Table 2 Formulas for calculating tortuosity in packed beds of spherical particles in the literature.

From: Effect of particle irregularity and particle size distribution on the morphology of packed beds of biochar particles

Model Name

Correlation

Applicable void

fraction range

Derivation method

Type of tortuosity

Maxwell (1873)

14

\(\frac{3}{2} - \frac{1}{2}\varepsilon\)

Not specified

Analytical

Electrical

Bartell & Osterhof (1928)

15

\(\frac{\pi }{2}\)

\(\varepsilon =0.4\)

Experimental

Hydraulic

Carman (1937)

3

\(\sqrt 2\)

\(\varepsilon =0.4\)

Experimental

Hydraulic

Weissberg (1963)

16

\(1 - \frac{{{\text{ln}}\left( \varepsilon \right)}}{2}\)

\(0.36<\varepsilon <1\)

Analytical

Diffusive

Bear (1972)

17

\(\frac{1}{{{\varepsilon ^{0.4}}}}\)

Not specified

Experimental

Geometric

Comiti & Renaud (1989)

18

\(1 - 0.41{\text{ln}}\left( {\text{\varvec{\upvarepsilon}}} \right)\)

Not specified

Experimental

Geometric

Du Plessis & Masliyah (1991)

19

\(\frac{\varepsilon }{{1 - \sqrt[3]{{{{\left( {1 - \varepsilon } \right)}^2}}}}}\)

Not specified

Analytical

Geometric

Iversen & Jorgensen (1993)

20

\(\sqrt {1+2\left( {1 - \varepsilon } \right)}\)

\(0.4<\varepsilon <0.9\)

Experimental

Diffusive

Boudreau (1996)

21

\(\sqrt {1 - ln({\varepsilon ^2})}\)

Not specified

Analytical

Diffusive

Ahmadi et al. (2011)

22

\(\sqrt {\frac{{2\varepsilon }}{{3\left[ {1 - 1.209{{\left( {1 - \varepsilon } \right)}^{\frac{2}{3}}}} \right]}}+\frac{1}{3}}\)

\(\varepsilon >0.4\)

Analytical

Geometric