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The precise execution of semantic segmentation on remote sensing data is a pivotal factor. It 
determines the achievements and impact of geoscience endeavors and their applications. However, 
challenges caused by target edge blurring and scale variability in high-resolution remote sensing 
imagery hinder the improvement of segmentation accuracy. In this work, to address these issues, a 
Boundary-Enhanced Multi-Scale Semantic Segmentation Network (BEMS-UNetFormer) based on 
UNetFormer is proposed for remote sensing data. Firstly, an improved Boundary Awareness Module 
(BAM) is used to extract the edge information of the target from the low-level features to enhance 
the recognition of the target edges. Secondly, the improved Boundary-Guided Fusion Module (BFM) 
incorporates the edge information from BAM into subsequent decoding, further refining the precise 
representation of boundary regions. Finally, at the pivotal junction between the encoder and decoder, 
the Multi-Scale Cascaded Atrous Spatial Pyramid Pooling (MSC-ASPP) is designed, capable of deeply 
mining and integrating multi-scale deep features. The method was tested on two mainstream 
datasets, Potsdam and Vaihingen, achieving 86.12% and 83.10% MIoU, respectively, improving 
by 1.38% and 1.79% over the baseline model. Notably, the IoU and F1 Score for the small-scale 
target “Car” in the Potsdam dataset reached 91.20% and 95.57%, respectively, while the “Building” 
and “LowVeg” categories in the Vaihingen dataset achieved the highest IoU and F1 Score. The 
experimental results indicate that the proposed method demonstrates higher precision in segmenting 
small-scale targets and target boundaries, surpassing mainstream methods overall.

Remote sensing semantic segmentation aims to assign each pixel in a remote sensing image to a semantic category, 
forming a segmentation map to achieve the recognition and extraction of different objects and regions on the 
ground. It is widely used in many fields, such as urban planning, land use, precision agriculture, environmental 
monitoring, and disaster assessment.

With the rapid advancements in deep learning, remote sensing semantic segmentation methods based on 
deep learning have emerged as the dominant approach. These methods can be categorized into three groups: 
methods based on convolutional neural networks (CNN)1, Transformer-based methods2, and Mamba-based 
methods3.

The first category is based on Convolutional Neural Networks. Fully Convolutional Networks (FCNs) proposed 
by Long et al.4 recovers resolution and detail through backward convolution and skipping. Badrinarayanan 
et al.5 proposed SegNet, which introduces an encoder-decoder structure into image semantic segmentation, 
achieving end-to-end pixel-level segmentation. The DeepLab family of networks6–8 utilizes Atrous Spatial 
Pyramid Pooling (ASPP) with varying receptive fields to achieve multi-scale feature extraction. However, this 
method results in the loss of fine details, leading to coarser segmentation outcomes. Zhao et al.9 proposed the 
PSPNet, which focuses on capturing homogeneous contextual dependencies but ignores category differences, 
leading to unreliable context when confusing categories are present in the scenes. Ronneberger et al.10 proposed 
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UNet, which uses a symmetrical U-shaped structure and skip connections to fuse the features of the encoder 
with the corresponding decoder features. In recent years, the Attention Mechanism has been widely applied 
in the field of image semantic segmentation, enabling the adaptive selection of key information from complex 
features. Li et al.11 proposed the Gated Channel Transformation (GCT), which, through gating mechanisms 
and normalization, effectively suppresses redundant information and avoids noise interference during feature 
learning. Hou et al.12 introduced Coordinate Attention, which captures spatial position correlations in feature 
maps alongside orientation-aware and position-sensitive information, thereby enabling models to locate and 
identify target objects more accurately.

The second category focuses on Transformer-based methods. Although Convolutional Neural Networks 
achieve strong performance in image semantic segmentation, CNN-based models struggle to capture global 
contextual information over long distances13. This results in reduced segmentation accuracy for small-sized 
objects and those with high interclass similarity. Transformers construct long-range dependencies by stacking 
multiple attention modules, thereby strengthening feature representation. Zheng et al.14 proposed SETR, inspired 
by the Vision Transformer (ViT)15, leveraging the ViT encoder’s Transformer layers for global context modeling 
and designing three decoders for image semantic segmentation, but at the cost of increased parameters and 
computational complexity. Liu et al.16 proposed the Swin Transformer, which adopts a sliding window design 
based on ViT, significantly reducing computational complexity while maintaining performance. Recent research 
has focused on integrating CNNs and Transformers to fully extract local and global information from images. 
He et al.17 proposed the ST-UNet for remote sensing image semantic segmentation, embedding the Swin 
Transformer into the UNet to achieve efficient fusion of global and local information, but it exhibits limitations 
in accurately segmenting edge regions. Wang et al.18 proposed UNetFormer, an efficient semantic segmentation 
model for remote sensing urban scene images, combining the characteristics of UNet and Transformer to 
effectively capture and represent semantic information in complex urban scenes.

The third category encompasses Mamba-based methods. Recently, Albert et al.3 proposed Mamba, a novel 
selective state space model that demonstrates strong performance in long sequence modeling tasks. Mamba 
integrates the recurrent nature of RNNs, the parallel computation and attention mechanisms of Transformers, 
and the linear properties of State Space Models (SSMs)19. Compared with traditional CNNs and ViTs, Mamba 
can efficiently capture global semantic information while significantly reducing computational complexity. 
Zhu et al.20 proposed Samba, which introduces the Mamba architecture into the semantic segmentation of 
remote sensing images by designing an encoder structure, Samba Block, tailored for high-resolution remote 
sensing images. Samba Block combines Mamba Block and Multilayer Perceptron (MLP) and is designed to 
efficiently extract features from image sequences while maintaining computational efficiency. However, Samba 
with ViT, which lacks sufficient focus on local details, results in false-negative segmentation errors. Ma et al.21 
proposed the RS3Mamba network architecture, which enhances the performance of the convolution-based main 
branch by constructing a dual-branch network with the VSS module to provide global information. Zhu et al.22 
proposed UNetMamba, which includes a CNN-based encoder for extracting local image features and a Mamba-
based decoder for aggregating and integrating global information, thus enabling accurate and efficient semantic 
segmentation of remote sensing images.

Based on the above analysis, although the deep learning-based semantic segmentation methods for remote 
sensing images have achieved remarkable results, there are still some urgent problems to address. These issues 
arise from the current research status of remote sensing semantic segmentation and the characteristics of high-
resolution remote sensing data. Most mainstream semantic segmentation models for remote sensing images 
adopt an encoder-decoder structure, where image features are compressed in the spatial dimension during the 
encoding process. However, due to the inherently fuzzy boundaries of remote sensing images, it is challenging 
to fully recover the shallow detail information, especially edge information, during decoding. This limitation 
prevents the segmentation results from accurately fitting the actual shapes of objects, resulting in blurry 
segmentation boundaries. Furthermore, remote sensing images often exhibit significant variations in feature 
scale. Single-scale analysis methods struggle to accurately capture features across different scales, making the 
model prone to omissions or misdetections in complex scenes. These challenges ultimately limit the model’s 
performance in practical applications.

To address the issue of improving semantic segmentation accuracy for remote sensing images with blurry 
object edges and varying scales, a boundary-enhanced multi-scale semantic segmentation model for remote 
sensing images, BEMS-UNetFormer, is proposed. The main contributions are summarized as follows:

•	 This paper proposes a boundary-enhanced semantic segmentation network for multi-scale remote sensing 
images, called BEMS-UNetFormer. The network incorporates the Gated Channel Transformation (GCT) into 
the Boundary-Aware Attention Module (BAM) to extract shallow contour information, effectively enhancing 
important feature channels and suppressing noisy boundaries. Additionally, inspired by the Attention Mech-
anism, the Boundary-Guided Fusion Module (BFM) is improved to strengthen the network’s ability to extract 
and integrate edge features.

•	 The proposed Multi-Scale Cascade Atrous Convolution Module (MSC-ASPP), which is capable of extracting 
features at different scales to obtain richer contextual information and effectively integrate global and local 
information. Compared with traditional methods, this module shows stronger adaptability in dealing with 
complex scenes and fine objects.

•	 The effectiveness of BEMS-UnetFormer was validated on two benchmark datasets, ISRPS Potsdam and Vai-
hingen, achieving 86.12% and 83.10% MIoU through quantitative and qualitative experiments, respectively.

Scientific Reports |        (2025) 15:14737 2| https://doi.org/10.1038/s41598-025-99663-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Related works
UNetFormer
UNetFormer is an efficient semantic segmentation model that combines the multi-scale feature extraction 
capabilities of UNet with the global context modeling of Transformer. The model consists of two main parts: 
a CNN-based encoder and a Transformer-based decoder. The encoder employs the lightweight ResNet18 
backbone23 as a feature extractor. ResNet18 is a classic CNN with fewer parameters and lower computational 
complexity, while maintaining strong feature extraction capabilities. The decoder incorporates three Global-
Local Attention Blocks (GLTB) to capture both global and local information. GLTB enables the model to 
focus on the entire image and local details simultaneously, thereby enhancing the model’s ability to capture 
comprehensive semantic information. Additionally, the decoder includes a Feature Refinement Head (FRH) 
to refine both channel-wise and spatial feature representations. Although UNetFormer can effectively capture 
semantic information in images, it struggles to precisely align with object boundaries, resulting in imprecise and 
blurred segmentation boundaries. The UNet structure used in the model naturally facilitates multi-scale feature 
fusion. However, further refinement of the multi-scale fusion strategies is needed to better capture fine-grained 
details and contextual information in images.

Boundary detection
In the context of boundary optimization in remote sensing image segmentation, Luo et al.24 employed the 
traditional Sobel edge detection operator to extract the edges of the saliency map. Wei et al.25 introduced a 
polygon regularization post-processing method after FCNs to optimize the initial results of buildings extracted 
by the semantic segmentation network. Guo et al.26 developed a coarse-to-fine boundary refinement network 
(CBRNet) to accurately extract buildings from high-resolution remote sensing images. Cheng et al.27 designed 
a multi-task network for segmentation and edge detection, providing complementary information to enhance 
gradient learning of the entire model. To enhance context integration, Chong et al.28 proposed an information 
exchange mechanism (IEM) based on a dual-stream network to refine the boundaries of small-scale objects. 
Zheng et al.29 applied a boundary supervision auxiliary module to restore boundary contours, mitigating blurring 
effects when constructing contextual information. Wang et al.30 designed a local-aware attention module to 
optimize the edge information of target objects by adaptively adjusting the weight information of local feature 
points. Ni et al.31 proposed an edge-guided network (EIGNet) for semantic segmentation of high-resolution 
remote sensing images, incorporating a directional convolution module to construct spatial detail branches 
for accurate edge and spatial detail information. Cui et al.32 proposed a global context-dependent perceptual 
network (GCDNet) and designed an edge-aware optimization module, which directly computes the edge loss on 
the edge regions to optimize edge details and achieve more accurate target edge segmentation results. Zhou et 
al.33 proposed a lightweight semantic segmentation network, BSCNet, which utilizes an Extremely Lightweight 
Pyramid Pooling Module (ELPPM) to capture multi-scale semantic context and introduces a Boundary-
Assisted Fusion Module (BAFM) to enhance boundary performance by optimizing low-level convolutional 
features through boundary prediction. Liu et al.34 developed a Cross-Fusion Model (CF2N) for fine-grained 
detail reconstruction and fusion in remote sensing images. This model integrates a Frequency-Domain-Driven 
Detail Reconstruction strategy (FD2R) and a Frequency-Spectrum Cross-Fusion Module (FSCF), achieving 
high-fidelity fusion results by adaptively merging frequency details and facilitating high-frequency interactions.

Multi-scale aggregation
Ma et al.35 proposed SACANet, which effectively tackles the challenges of complex backgrounds and large 
intraclass variance in remote sensing images through a local-global class attention mechanism. Li et al.36 
proposed a Contextual Semantic Refinement Network, which integrates local segmentation results with their 
contextual semantics, thereby reducing boundary artifacts and optimizing mask contours during the generation 
of the final high-resolution mask. Huang et al.37 proposed a multi-scale fusion semantic segmentation network 
DRCNet based on the attention mechanism, which significantly enhances the segmentation accuracy of targets 
of different sizes through cross-layer interaction of multi-scale feature maps. Zhang et al.38 proposed an adaptive 
multi-scale branch network, SANNet, to segment targets of different sizes, by merging the results of each branch 
to achieve superior performance. Wu et al.39 employed a channel and spatial attention fusion module (AFM) 
to adaptively fuse deep semantic features and shallow detail features, achieving the extraction and adaptive 
fusion of local features and global contextual information. FTransUNet proposed by Ma et al.40 enhanced the 
recognition of key semantic regions by merging the surface details and deeper background information of an 
image at multiple levels. Ma et al.41 provided an in-depth review of the pre-training process of Transformer and 
proposed the SatMAE++. The model employs a multi-scale pre-training strategy and incorporates a convolution-
based up-sampling module to reconstruct higher resolution images, enabling effective multi-scale information 
integration. Wang et al.42 introduced an efficient remote attention module for capturing large-scale contextual 
information or long-term dependencies, and designed a novel multi-scale local attention module for capturing 
detailed local information.

Methods
The challenges of fuzzy target edges and variable scales in high-resolution remote sensing images hinder the 
improvement of semantic segmentation accuracy. To tackle these challenges, this work proposes a Boundary-
Enhanced Multi-Scale Semantic Segmentation Network (BEMS-UNetFormer) based on UNetFormer. Figure 
1 illustrates the overview of the proposed framework. Specifically, an improved Boundary Awareness Module 
(BAM) is designed to extract edge information of the target from high-level semantic features and low-level 
features containing edge details, effectively mitigating blurred edges in the final segmentation. Subsequently, the 
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improved Boundary-Guided Fusion Module (BFM) integrates the edge information from BAM with multi-level 
backbone features at each level, facilitating its integration into subsequent decoding processes, thereby better 
preserving boundary details and enhancing boundary representation. Lastly, the Multi-Scale Cascaded Atrous 
Spatial Pyramid Pooling (MSC-ASPP) is employed to enhance feature fusion within the network, improving 
segmentation accuracy. The MSC-ASPP module extracts multi-scale features through atrous convolution 
operations, enhancing the network’s ability to segment targets of varying scales. Additionally, the MSC-ASPP 
module gradually fuses multi-scale features through a cascaded approach, further improving segmentation 
accuracy.

Boundary awareness module (BAM)
In the process of feature extraction, shallow convolutional layers are primarily responsible for capturing fine-
grained information, such as edges, contours, textures, and other low-level details, while deep convolutional 
layers focus on extracting abstract semantic information related to categories. Based on this characteristic, 
this work introduces a Boundary-Aware Module (BAM)43 to extract edge information from low-level features. 
However, while capturing a large amount of detailed features, it also introduces considerable noise. Inspired by 
the use of gating mechanisms in natural language processing tasks to control the transmission state and address 
noise issues, this work integrates a Gated Channel Transformation (GCT) module into the BAM to filter noise 
from low-level features, thereby enhancing key feature channels and effectively suppressing noisy boundaries.

The GCT captures the global features of each channel by embedding global context information, thereby 
mitigating local semantic ambiguities and enabling better access to generic attributes for shallow features. 
Through normalization operations, the GCT establishes competition between channels, enhancing channels with 
stronger responses while suppressing channels with weaker feedback. This normalization method establishes 
competition between neurons or channels, thereby enhancing model performance. The GCT facilitates channel 
selection through gating weights and biases. When the gating weights of a channel are positively activated, 
GCT enhances the channel’s competitive behavior; when the gating weights are negatively activated, GCT 
promotes the channel’s cooperative behavior. This mechanism significantly enhances critical feature channels 
and suppresses noisy boundaries.

The structure of the improved BAM is shown in Figure 2. Firstly, the input of this module comes from the 
output feature maps of the first and fourth layers (Res1 and Res4) of the encoder. By using 1x1 convolution, 
the channel numbers of the low-level feature block f1 and the high-level feature block f4 are adjusted, and f1 
is upsampled to match the size of f4. Then, the two are concatenated and fed into the GCT, which adaptively 
adjusts the channel weights to enhance important feature channels, suppress noisy boundaries, and enhance 
contextual relevance. The features are then fused through two 3x3 convolution operations. Finally, edge features 
are obtained through a 1x1 convolution and a sigmoid function. In this manner, the BAM extracts edge-related 
features from various levels of the encoder and utilizes the GCT to strengthen critical features, leading to more 
precise boundary predictions and thereby enhancing the accuracy of remote sensing image segmentation tasks. 
T﻿he above process can be represented by equations (1) to (5).

	 f ′
1 = Fconv1(f1), f ′

4 = Fconv4(f4) � (1)

	 fcat = f ′
1 ⊗ f ′

4 � (2)

	 fgct = GCT (fcat) � (3)

Fig. 1.  An overview of the BEMS-UNetFormer.
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	 ffuse = Fconv3(Fconv3(fgct)) � (4)

	 fe = σ(Fconv1(ffuse)) � (5)

The symbol ⊗ represents element-wise addition, GCT() denotes the Gated Channel Transformation unit 
formula, Fconv1 is a 1×1 convolution, Fconv3 is a 3×3 convolution.

Boundary-guided fusion module (BFM)
This work proposes an improved Boundary-Guided Fusion Module (BFM), which facilitates more effective 
fusion of edge priors and backbone features through the use of Depthwise Separable Convolutions44, Coordinate 
Attention12, and enhanced spatial information encoding strategies, thereby significantly enhancing the model’s 
performance in edge detail feature extraction.

This work employs 3×3 Depthwise Separable Convolutions to replace standard 3×3 convolutions. Depthwise 
Separable Convolutions decompose the convolution into depthwise convolution and pointwise convolution, 
significantly reducing both computational complexity and the number of parameters while maintaining feature 
extraction capabilities. To enhance the fusion of edge priors and backbone features, the BFM incorporates 
Coordinate Attention. This mechanism decomposes channel attention into two one-dimensional feature 
encoding processes, enabling it to aggregate features along both horizontal and vertical directions. This approach 
not only preserves the inter-channel dependencies but also incorporates spatial location information, enabling 
the model to capture the location of the target region more accurately. Specifically, Coordinate Attention achieves 
its functionality in two steps: firstly, it conducts global information aggregation along one direction (horizontal 
or vertical), and then performs the same operation in the other direction. This bidirectional aggregation process 
allows the model to capture richer spatial information and long-range dependencies. To further enhance the 
BFM’s edge feature extraction capability, this work also proposes an improved spatial information encoding 
strategy. This strategy introduces additional spatial encoding layers to enhance the encoding and representation 
of input features in the spatial dimension, enabling the model to better understand the spatial relationships 
between different positions in the image. This explicit encoding of spatial information enables the model to 
more accurately locate edge positions and retain more edge detail information when integrating edge priors and 
backbone features.

As shown in Figure 3, the input to the BFM module consists of edge features fi(i ∈ {2, 3, 4}) and semantic 
features fe. Firstly, the initial fusion feature fe

i  is obtained by jump-joining and 3×3 Depthwise Separable 
Convolutions after element-level multiplication of the edge features. Secondly, the feature vectors perceived 
in both directions are obtained by global average pooling of the feature map fe

i  in horizontal and vertical 
directions, respectively. This enables the model to focus on key features independently in both horizontal and 
vertical directions, thus capturing edge details more accurately. Then, the concatenated direction-aware feature 
vectors are encoded through one-dimensional convolutions, batch normalization, and non-linear activation 
functions to capture spatial information. Finally, after one-dimensional convolution transformation and sigmoid 
normalization, two attention maps corresponding to the horizontal and vertical directions are generated, and 

Fig. 2.  Improved boundary awareness module (BAM).
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these attention maps are multiplied by fe
i  to obtain the output feature map. The above process can be represented 

by equations (6) to (10).

	 fe
i = FDSConv(fi ⊗ D(fe)) ⊗ fi � (6)

	 fh
i = 1/H

∑H

i=1fe
i , fw

i = 1/W
∑W

i=1fe
i � (7)

	 Gh = σ(Fconv1(F1; w)), Gw = σ(Fconv1(Fw+1; h + w)) � (8)

	 fout = σ(Fconv1(ffuse)) � (9)

	 F = (Gh ⊗ Gw) ⊙ fe
i � (10)

Multi-scale cascaded atrous spatial pyramid pooling (MSC-ASPP)
ASPP, a module in DeepLabv3+, is designed for extracting multi-scale features and typically employs dilation 
rates of 6, 12, and 18. However, as the backbone network extracts features, the resolution of the feature maps 
gradually decreases, rendering the combination of 6, 12, and 18 less effective for extracting features from 
multi-resolution feature maps. Additionally, the lack of smaller atrous rates leads to suboptimal performance 
in segmenting small targets, weakening the model’s ability to handle segmentation tasks of varying sizes. To 
enhance the extraction of features from multi-resolution feature maps and improve the segmentation capability 
for targets of different sizes, this work modifies the atrous convolution rates to 4, 8, 12, and 16. To minimize 
computational costs, standard convolutions are replaced with Depthwise Separable Convolutions. To further 
enhance feature utilization efficiency, multi-level fused feature information is obtained by pooling the input 
features and concatenating them with the multi-scale features. The improved ASPP is referred to as the Multi-
Scale Cascaded Atrous Spatial Pyramid Pooling (MSC-ASPP), as shown in Figure 4.

Loss function
In the original UNetFormer, an additional auxiliary feature head was constructed during training to optimize 
features, using both the main loss and auxiliary loss to train the entire network. The main loss L p  is a 
combination of DICE loss L dice  and cross-entropy loss, and the auxiliary loss is further multiplied by a factor 
α. However, the two losses in the main loss do not have balancing parameters, and the auxiliary loss factor is set 
to a default value of 0.4, which is not learnable. This means that during training, these weights and factors remain 
constant and do not adaptively adjust based on the characteristics of the data. To adaptively balance the two 
losses in the main loss or adjust the auxiliary loss factor α, balancing parameters are introduced for the DICE 
loss L dice  and cross-entropy loss L ce  in the main loss to control their relative contributions to the total loss. 
The auxiliary loss factor α is set as a trainable variable and is updated during training through gradient descent. 
T﻿he above process can be represented by equations (11) to (14).

	
Lce = − 1

N

N∑
n=1

K∑
k=1

y
(n)
k log ŷ

(n)
k � (11)

	
L dice = 1 − 2

N

N∑
n=1

K∑
k=1

ŷ
(n)
k y

(n)
k

ŷ
(n)
k + y

(n)
k

� (12)

	 Lp = βLce + (1 − β)Ldice � (13)

	 L = Lp + α × Laux � (14)

Experiments and results
 Experimental dataset
In this work, the Vaihingen dataset and Potsdam dataset published by ISPRS were selected for the experiments.

Fig. 3.  Improved boundary-guided aggregation module (BFM).
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The Potsdam dataset highlights the diverse urban landscape of Potsdam, Germany, encompassing 38 distinct 
urban areas that span categories ranging from dense residential neighborhoods to industrial zones. Utilizing 
remotely sensed imagery with an impressive spatial resolution of 0.05 meters, this dataset ensures highly detailed 
feature recognition. Each image measures 6000 × 6000 pixels, a scale that not only challenges the efficiency of 
processing algorithms but also demands their capability to capture complex spatial relationships within large 
scenes. The dataset is meticulously annotated with 6 land cover classes: Impervious surfaces(Street), Building, 
Low vegetation(LowVeg), Tree, Car, and Background/Clutter.

In contrast, the Vaihingen dataset originates from digital aerial photography of Vaihingen, Germany, and 
consists of 33 remotely sensed images with distinct dimensions and predefined semantic labels. These high-
resolution images, at 0.09 meters per pixel, are well-suited for detailed analyses. Their sizes vary, ranging from 
1000 to 4000 pixels in both width and height. Captured across the near-infrared, red, and green spectral bands, 
the images offer a multi-spectral perspective of the urban environment. The dataset includes 6 categories: 
Impervious surfaces (e.g., Street, RGB: 255, 255, 255), LowVeg (RGB: 0, 255, 255), Building (RGB: 0, 0, 255), 
Tree (RGB: 0, 255, 255), Car (RGB: 255, 255, 0), and Background(RGB: 255, 0, 0).

During the experiments, the training and test sets were divided according to the ratio of 8:2. For the Potsdam 
dataset, 8 images from the Potsdam dataset (numbered 2-10, 3-11, 4-15, 5-13, 6-11, 6-15, 7-9 and 7-12) were 
selected as the test set, while the remaining 30 images were used as the training set. Similarly, for the Vaihingen 
dataset, 27 images constituted the training set, with the remaining 6 images (numbered 3,9,13,15,20 and 28) 
forming the test set. Examples of processed datasets are shown in Figs. 5 and 6. Since high-resolution remote 

Fig. 5.  Example plot of Potsdam dataset: (a) Original, (b) Label.

 

Fig. 4.  Multi-scale cascade atrous convolution (MSC-ASPP).
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sensing images are generally large, preprocessing operations such as cropping were performed to resize the 
images to 1024 × 1024 pixels before semantic segmentation. After cropping, the Potsdam dataset contained 2792 
training set images and 696 test set images, while the Vaihingen dataset contained 1168 training set images and 
290 test set images.

 Experimental environment
The experiments were carried out within a Linux environment, with the detailed system specifications outlined 
in Table 1 below. During the network training phase, we set the learning rate to 6 × 10−5 specifically for the 
backbone network. A batch size of 8 was employed, and the Lookahead optimizer was chosen to optimize the 
training process. The model was trained for 45 epochs on the Potsdam dataset and 225 epochs on the Vaihingen 
dataset.

 Evaluation metrics
To quantitatively assess the performance of the network in semantic segmentation, four evaluation metrics 
were defined: MIoU, F1, MF1, and OA. These metrics are computed using formulas (15) to (18). Here, TP, FP, 
TN, and FN represent true positives, false positives, true negatives, and false negatives, respectively, while k 
denotes a specific category. MIoU measures the mean IoU across categories, providing a balanced evaluation 
of performance. F1 and MF1 consider both precision and recall, with MF1 averaging the F1 scores across all 
categories. OA, on the other hand, indicates the proportion of correctly predicted pixels overall, offering a 
general overview of accuracy.

	
OA = T P + T N

T P + F P + T N + F N
� (15)

	
MIoU = 1

N

∑N

k−1
T Pk

T Pk + F Pk + F Nk
� (16)

	
F 1 = 2 × precision × recall

precision + recall
� (17)

	
MF 1 = 1

N

N∑
k=1

F 1k � (18)

Experimental Platform Run Parameters

Operating System Ubuntu Server 20.04

Processor Intel(R) Xeon(R) CPU E5-2630 v4

Memory 24 GB

Disk 500 GB

Graphics Card Tesla P40

Framework Pytorch

Acceleration Library CUDA 11.8

Table 1.  Experimental environment parameters.

 

Fig. 6.  Example plot of Vaihingen dataset: (a) Original, (b) Label.
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 Comparative experiments
To evaluate the effectiveness of the proposed model, BEMS-UNetFormer, it was compared with several 
mainstream models in the field of remote sensing image segmentation, including SegFormer45, UNetMamba, 
LOGCAN ++46, SFA-Net47 and UNetFormer. All models were trained and tested under identical conditions on a 
unified hardware and software platform to ensure fairness, data quality, and reliable comparisons.

Experimental results for potsdam data
The comparison results of segmentation performance on the Potsdam dataset are shown in Table 2. In terms 
of overall performance, the proposed method achieves MIoU, OA, and MF1 scores of 91.56%, 86.12%, and 
92.43%, respectively, representing improvements of 1.38%, 1.02%, and 0.80% over the baseline model. For small-
scale targets like “Car,” BEMS-UNetFormer achieves IoU and F1 scores of 91.20% and 95.57%, respectively, 
second only to LOGCAN++, highlighting its robustness in handling fine-scale segmentation tasks. Moreover, 
the proposed method demonstrates superior performance for densely distributed targets such as “LowVeg,” 
attaining the highest IoU and F1 scores of 78.46% and 87.93%, respectively. Compared with other mainstream 
models, BEMS-UNetFormer exhibits more balanced and precise recognition capabilities, excelling in both 
small-scale and densely distributed target segmentation.

A comparison of BEMS-UNetFormer and the mainstream segmentation network’s segmentation results on the 
Potsdam dataset is shown in Figure 7. Observing Figure 7(a), it is evident that the model occasionally misdetects 
boundaries when elements are densely packed, which places high demands on the model’s ability to capture both 
local and global semantic information. The segmentation map generated by the BEMS-UNetFormer method 
closely resembles the labeled map, with relatively clear segmentation boundaries. Additionally, LOGCAN++ 
sometimes misclassifies the background as trees, whereas the proposed method accurately recognizes it as 
background. Figure 7(b) shows that the model proposed in this paper is more accurate in segmenting long targets 
such as “Building”, “Street”, and “Car”. In the locally enlarged area, the boundary segmented by the proposed 
model is closest to the labeled map. In contrast, the UNetFormer model has incorrectly recognized some areas 
of “LowVeg” along its boundaries, while the SegFormer is unable to segment the shape of the boundary. Figure 
7(c) shows that the overall recognition performance of the proposed model is noticeably better. However, the 

Fig. 7.  Comparison of segmentation results on the Potsdam dataset with general segmentation models: (a), (b) 
and (c) represent the segmentation results of three different scenarios.

 

Model

Street Building LowVeg Tree Car

OA MIoU MF1IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

SegFormer 38.02 55.09 76.20 86.49 75.47 86.02 77.89 87.57 68.93 81.61 86.29 70.99 81.87

UnetMamba 65.23 78.96 90.76 95.16 77.28 87.18 79.69 88.70 90.91 95.24 91.09 85.59 92.13

LOGCAN++ 42.92 60.06 92.89 96.31 77.19 87.13 80.31 89.08 91.65 95.65 90.80 85.77 92.22

SFA-Net 69.27 80.02 91.59 95.61 78.04 87.63 79.58 88.63 90.90 95.23 91.51 86.12 92.42

UNetFormer 63.84 77.94 88.64 93.97 76.83 86.90 78.99 88.26 91.19 95.39 90.54 84.74 91.63

Ours 69.36 81.91 91.58 94.57 78.46 87.93 79.34 88.48 91.20 95.57 91.56 86.12 92.43

Table 2.  Comparative experiments on the potsdam dataset.
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UNetFormer and LOGCAN++ models confuse “Building” with “Street”, and the SFA-Net misclassifies some 
areas of “LowVeg” as “Background”.

In this paper, different colors are employed to visualize missed and misdetected pixels, with the visualization 
results for the Potsdam dataset illustrated in Figure 8. To evaluate the model’s performance, the proposed 
BEMS-UNetFormer model is compared with the base model UNetFormer and the frontier model SFA-Net. In 
the visualization, “Detection Errors” highlights the distribution of missed and misdetected pixels, where red 
areas represent missed pixels, green areas indicate misdetected pixels, and “Predicted” displays the prediction 
results of each model. As shown in the center region of Figure 8(a), the number of missed and misdetected 
pixels produced by the proposed model is significantly lower compared to the other models. By contrast, the 
UNetFormer model shows large-scale misdetections in this region, represented by a prominent red background. 
In the upper section of Figure 8(b), the SFA-Net incorrectly classifies parts of low vegetation as red background, 
whereas both the proposed model and the base model successfully identify this region. Figure 8(c) indicate that 
although the proposed model outperforms the comparison model in overall performance, there are still a small 
number of omissions and misdetections in the tree detection task, which is similar to the limitations of the 
comparison models. Collectively, these findings underscore the advantages of the proposed model in improving 
boundary clarity and recognition accuracy in complex environments.

Experimental results for vaihingen data
The comparison results of segmentation performance on the Vaihingen dataset are presented in Table 3. The 
results demonstrate that BEMS-UNetFormer achieves superior performance across all comprehensive evaluated 
metrics. Specifically, the proposed model outperforms the baseline model, with MIoU, OA, and MF1 metrics 
increasing by 1.79%, 0.87%, and 1.14%, respectively. For the street category, which exhibits large variations 
in geometry and texture, the model proposed in this paper achieves an IoU of 90.40% and an F1 score of 
94.96%, representing improvements of 2.10% and 1.18%, respectively, compared to the baseline model. In the 
segmentation task of two confusable categories, “LowVeg” and “Tree”, the IoU and F1 score for low vegetation 
reach the highest values of 74.46% and 85.36%, respectively. Furthermore, in the “Building”, the IoU and F1 
score of the proposed model reach 92.30% and 96.00%, respectively, which are the highest among all compared 
models. These results underline the effectiveness of BEMS-UNetFormer in segmenting categories with complex 
spatial and structural features, demonstrating its capability to achieve precise and reliable performance.

Model

Street Building LowVeg Tree Car

OA MIoU MF1IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

SegFormer 21.22 35.01 90.47 95.00 71.32 83.26 80.37 89.12 80.37 89.12 89.59 69.21 79.10

UnetMamba 82.65 90.50 91.26 95.43 72.54 84.08 80.37 89.11 73.56 84.77 91.42 81.63 89.67

LOGCAN++ 83.98 91.29 91.89 95.77 72.57 84.10 80.15 88.98 75.32 85.92 91.47 82.06 89.94

SFA-Net 85.18 92.00 92.16 95.92 74.40 85.32 81.29 89.68 75.60 86.68 92.04 83.07 90.58

UNetFormer 88.30 93.78 91.82 95.73 71.91 83.66 79.26 88.43 72.99 84.39 91.22 81.31 89.45

Ours 90.40 94.96 92.30 96.00 74.46 85.36 81.15 86.50 76.22 86.50 92.09 83.10 90.59

Table 3.  Comparative experiments on the vaihingen dataset.

 

Fig. 8.  Visualization results of missed and misdetected pixels on the potsdam dataset.
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A comparison of the segmentation results of BEMS-UNetFormer with mainstream segmentation networks 
on the Vaihingen dataset is shown in Figure 9. In Figure 9(a), the proposed model outperforms other models 
in segmenting the contours of cars and buildings. In Figure 9(b), when processing densely packed and visually 
similar elements, most models tend to misclassify trees as low vegetation. In contrast, the proposed model 
demonstrates significantly higher accuracy in distinguishing these categories. As shown in the magnified region 
of Figure 9(c), the building boundaries segmented by the proposed model are the closest to the labeled map. In 
comparison, SFA-Net and LOGCAN++ exhibit noticeable jagged edges along the boundaries. Overall, compared 
to other models, BEMS-UNetFormer achieves substantial improvements in segmenting small-sized targets and 
defining target boundaries. The experimental results confirm the effectiveness of the proposed enhancements, 
leading to a significant increase in segmentation precision and accuracy, particularly in complex scenarios.

The results of the visualization of missed and misdetected pixels on the Vaihingen dataset are presented 
in Figure 10. For each model, “Detection Errors” represents the visualized maps of error pixels, where blue 
denotes missed pixels, and green indicates misdetected pixels, while “Predicted” shows the predicted result 
map of the model. Figure 10(a) illustrates that the proposed BEMS-UNetFormer model significantly improves 
the accuracy of building boundary segmentation and effectively reduces missed detections. In contrast, 
UNetFormer and SFA-Net incorrectly classify buildings as white streets in certain regions. In the bottom left 

Fig. 10.  Visualization results of missed and misdetected pixels on the vaihingen dataset.

 

Fig. 9.  Comparison of segmentation results on the Vaihingen dataset with general segmentation models: (a), 
(b) and (c) represent the segmentation results of three different scenarios.

 

Scientific Reports |        (2025) 15:14737 11| https://doi.org/10.1038/s41598-025-99663-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


corner of Figure 10(b), UNetFormer misclassifies areas of low vegetation as trees, whereas the proposed model 
and SFA-Net demonstrate better accuracy in distinguishing these closely related categories. Furthermore, Figure 
10(c) highlights that the proposed model maintains a low level of missed and misidentified pixels, particularly 
excelling in identifying small-sized targets like cars. This stands out compared to UNetFormer, which exhibits 
noticeable missed detections for such targets and often misclassifies them as streets.

 Ablation experiments
In this section, ablation experiments are conducted on the Potsdam dataset to validate the effectiveness of 
the proposed modules. Segmentation performance is quantitatively evaluated using metrics such as MF1, 
OA, and MIoU. Using UNetFormer as the benchmark network, the BAM, BFM, and MSC-ASPP modules are 
progressively added, and their contributions are analyzed through metric comparisons. Additionally, the impact 
of different module combinations on the model’s segmentation capability is explored. Since the BFM module 
relies on boundary information extracted by the BAM module and cannot perform feature fusion independently, 
its effect was not separately analyzed in these experiments.

Table 4 presents the results of the ablation experiments. Adding the BAM module to the encoding layer 
improves the MF1, OA, and MIoU metrics by 0.6%, 0.75%, and 1.06%, respectively, demonstrating its ability 
to better extract shallow contour information. Incorporating the MSC-ASPP module at the encoder-decoder 
bridge further enhances feature extraction accuracy, with the metrics improving by 0.70%, 0.85%, and 1.20%, 
respectively. When the BAM module is combined with the BFM module, the metrics increase by 0.57%, 0.76%, 
and 1.16% compared to the simple feature fusion method. Similarly, introducing the MSC-ASPP module 
alongside the BAM module enhances performance further, with the metrics improving by 0.74%, 0.86%, and 
1.3%. These results indicate that the BAM and MSC-ASPP modules work independently yet mutually reinforce 
the model’s segmentation capability. Finally, integrating all the proposed modules yields the best segmentation 
performance, with improvements of 0.8%, 1.02%, and 1.38% in MF1, OA, and MIoU, respectively, compared 
to the baseline model. These experiments confirm the indispensability of each module in achieving optimal 
semantic segmentation performance for remote sensing images, particularly in extracting contours and 
addressing complex feature relationships.

To validate the effectiveness of the BAM in target boundary extraction, a comparative analysis was performed 
on the feature maps generated at the second layer of the network decoder, before and after the module’s integration, 
using the Potsdam dataset. As illustrated in Figure 11, the figure is divided into four groups: from left to right, they 
represent the original image, the ground truth, the feature maps produced by the model with the BAM module, 
and those generated without it. Figure 11(a) demonstrates that integrating the BAM significantly enhances the 
model’s ability to represent small-scale targets and detailed regions, leading to improved segmentation accuracy. 
In addition, Figure 11(b) shows that the module greatly improves the model’s capability to capture complex 
target boundaries, particularly in scenarios involving multiple target categories. Moreover, as shown in Figure 
11(c), the feature maps generated by the model with the BAM module exhibit a clear focus on target boundaries, 
with notably enhanced edge features. In contrast, the feature maps from the model without the module display 
weaker boundary emphasis, characterized by blurred and less distinct edges. These results confirm the BAM 
module’s role in improving the precision and robustness of target boundary representation.

 Experiments of MSC-ASPP
Impact of cascaded ASPP on model performance
To analyze the impact of the cascade structure of the ASPP on model performance, this experiment was designed 
based on the original dilation rate combinations (6, 12, 18, 24) under different cascade operation conditions. The 
specific results are presented in Table 5.

The experimental results show that the UNetFormer model with ASPP but without cascade operation 
outperforms the baseline UNetFormer model in terms of IoU and F1 scores for the Street, Building, LowVeg, 
Tree, and Car categories. The OA increased from 90.54% to 90.82%, the MIoU from 84.74% to 85.09%, and the 
MF1 from 91.63% to 91.83%. Moreover, the introduction of the cascade operation significantly enhanced the 
model performance, particularly for the Street and Building categories. The overall accuracy further improved 
to 91.30%, while the MIoU and MF1 increased to 85.87% and 92.30%, respectively. These results demonstrate 
that the cascade structure of the ASPP effectively captures multi-scale features, enhancing the model’s ability to 
parse complex scenes and significantly improving segmentation accuracy, particularly for challenging categories 
such as Street and Building.

Baseline (UNetFormer) BAM BFM MSC-ASPP OA MF1 MIoU

UNetFormer 91.63 90.54 84.74

UNetFormer + BAM
√

92.23 91.29 85.80

UNetFormer + MSC-ASPP
√

92.33 91.39 85.94

UNetFormer + BAM + BFM
√ √

92.20 91.30 85.90

UNetFormer + BAM + MSC-ASPP
√ √

92.37 91.40 86.04

UNetFormer + BAM + BFM + MSC-ASPP
√ √ √

92.43 91.56 86.12

Table 4.  Ablation experiments on the potsdam dataset.
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Experiments with different combinations of dilation rates
To comprehensively explore the multiscale effect, this study investigates the impact of different combinations of 
dilation rates on the segmentation performance across various target types. Through comparative experiments, 
the optimal parameter set proposed in this paper is evaluated. Multiple combinations of dilation rates are 
designed and tested, and the results are analyzed to assess their enhancement effect on segmentation accuracy.

As shown in Table 6, the combination (4, 8, 12, 16) achieves the best performance, with MF1, OA, and MIoU 
reaching 92.33%, 91.39%, and 85.94%, respectively. Notably, this combination achieves the highest IoU and F1 
score for the small target “Car”, with values of 91.49% and 95.55%, demonstrating a significant advantage in 
detecting small-sized objects. Other combinations, such as (4, 8, 12) and (6, 12, 18, 24), also perform well for 
most target categories but are less effective in detecting small targets compared to (4, 8, 12, 16). For instance, the 
combination (6, 12, 18, 24) achieves an MF1 of 91.30%, which is lower than that of (4, 8, 12, 16) across all targets. 

Parameter

Street Building LowVeg Tree Car

OA MIoU MF1IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

(4, 8, 12) 67.20 80.38 90.17 94.84 77.74 87.47 78.06 87.67 90.54 95.03 90.85 84.99 91.87

(6, 12, 18) 61.49 76.15 90.81 95.18 77.87 87.56 78.35 87.86 91.43 95.52 90.58 85.12 91.85

(6, 12, 18, 24) 65.96 79.49 90.90 95.23 78.29 87.82 80.09 88.94 91.07 95.33 91.30 85.87 92.30

(4, 8, 12, 16) 68.70 81.45 91.63 95.63 78.03 87.66 79.63 88.66 91.49 95.55 91.39 85.94 92.33

Table 6.  Experimental results for different combinations of dilation rates on the potsdam dataset.

 

Parameter

Street Building LowVeg Tree Car

OA MIoU MF1IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

Model 1 63.84 77.94 88.64 93.97 76.83 86.90 78.99 88.26 91.19 95.39 90.54 84.74 91.63

Model 2 64.93 79.02 89.77 94.50 77.56 87.44 79.54 88.63 90.13 94.36 90.82 85.09 91.83

Model 3 65.96 79.49 90.90 95.23 78.29 87.82 80.09 88.94 91.07 95.33 91.30 85.87 92.30

Table 5.  Experimental results on the impact of the cascade structure of the ASPP module on model 
performance.  Model 1 represents the baseline UNetFormer model; Model 2 represents UNetFormer+ASPP 
(without cascade structure); Model 3 represents UNetFormer+ASPP (with cascade structure).

 

Fig. 11.  Boundary feature extraction visualization comparison on the potsdam dataset.
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These findings highlight the effectiveness of the (4, 8, 12, 16) combination in improving segmentation accuracy, 
particularly for small and complex targets.

Comparison of MSC-ASPP with similar modules
To validate the effectiveness of the MSC-ASPP, this work compares it with similar modules, including ASPP, 
Spatial Pyramid Pooling - Fast (SPPF)48, and Receptive Field Block (RFB)49, using the same training strategies 
on the Potsdam dataset. The evaluation is conducted based on three metrics: MF1, OA, and MIoU. As shown in 
Table 7, UNetFormer+MSC-ASPP outperforms the other modules across all three metrics, achieving MF1, OA, 
and MIoU scores of 92.33%, 91.39%, and 85.94%, respectively, thereby demonstrating the effectiveness of the 
MSC-ASPP module on the Potsdam dataset.

To compare the differences in feature extraction among these modules, a visual analysis of feature maps 
generated by the MSC-ASPP, ASPP, SPPF, and RFB was conducted, as shown in Figure 12. Although the ASPP 
captures a considerable amount of regional information, its attention is distributed too broadly, failing to 
effectively focus on the primary target objects, which results in insufficient specificity of feature representation. 
The SPPF and RFB, while somewhat reducing the dispersion of attention, exhibit overly confined attention areas 
and fail to fully capture critical target information. This limitation is particularly evident in complex scenarios, 
where they are prone to missing important object details. In contrast, the proposed MSC-ASPP, through the 
use of multi-scale cascaded dilated convolutions and a feature fusion mechanism, significantly enhances the 
discriminative capability of the feature maps. Additionally, by progressively integrating feature information 
across different scales, the MSC-ASPP further optimizes the spatial distribution of features, making it more 
effective in capturing key characteristics of objects.

 Analysis of confusion matrix
To verify the validity and generalization ability of the proposed model, a comparison was conducted with the 
base model using confusion matrices on the Potsdam dataset. Figure 13(a) illustrates the segmentation results 
of BEMS-UnetFormer, while Figure 13(b) presents those of UNetFormer.The analysis of the two confusion 
matrices reveals an overall improvement in the number of correctly classified instances across the four categories: 
LowVeg, Background, Car, and imSurf(Street). Notably, the correct detections for the small-sized target “Car” 
increased from 2,915,326 to 3,018,259, proving the significant enhancement in segmentation accuracy for small-
sized targets. Furthermore, the correct detections for “LowVeg” rose from 59,915,466 to 61,879,965, and for 

Fig. 12.  Comparison of heat maps: (a) Original, (b) MSC-ASPP, (c) ASPP, (d) SPPF and (e) RFB.

 

Model MF1 OA MIoU

UNetFormer + ASPP 91.83 90.82 85.09

UNetFormer + SPPF 91.99 91.13 85.35

UNetFormer + RFB 91.74 90.82 84.93

UNetFormer + MSC-ASPP 92.33 91.39 85.94

Table 7.  Comparison of different modules on the potsdam dataset.
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street from 76,346,797 to 79,332,118. A detailed analysis of the confusion matrix reveals that, in the baseline 
model, “Car” were misclassified as “LowVeg” on 6,432 occasions. In the improved BEMS-UnetFormer, this 
error was reduced to 1,789. Similarly, the number of “Car” misclassified as “Building” decreased from 36,570 to 
15,215. These improvements significantly enhanced the segmentation recall rate for the car category. Overall, 
the improved algorithm substantially optimized the model’s overall performance, demonstrating remarkable 
effectiveness, particularly in segmenting small-scale targets and easily confusable objects.

 Experiments of loss function
In this section, the semantic segmentation performance of three different loss functions is compared on the 
Potsdam dataset: the Improved Loss Function, Boundary Loss, and Hausdorff Distance Loss. The results, shown 
in Table 8, indicate that the proposed method achieves the best overall performance, with OA, MIoU, and MF1 
scores of 91.56%, 86.12%, and 92.43%, respectively.

For specific categories, the proposed method excels in IoU and F1 scores for the Street and Tree categories, 
highlighting its effectiveness in handling fine boundary segmentation tasks. For the Building and Car categories, 
it performs comparably to the other loss functions but shows slight improvements. In contrast, the Boundary 
Loss demonstrates a minor advantage in the LowVeg category; however, its overall performance is inferior to 
the proposed method.These findings confirm that the Improved Loss Function not only enhances segmentation 
accuracy but also addresses fine-grained boundary challenges more effectively than the other loss functions 
tested.

 Evaluation of noise robustness in models
The noise robustness of the model is a crucial factor influencing its performance, largely determined by the 
inherent noise in remote sensing images. This noise arises from two primary sources. The first source is 
external environmental factors during image capture, such as insufficient lighting, equipment movement, and 
atmospheric turbulence, which degrade image quality through effects like blurring and streaking. The second 
source is intrinsic noise generated during image acquisition and processing, such as the mosaic effect in the 
original image, which significantly interferes with image quality.

Noise impacts model performance in several ways. It can blur features in boundary regions, reducing 
segmentation accuracy. Additionally, it may cause confusion when recognizing categories with similar visual 

Parameter

Street Building LowVeg Tree Car

OA MIoU MF1IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

Boundary Loss 68.78 81.50 91.30 95.45 78.54 87.98 78.95 88.24 91.20 95.89 91.46 86.09 92.41

Hausdorff
Distance Loss 67.99 80.95 91.21 95.40 78.26 87.80 78.97 88.25 91.43 95.52 91.34 85.84 92.27

Ours 69.36 81.91 91.58 94.57 78.46 87.93 79.34 88.48 91.20 95.57 91.56 86.12 92.43

Table 8.  Experimental results on the impact of different loss functions on model performance.

 

Fig. 13.  Confusion matrix of UNetFormer and BEMS-UNetFormer segmentation results on the potsdam 
dataset.
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features (e.g., low vegetation and trees). Lastly, noise obscures the features of small targets, hindering the model’s 
ability to detect these targets accurately.

In this work, we validate the robustness of the proposed model in noisy environments, with visualization 
results presented in Figure 14. As shown in Figure 14(a), under conditions of tree silhouette streaks and image 
blurring, both the proposed model and SFA-Net accurately recognize trees and low vegetation. In contrast, 
the UNetFormer model misclassifies some trees as background. Similarly, Figure 14(b) illustrates the model’s 
performance in regions with mosaic noise, specifically in the lower right of the image. While the proposed model 
correctly identifies the area, even when labeled as background, the UNetFormer model misclassifies it as a white 
opaque surface. These experimental results confirm the significant advantages of the proposed model in terms 
of noise robustness. Its ability to handle noise interference in remote sensing images substantially improves 
recognition accuracy, particularly under challenging conditions.

Discussion
Performance evaluation
The performance advantages of BEMS-UNetFormer primarily stem from its design for multi-scale feature 
extraction and boundary enhancement mechanisms. The BAM uses attention mechanisms to strengthen 
the extraction of edge features, enabling the model to excel in handling complex boundaries and small-scale 
objects. For instance, in the Potsdam dataset, BEMS-UNetFormer achieved the highest IoU and F1 scores in the 
segmentation tasks for vehicles and streets, which can be attributed to the precise edge information captured by 
the BAM. Furthermore, the MSC-ASPP module employs a combination of atrous convolution rates (4, 8, 12, 16) 
to effectively aggregate contextual information across multiple scales, thereby enhancing the model’s adaptability 
to objects of varying sizes. Experimental results indicate that this atrous rate configuration is particularly effective 
for small-object segmentation, with IoU and F1 scores for vehicles on the Potsdam dataset reaching 91.49% and 
95.57%, respectively, significantly outperforming other configurations. Compared to modules such as ASPP, 
SPPF, and RFB, MSC-ASPP demonstrates the ability to generate more discriminative feature maps, focusing 
more effectively on target regions and thus improving segmentation accuracy. This design not only preserves 
rich local structural details but also enhances the representation capability of shallow features, enabling the 
model to achieve an optimal balance between capturing local details and global contextual information in 
complex scenarios.

A comparison of parameter counts and computational complexities across models is shown in Table 9. 
The parameter count affects hardware resource consumption, with fewer parameters requiring less hardware. 
Similarly, fewer floating-point operations (FLOPS) improve model computational speed. From the perspective 
of computational efficiency and model optimization, BEMS-UNetFormer demonstrates an advantage with 
a parameter count of 20.1MB and a computational complexity of 84.2G, outperforming models such as 
LOGCAN++ in terms of efficiency. However, in practical applications, especially on resource-constrained 

Model FLOPS (G) Para (MB)

SegFormer 44.30 3.72

UNetMamba 100.52 14.76

LOGCAN++ 123.69 30.90

SFA-Net 42.80 10.70

UNetFormer 47.63 11.40

Ours 84.20 20.10

Table 9.  Comparison of parameter counts and computational complexity of models.

 

Fig. 14.  Visualization analysis of model robustness to noise on the potsdam dataset.
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devices such as mobile terminals or embedded systems, BEMS-UNetFormer may still encounter limitations due 
to insufficient computational resources. To further enhance the model’s practicality, future work can focus on 
optimization techniques such as model pruning and knowledge distillation. Model pruning effectively reduces 
computational complexity and storage demands by removing redundant neurons and parameters. Meanwhile, 
knowledge distillation transfers the expertise of BEMS-UNetFormer to smaller, more efficient models, 
significantly improving inference speed while maintaining segmentation accuracy.

Limitations and future works
Although BEMS-UNetFormer demonstrates excellent performance in most scenarios, segmentation errors still 
occur in certain complex situations, reflecting the model’s technical limitations. For instance, in Figure 15(a), 
the reflection of trees on the road is misclassified as the background, which might be attributed to insufficient 
robustness of the model to variations in lighting conditions. Changes in lighting can significantly alter the color 
and texture of objects in the image, thereby affecting the stability of feature extraction. Additionally, in Figure 
15(b), a large number of densely packed small objects are challenging to distinguish, indicating the model’s 
limitations in handling high-density targets. This could result from the current multi-scale feature fusion 
strategy failing to sufficiently capture subtle differences between densely packed objects. Future improvements 
could involve the introduction of more effective multi-scale feature fusion strategies or dynamic attention 
mechanisms, enabling the model to adaptively focus on objects of varying scales and types, thereby enhancing 
segmentation accuracy. In Figure 15(c), buildings partially obscured by trees, with colors similar to the trees, 
are erroneously recognized as the background. This issue could be addressed by incorporating occlusion-aware 
mechanisms or integrating depth information, such as data from LiDAR, to improve the model’s capability in 
recognizing occluded targets.

Conclusions
In this work, a boundary-enhanced semantic segmentation network for multi-scale remote sensing images 
(BEMS-UNetFormer) is proposed. Built on the original UNetFormer framework, the improved Boundary-
Aware Module (BAM) extracts shallow contour information, while the Boundary-Guided Fusion Module 
(BFM), inspired by attentional mechanisms, enhances the network’s ability to capture edge features. Additionally, 
Multi-Scale Cascaded Atrous Spatial Pyramid Pooling (MSC-ASPP) is incorporated in the codec bridge to 
perform multi-scale deep feature extraction, effectively amplifying relevant features and suppressing irrelevant 
ones. Experimental results on the Potsdam and Vaihingen datasets demonstrate that the proposed method 
outperforms five classical methods under the same conditions. It achieves higher segmentation accuracy and 
excels in segmenting small-sized targets and defining target boundaries.

Data availability
The datasets analysed during the current study are available at ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​i​s​p​r​​s​.​o​​r​g​/​​e​d​u​c​a​t​​i​​o​n​/​b​​e​n​c​h​m​a​​​r​k​s​/​U​​
r​b​a​n​S​e​m​​L​a​b​/​D​e​f​​a​u​l​t​.​a​s​p​x

Fig. 15.  Some misidentified cases: (a) Reflection of buildings, (b) Large number of consecutive, dense and 
small objects, (c) Residential area obscured by trees.

 

Scientific Reports |        (2025) 15:14737 17| https://doi.org/10.1038/s41598-025-99663-9

www.nature.com/scientificreports/

https://www.isprs.org/education/benchmarks/UrbanSemLab/Default.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/Default.aspx
http://www.nature.com/scientificreports


Received: 15 October 2024; Accepted: 22 April 2025

References
	 1.	 LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 

86, 2278–2324 (1998).
	 2.	 Vaswani, A. Attention is all you need. Advances in Neural Information Processing Systems (2017).
	 3.	 Gu, A. & Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752 (2023).
	 4.	 Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference 

on computer vision and pattern recognition, 3431–3440 (2015).
	 5.	 Badrinarayanan, V., Kendall, A. & Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. 

IEEE Trans. Pattern Anal. 39, 2481–2495 (2017).
	 6.	 Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. Global integrated drought monitoring and prediction system 

(GIDMaPS) data sets. CoRR https://doi.org/10.48550/arXiv.1412.7062 (2014).
	 7.	 Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. Deeplab: Semantic image segmentation with deep convolutional 

nets, atrous convolution, and fully connected crfs. CoRR arxiv: https://arxiv.org/abs/1606.00915 (2016).
	 8.	 Chen, L.-C., Papandreou, G., Schrof, F. & Adam, H. Rethinking atrous convolution for semantic image segmentation. CoRR arxiv: 

https://arxiv.org/abs/1706.05587 (2017).
	 9.	 Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision 

and pattern recognition, 2881–2890 (2017).
	10.	 Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical image 

computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, 
proceedings, part III 18, 234–241 (Springer, 2015).

	11.	 Li, X., Zhang, Y. & Wang, Z. Gated convolutional networks for image segmentation. Journal of Image Processing. 10, 123–134 
(2020).

	12.	 Hou, Q., Zhou, D. & Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF conference 
on computer vision and pattern recognition, 13713–13722 (2021).

	13.	 Peng, Z. et al. Conformer: Local features coupling global representations for visual recognition. In Proceedings of the IEEE/CVF 
international conference on computer vision, 367–376 (2021).

	14.	 Zheng, S. et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In Proceedings of 
the IEEE/CVF conference on computer vision and pattern recognition, 6881–6890 (2021).

	15.	 Dosovitskiy, A. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 
(2020).

	16.	 Liu, Z. et al. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international 
conference on computer vision, 10012–10022 (2021).

	17.	 He, X. et al. Swin transformer embedding unet for remote sensing image semantic segmentation. IEEE Transactions on Geoscience 
and Remote Sensing. 60, 1–15 (2022).

	18.	 Wang, L. et al. Unetformer: A unet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. 
ISPRS Journal of Photogrammetry and Remote Sensing. 190, 196–214 (2022).

	19.	 Qu, H. et al. A survey of mamba. arXiv preprint arXiv:2408.01129 (2024).
	20.	 Zhu, Q. et al. Samba: Semantic segmentation of remotely sensed images with state space model. Heliyon. 10 (2024).
	21.	 Ma, X., Zhang, X. & Pun, M.-O. Rs 3 mamba: Visual state space model for remote sensing image semantic segmentation. IEEE 

Geoscience and Remote Sensing Letters (2024).
	22.	 Zhu, E. et al. Unetmamba: An efficient unet-like mamba for semantic segmentation of high-resolution remote sensing images. 

IEEE Geoscience and Remote Sensing Letters (2024).
	23.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer 

vision and pattern recognition, 770–778 (2016).
	24.	 Luo, Z. et al. Non-local deep features for salient object detection. In Proceedings of the IEEE Conference on computer vision and 

pattern recognition, 6609–6617 (2017).
	25.	 Wei, S., Ji, S. & Lu, M. Toward automatic building footprint delineation from aerial images using cnn and regularization. IEEE 

Transactions on Geoscience and Remote Sensing. 58, 2178–2189 (2019).
	26.	 Guo, Z. et al. Village building identification based on ensemble convolutional neural networks. Sensors. 17, 2487 (2017).
	27.	 Cheng, D., Meng, G., Xiang, S. & Pan, C. Fusionnet: Edge aware deep convolutional networks for semantic segmentation of remote 

sensing harbor images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 10, 5769–5783 (2017).
	28.	 Chong, Y., Chen, X. & Pan, S. Context union edge network for semantic segmentation of small-scale objects in very high resolution 

remote sensing images. IEEE Geoscience and Remote Sensing Letters. 19, 1–5 (2020).
	29.	 Zheng, J., Shao, A., Yan, Y., Wu, J. & Zhang, M. Remote sensing semantic segmentation via boundary supervision-aided multiscale 

channelwise cross attention network. IEEE Transactions on Geoscience and Remote Sensing. 61, 1–14 (2023).
	30.	 Wu, Z., Gan, Y., Xu, T. & Wang, F. Graph-segmenter: graph transformer with boundary-aware attention for semantic segmentation. 

Frontiers of Computer Science. 18, 185327 (2024).
	31.	 Ni, Y., Liu, J., Cui, J., Yang, Y. & Wang, X. Edge guidance network for semantic segmentation of high resolution remote sensing 

images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. (2023).
	32.	 Cui, J., Liu, J., Wang, J. & Ni, Y. Global context dependencies aware network for efficient semantic segmentation of fine-resolution 

remoted sensing images. IEEE Geoscience and Remote Sensing Letters. (2023).
	33.	 Zhou, Q. et al. Boundary-guided lightweight semantic segmentation with multi-scale semantic context. IEEE Transactions on 

Multimedia. 26, 7887–7900 (2024).
	34.	 Liu, C., Zhang, Z., Wang, M., Xiang, S. & Xie, G. A novel cross-fusion model with fine-grained detail reconstruction for pan-

sharpening of remote sensing images. Geo-spatial Information Science 1–29, https://doi.org/10.1080/10095020.2024.2416899 
(2024).

	35.	 Ma, X. et al. Sacanet: scene-aware class attention network for semantic segmentation of remote sensing images. In 2023 IEEE 
International Conference on Multimedia and Expo (ICME), 828–833 (IEEE, 2023).

	36.	 Li, Q., Yang, W., Liu, W., Yu, Y. & He, S. From contexts to locality: Ultra-high resolution image segmentation via locality-aware 
contextual correlation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 7252–7261 (2021).

	37.	 Xiaoyu, H., He, R., Dai, Y. & He, M. Semantic segmentation of remote sensing images with multi-scale features and attention 
mechanism. In 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA), 1148–1453 (IEEE, 2023).

	38.	 Zhang, Z. & Zhang, K. Farsee-net: Real-time semantic segmentation by efficient multi-scale context aggregation and feature space 
super-resolution. In 2020 IEEE International Conference on Robotics and Automation (ICRA), 8411–8417 (IEEE, 2020).

	39.	 Wu, H., Huang, P., Zhang, M. & Tang, W. Ctfnet: Cnn-transformer fusion network for remote sensing image semantic segmentation. 
IEEE Geoscience and Remote Sensing Letters (2023).

	40.	 Ma, X., Zhang, X., Pun, M.-O. & Liu, M. A multilevel multimodal fusion transformer for remote sensing semantic segmentation. 
IEEE Transactions on Geoscience and Remote Sensing (2024).

Scientific Reports |        (2025) 15:14737 18| https://doi.org/10.1038/s41598-025-99663-9

www.nature.com/scientificreports/

http://arxiv.org/abs/2312.00752
https://doi.org/10.48550/arXiv.1412.7062
http://arxiv.org/abs/https://arxiv.org/abs/1606.00915
http://arxiv.org/abs/https://arxiv.org/abs/1706.05587
http://arxiv.org/abs/https://arxiv.org/abs/1706.05587
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2408.01129
https://doi.org/10.1080/10095020.2024.2416899
http://www.nature.com/scientificreports


	41.	 Noman, M. et al. Rethinking transformers pre-training for multi-spectral satellite imagery. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, 27811–27819 (2024).

	42.	 Wang, W. & Wang, X. Bafnet: Bilateral attention fusion network for lightweight semantic segmentation of urban remote sensing 
images. arXiv preprint arXiv:2409.10269 (2024).

	43.	 Sun, Y., Wang, S., Chen, C. & Xiang, T.-Z. Boundary-guided camouflaged object detection. arXiv preprint arXiv:2207.00794 (2022).
	44.	 Howard, A.  G. et al. Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint 

arXiv:1704.04861126 (2017).
	45.	 Xie, E. et al. Segformer: Simple and efficient design for semantic segmentation with transformers. Advances in neural information 

processing systems. 34, 12077–12090 (2021).
	46.	 Ma, X. et al. Logcan++: Adaptive local-global class-aware network for semantic segmentation of remote sensing imagery. arXiv 

preprint arXiv:2406.16502 (2024).
	47.	 Hwang, G., Jeong, J. & Lee, S. J. Sfa-net: Semantic feature adjustment network for remote sensing image segmentation. Remote 

Sensing. 16, https://doi.org/10.3390/rs16173278 (2024).
	48.	 He, K., Zhang, X., Ren, S. & Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE transactions 

on pattern analysis and machine intelligence. 37, 1904–1916 (2015).
	49.	 Liu, S., Huang, D. et al. Receptive field block net for accurate and fast object detection. In Proceedings of the European conference on 

computer vision (ECCV). 385–400 (2018).

Acknowledgements
This research was funded by Hubei Province Key Research and Development Special Project of Science and Tech-
nology Innovation Plan (2023BAB087). Wuhan Key Research and Development Projects (2023010402010614). 
Wuhan Knowledge Innovation Special Dawn Project (2023010201020465). “the open competition project for 
selecting the best candidates”, Wuhan East Lake High-tech Development Zone (2024KJB328). Fund for Research 
Platform of South-Central Minzu University (CZQ24011). And Central Government Guides Local Funds for 
Science and Technology Development (ZYYD2024QY08).

Author contributions
J.W. and L.Z. conceptualized the study, developed the methodology. Y.Z. and Z.L. supervised and edited the 
writing. P.C. and Q.S. conducted the formal analysis. L.Z. and J.T. administered the project and supervised the 
work. Y.Z. and Z.L. curated the data. T.C. and J.T. validated the results and conducted the experiments. J.W. and 
T.C. wrote the original draft. P.C. and Q.S. visualized the data. J.W., J.T. and L.Z. acquired funding. All authors 
reviewed the manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to L.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |        (2025) 15:14737 19| https://doi.org/10.1038/s41598-025-99663-9

www.nature.com/scientificreports/

http://arxiv.org/abs/2409.10269
http://arxiv.org/abs/2207.00794
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/2406.16502
https://doi.org/10.3390/rs16173278
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿A multi-scale remote sensing semantic segmentation model with boundary enhancement based on UNetFormer
	﻿Related works
	﻿UNetFormer
	﻿Boundary detection
	﻿Multi-scale aggregation

	﻿Methods
	﻿Boundary awareness module (BAM)
	﻿Boundary-guided fusion module (BFM)
	﻿Multi-scale cascaded atrous spatial pyramid pooling (MSC-ASPP)
	﻿Loss function

	﻿Experiments and results
	﻿ Experimental dataset
	﻿ Experimental environment
	﻿ Evaluation metrics
	﻿ Comparative experiments
	﻿Experimental results for potsdam data
	﻿Experimental results for vaihingen data


	﻿ Ablation experiments
	﻿ Experiments of MSC-ASPP
	﻿Impact of cascaded ASPP on model performance
	﻿Experiments with different combinations of dilation rates
	﻿Comparison of MSC-ASPP with similar modules

	﻿ Analysis of confusion matrix
	﻿ Experiments of loss function
	﻿ Evaluation of noise robustness in models
	﻿Discussion
	﻿Performance evaluation
	﻿Limitations and future works

	﻿Conclusions
	﻿References


