


	51.	 Gornale, S., Patravali, P. (2020), ‘Digital Knee X-ray Images’, Mendeley Data, V1, https://doi.org/10.17632/t9ndx37v5h.1”.
	52.	 Xie, Y., Ning, L., Wang, M. & Li, C. Image Enhancement Based on Histogram Equalization. J. Phys. Conf. Ser. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​

0​8​8​/​1​7​4​2​-​6​5​9​6​/​1​3​1​4​/​1​/​0​1​2​1​6​1​​​​ (2019).
	53.	 Bose, A. S. C., Srinivasan, C. & Joy, S. I. Optimized feature selection for enhanced accuracy in knee osteoarthritis detection and 

severity classification with machine learning. Biomed. Signal Process. Control 97, 106670 (2024).
	54.	 Guida, C., Zhang, M. & Shan, J. Improving knee osteoarthritis classification using multimodal intermediate fusion of X-ray, MRI, 

and clinical information. Neural Comput. Appl. 35, 1–10. https://doi.org/10.1007/s00521-023-08214-8 (2023).

Author contributions
Author contributions: Conceptualization, Amal G. Diab; El-Sayed M El-kenawy; Data Collection, Mervat 
El-Seddek; Analysis and Interpretation of results, Hanan M. Amer; Nihal Fayez F. Areed; Manuscript Prepara-
tion, Amal G. Diab; Hanan M. Amer and Nihal Fayez F. Areed; Project Administration, Amal G. Diab; Review 
& Editing, Mervat El-Seddek; El-Sayed M El-kenawy.

Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooper-
ation with The Egyptian Knowledge Bank (EKB).

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.G.D. or E.-S.M.E.-K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |        (2025) 15:16815 28| https://doi.org/10.1038/s41598-025-99460-4

www.nature.com/scientificreports/

https://doi.org/10.17632/t9ndx37v5h.1
https://doi.org/10.1088/1742-6596/1314/1/012161
https://doi.org/10.1088/1742-6596/1314/1/012161
https://doi.org/10.1007/s00521-023-08214-8
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿A metaheuristic optimization-based approach for accurate prediction and classification of knee osteoarthritis
	﻿Research contribution
	﻿﻿Related works
	﻿﻿Material and methods
	﻿Dataset description
	﻿Data preparation
	﻿Feature extraction
	﻿Feature selection
	﻿GGO algorithm
	﻿Exploration operation
	﻿Exploitation operation
	﻿Searching the area around the optimal solution
	﻿Selection of the best solution


	﻿Binary GGO algorithm
	﻿Image classification
	﻿﻿Evaluation criteria
	﻿Performance metrics to the pre-trained model and classifier
	﻿Performance metrics to the optimizers
	﻿Feature extraction results
	﻿Feature selection results

	﻿﻿Classification results and discussion
	﻿﻿Conclusion
	﻿Appendix
	﻿IV. Classification Results

	﻿References


