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Patients with cardioembolic stroke often undergo CT of the left atrial appendage (LAA), for example, 
to determine whether thrombi are present in the LAA. To guide the imaging process, technologists first 
perform a localizer scan, which is a preliminary image used to identify the region of interest. However, 
the lack of well-defined landmarks makes accurate delimitation of the LAA in localizers difficult and 
often requires whole-heart scans, increasing radiation exposure and cancer risk. This study aims to 
automate LAA delimitation in CT localizers using deep learning. Four commonly used deep networks 
(VariFocalNet, Cascade-R-CNN, Task-aligned One-stage Object Detection Network, YOLO v11) were 
trained to predict the LAA boundaries on a cohort of 1253 localizers, collected retrospectively from 
a single center. The best-performing network in terms of delimitation accuracy was then evaluated 
on an internal test cohort of 368 patients, and on an external test cohort of 309 patients. The 
VariFocalNet performed best, achieving LAA delimitations with high accuracy (97.8% and 96.8%; Dice 
coefficients: 90.4% and 90.0%) and near-perfect clinical utility (99.8% and 99.3%). Compared to whole-
heart scanning, the network-based delimitation reduced the radiation exposure by more than 50% 
(5.33 ± 6.42 mSv vs. 11.35 ± 8.17 mSv in the internal cohort, 4.39 ± 4.23 mSv vs. 10.09 ± 8.0 mSv in the 
external cohort). This study demonstrates that a deep learning network can accurately delimit the LAA 
in the localizer, leading to more accurate CT scans of the LAA, thereby significantly reducing radiation 
exposure to the patient compared to whole-heart scanning.
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Cardioembolic stroke (CES) is a common disease from which around 4–5 million suffer yearly1. A common 
cause of CES is atrial fibrillation, which is common in the elderly2. In these cases, the stroke results from the 
embolization of thrombi that form in the left atrial appendage (LAA)3. Systemic anticoagulation or implantation 
of an LAA occluder is used to prevent CES in patients with atrial fibrillation4. In the clinical routine, 
transesophageal echocardiography (TEE) is utilized to determine whether thrombi are present in the LAA or to 
assess the LAA anatomy prior to occluder implantation5. Unfortunately, TEE comes with several inconveniences: 
The patient must be fasting, which usually means not eating for eight hours and not drinking for two hours prior 
to the procedure. Swallowing the TEE device is uncomfortable, so the examination is generally performed under 
sedation. Although the overall risk of TEE is low, there is a risk of reactions to the drugs used for sedation (e.g., 
nausea and shortness of breath) and rupture of the esophagus, which is potentially life-threatening.

Computed tomography (CT) is a less invasive and more comfortable approach to assessing the LAA. Despite 
its good diagnostic accuracy, the relatively high radiation exposure of CT scans has prevented it from becoming 
established in clinical routine for the evaluation of the LAA.

Until now, a CT scan has been planned by manually delimiting the region of interest on a localizer, which 
is a low-dose overview image typically in a frontal projection. However, when the region lacks well-defined 
landmarks, technologists often delimit a larger area to ensure that no relevant structures are missed in the CT 
scan6,7. Indeed, due to varying anatomical shapes, there are no clear landmarks to delimit the LAA. In practice, 
therefore, nearly the entire heart is scanned, resulting in unnecessarily high radiation exposure (Fig. 1).

Deep learning could be a solution to minimally delimiting the LAA in the localizers, as it has been shown 
that, in some cases, it can perform on par with humans and, given enough data, can even perform better8,9. 
Therefore, a deep network may be able to delimit the LAA in the localizer, thereby reducing the CT scan area 
and, consequently, improving patient safety (Fig. 1). However, deep learning is highly dependent on data quality, 
and since the LAA is barely visible in the localizer, this could obstruct the application of deep networks. One 
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solution to this problem is to use the subsequent coronary computed tomography angiography (CCTA) scan, 
where the LAA can be easily delimited. Transferring the annotation in the CCTA back to the corresponding 
localizer provides a ground truth that also accounts for patient body motion (for example, due to breathing), 
from which the network can learn to delimit the LAA without relying on fixed landmarks.

The present study aims to develop and evaluate the feasibility of fully automated delimitation of the left 
atrial appendage in the localizer, thereby reducing the overall scan area relative to whole-heart scanning using 
deep learning methods. The study was carried out using training and validation datasets from one institution 
and an independent test dataset from a nearby institution. Four well-established neural networks were trained 
to predict the left atrial appendage (LAA) region, with their performance evaluated using accuracy, the Dice 
coefficient, and mean absolute error. To assess potential clinical utility, the expected effective dose (ED) was 

Fig. 1.  Current and proposed clinical practice for LAA CT imaging workflow. Comparison of current clinical 
practice (top) with the proposed deep learning-based approach (bottom) for CT imaging of the left atrial 
appendage (LAA). In conventional practice, manual delimitation of the localizer is performed; however, 
due to the anatomical variability of the LAA and the absence of clear landmarks, whole-heart delimitation is 
frequently necessary, resulting in increased radiation exposure. The proposed neural network enables precise 
LAA delimitation, thereby reducing radiation exposure while maintaining diagnostic accuracy. ROI region of 
interest.
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calculated, accounting for scenarios in which network predictions might fail, necessitating whole-heart scans. 
Safety margins were systematically adjusted during training to account for variability in patient positioning 
and movement, optimizing scan area delimitation while ensuring complete LAA imaging. The model’s clinical 
applicability and potential to reduce patient radiation exposure were subsequently evaluated in the test sets.

Results
Patient data
Overall, 1253 localizers (of 1213 patients) were collected for training and validation (Fig. 2). The internal test 
cohort comprised 368, and the external test cohort 309 localizers, with one localizer per patient in each test 
cohort. The mean age of all patients was 58.6 ± 13.7 years (range 18.2–90.1 years), with 791 females and 1099 
males (Table 1; Fig. 3). While no large difference is seen between the distributions of sex (p = 0.76) between the 
training and the internal test set, a difference was visible in age (p < 0.001). Contrarily, a difference in sex between 
the training and the external test set was observed (p = 0.002) but not in age (p = 0.56).

The acquisition of the localizers was performed most often with tube voltage fixed at 120  kV and tube 
current at 20 or 35 mA (Table 2). In a few cases, a retrospective gated CCTA was used. The collimation size was 
128 × 0.6 mm, and the rotation speed was 0.28/s.

Validation
All four networks performed well on the validation set, with only marginal differences (Table  3). Nearly all 
networks worked best when a safety margin of around 12–14 mm was added to both boundaries and achieved 
an expected ED of around 4.7 mSv (Fig. 4). Regarding accuracy, they all performed above 93% and obtained 
Dice scores around 90%. The mean absolute error (MAE) was slightly lower at the upper boundary than at the 
lower boundary.

Since the VFNet performed marginally better than the other networks, it was selected as the best-performing 
model.

Testing
The VFNet (with the 14 mm safety margin and a learning rate of 0.003) was then retrained on all training data. 
The model was then evaluated on the independent test sets (Table 4). It showed an expected ED of 5.33 ± 6.42 
mSv and 4.39 ± 4.23 mSv in the internal and external test sets, respectively. The Dice coefficients were 90.4% and 
90.0%, leading to a high accuracy of 97.8% and 96.8% in the test sets. The clinical usefulness was slightly higher; 
considering the incomplete scans in detail, only 1 out of the 8 incomplete scans in the internal test set and 2 out 

All (N = 1890) Training (N = 1213) Internal test (N = 368) External test (N = 309)

Female 41.9% 40.0% 41.0% 50.2%

Male 58.1% 60.0% 59.0% 49.8%

Age (year) 58.6 ± 13.7 59.3 ± 14.3 55.5 ± 13.1 59.4 ± 11.4

Table 1.  Demographics of the patient cohorts.

 

Fig. 2.  Patient flowchart with inclusion and exclusion criteria. Three independent cohorts were used. From 
Hospital A, we used a chronological split to obtain a training cohort and an internal test cohort. It was ensured 
that there was no overlap between these two cohorts to avoid any bias. In addition, the test sets contained only 
one scan per patient. In total, 1253 scans from 1213 patients were used for model training and 677 scans from 
677 patients were used for model testing.
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of the 10 in the external test set would have obstructed diagnosis. A failure analysis showed no apparent reason 
why the predictions failed in these cases.

Dose reduction
Compared to the ED of the CT scan of the whole heart (11.35 ± 8.17 and 10.09 ± 8.0 mSv), the expected ED of the 
LAA scan was reduced by 53.5% and 56.4% (Table 4).

For the hypothesis that the dose reduction was larger than 33.3% compared to a full heart scan, we employed 
the Wilcoxon signed-rank test; the tests indicated that the reduction was statistically highly significant (p < 0.001).

Discussion
A dedicated scan of the left atrial appendage (LAA) is often necessary to detect thrombi. Since it is challenging 
to delimit the LAA in the CT localizer, the whole heart is usually scanned in routine clinical practice, exposing 
the patient to unnecessary radiation. We presented an automation for delimiting the LAA in a CT localizer for a 
dedicated LAA scan using deep learning methods.

Scanner All (N = 1930) Train (N = 1253) Internal test (N = 368) External test (N = 309) Tube voltage Tube current

SOMATOM Definition Force 1000 633 367 0 120 kV 20 mA

SOMATOM Definition Flash 706 396 1 309 120 kV 35 mA

SOMATOM Definition AS/AS+ 199 199 0 0 120 kV 36 mA

Other 25 25 0 0 80–140 kV 20–60 mA

Table 2.  CT scanners used for the acquisition of the CT localizers. Scanners with less than 50 examinations 
were gathered into the “Other” group.

 

Fig. 3.  Graphical plot of patient age and sex. Distribution of patient age and sex in all three independent 
cohorts. Female patients are represented by a red dot, male patients by a blue dot. There is a small but 
significant difference in age between the training and internal cohorts, but not between the training and 
external cohorts. Similarly, there is no difference in gender between the training and internal cohorts, but a 
significant difference between the training and external cohorts.
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The model showed very high accuracy, approximately 98%, and could significantly reduce the effective dose 
to the patient. A dose reduction of about 55% (at least 5 mSv) was estimated compared to a whole heart CT 
scan. In addition, there were no large differences between the results of the validation and the two independent 
test sets, indicating that the model generalized sufficiently despite age and sex differences between the cohorts.

Instead of relying on delimitations directly in the localizer10, we employed a neural network to segment the 
corresponding CT and transferred the segmentation back to the localizer. The benefit of this approach is that the 
whole training process can be automated and does not require manual labeling of localizers. However, a slight 
disadvantage is that the annotations might not always be correct. Therefore, the model results were carefully 
checked by a board-certified radiologist. Since no systematic or unexpected errors were seen, this suggests 
successful training.

To determine whether our models could be applied in routine clinical practice, we used the expected effective 
dose for estimation, which considers repeated scans that occur in case of error, i.e., incomplete scans. Machine 
learning studies often consider metrics such as accuracy or overlap with the ground truth; however, such an 
approach would be suboptimal in our case because scanning the whole heart would always yield perfect accuracy 
but would ignore the radiation dose. Our expected ED reasonably considers both objectives and estimates 
the radiation dose to the patient when the model is used in clinical routine. Furthermore, since the network 
was trained on localizers from clinical routine rather than on mathematical projections of the CT scan, it can 
automatically compensate for the patient’s movement, different breathing, and heartbeat, to the extent that these 
were present in the training dataset. However, unforeseen variations may still occur, thus clinical supervision 
by a technologist is necessary. This challenge could be partially addressed by expanding the training dataset 
to include a broader and more diverse range of cases, thereby improving the model’s robustness. For seamless 
integration into routine practice, the network would need to be deployed directly on the CT scanner, which is 
currently only feasible for vendors. Given that the inference time for predictions is well below one second per 
image on mid-range hardware, the network would be suitable for clinical deployment, where a brief delay of 
several seconds is acceptable.

Automatic delimitations in the CT localizer to optimize the subsequent CT scan have recently been considered 
in the literature. Demircioğlu et al. used a conditional generative adversarial neural network to detect the lung 
area10 and showed that the network could produce scan ranges of high accuracy and reduce the radiation dose 
when compared to the technologist’s scan. It is likely that their approach could not achieve high accuracy when 
applied to the LAA because it relies on accurate delimitations in the localizer. Similarly, Zhang et al. delimited 
multiple regions using landmarks11. The advantage of their approach is that they can apply their method to 
several organs. Yet, because there are no landmarks in the localizer marking the LAA, their approach would 
not produce highly accurate delimitations. Salimi et al. proposed a network to delimit the chest12; however, they 
delimited the area on projections of the chest CT rather than on localizers, so their approach does not account 
for patient motion or respiratory effects and would not work optimally in clinical routine.

Other ways to reduce radiation exposure exist. In a systematic study, Hausleitner et al. identified multiple 
factors influencing the radiation dose in CCTAs, including patient weight, absence of stable sinus rhythm, tube 
current, and voltage. Also, they observed significant differences between study sites and CT systems13. However, 
only a few factors can be controlled; reducing the tube current and voltage might lower the image quality and 
lead to non-diagnostic imaging. Low-dose imaging could alternatively be post-processed: Kang et al. used a deep 
network to denoise low-dose scans, resulting in a quality similar to scans acquired at a higher dose14. Recently, 
photon-counting CT has been commercially introduced, which could potentially reduce the radiation dose15,16. 
Our approach is complementary to these methods since, in all of them, the LAA must be delimited, and would 
therefore lead to a larger decrease in radiation exposure.

We focused on the dose reduction of a single-pass LAA scan; however, it cannot reliably exclude the presence 
of thrombi. Transesophageal echocardiography (TEE) is often required as a second step17. Lazoura et al. 
showed that additional low-dose delayed CT scans of the LAA can be used instead of TEE18. Our approach is 
complementary to this technique and would further reduce the radiation dose.

Our study also aligns with previous works aiming to reduce radiation while improving accuracy. Ge et al.19 
and Zhang et al.20 focus on reconstructing 3D structures from 2D images, reducing radiation exposure in clinical 

Model Margin (mm)
Best learning 
rate

Expected effective 
dose ± SD (mSv) Accuracy (%)

Dice coefficient ± SD 
(%)

MAE at upper 
boundary ± SD 
(mm)

MAE at 
lower 
boundary 
± SD (mm)

Cascade-R-CNN 14 0.03 4.72 ± 4.08 97.6 90.3 ± 6.5 4.97 ± 4.05 5.74 ± 4.65

TOOD 12 0.009 4.70 ± 4.66 94.4 89.1 ± 7.5 5.25 ± 4.08 5.79 ± 4.93

VFNet 14 0.003 4.64 ± 3.88 98.0 89.9 ± 6.8 5.11 ± 4.14 5.96 ± 4.93

YOLO v11-N 14 Auto 4.97 ± 5.24 95.6 90.0 ± 7.2 5.27 ± 4.30 5.66 ± 5.01

YOLO v11-S 16 Auto 5.02 ± 4.78 97.2 90.3 ± 7.0 5.49 ± 4.34 5.84 ± 5.02

YOLO v11-M 14 Auto 5.04 ± 5.20 96.0 89.5 ± 7.4 5.65 ± 4.49 5.92 ± 5.03

YOLO v11-L 12 Auto 4.82 ± 4.82 93.2 89.3 ± 7.7 5.20 ± 4.25 5.66 ± 4.92

YOLO v11-X 14 Auto 4.88 ± 5.22 95.2 89.7 ± 7.4 5.28 ± 4.20 5.93 ± 5.05

Table 3.  Results of the best-performing models in the validation set. The YOLO models were trained with an 
automatic learning rate schedule. MAE mean absolute error, SD standard deviation.
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Test set

Expected 
effective 
dose ± SD (mSv)

Estimated effective 
dose of the whole 
heart ± SD (mSv) Reduction (%) Accuracy (%)

Clinical 
usefulness 
(%)

Dice coefficient ± 
SD (%)

MAE at lower 
boundary
± SD (mm)

MAE at 
upper 
boundary 
± SD 
(mm)

Internal 5.33 ± 6.42 11.35 ± 8.17 53.5 97.8 99.8 90.4 ± 6.2 5.16 ± 3.99 5.38 ± 4.11

External 4.39 ± 4.23 10.09 ± 8.0 56.4 96.8 99.3 90.0 ± 6.7 5.20 ± 3.96 5.78 ± 4.57

Table 4.  Results in the two independent test sets. Results of the best-performing model (VFNet with 14 mm 
safety margin and a learning rate of 0.003) in the two independent test sets. MAE mean absolute error, SD 
standard deviation.

 

Fig. 4.  Plot of mean expected effective radiation dose against the safety margin during validation. Due to the 
patient’s movement (e.g., breathing), the network was trained with a safety margin added to both sides of the 
annotation. The size of the margin was treated as a hyperparameter. During validation, the trained models were 
evaluated with respect to the estimated effective dose to the patient. The plot shows that a tight safety margin 
will result in a high radiation dose, as the imaging will be incomplete in many cases, requiring a repeat scan 
of the whole heart. A safety margin that is too large will not require a repeat scan, but will result in scans that 
cover a large area, thereby increasing the radiation dose. The graph shows that a safety margin of approximately 
14 mm was optimal. ED expected effective radiation dose, TOOD task-aligned one-stage object detection, 
VFNet VariFocalNet.
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imaging. Similarly, Dai et al. use deep learning to track tumors with lower radiation doses in radiotherapy21. 
These studies, like ours, highlight the potential of deep learning to minimize radiation risk.

Our study has introduced a model for fully automated LAA scans and demonstrated that it performs well in 
two independent test cohorts. We did not apply any selection criteria to our test cohorts, which therefore include 
patients with and without pathology. For this reason, we expect the network to perform well in routine clinical 
practice.

Nevertheless, some limitations apply: our CT scans were all acquired on scanners from a single vendor and 
two nearby hospitals, which might limit the generalizability of the model. In addition, clinical routine sometimes 
requires a whole-heart scan, in which case the overall reduction in radiation exposure is relatively less. The same 
is true if the scan has to be repeated due to flow artifacts. A whole-heart scan might also include incidental 
findings22. Our annotations were produced by another neural network, which may have introduced minor 
segmentation errors. However, for both test sets, we reviewed the annotations and ensured that they contained 
no errors. We also estimated the ED by multiplying the scan length by the CTDIvol with a correction factor. A 
dedicated Monte Carlo estimation using phantoms may provide more accurate estimates.

Furthermore, this study employed the widely accepted Dice coefficient for evaluation. While it is known 
that it lacks sensitivity to smaller variations, which could be significant in this study due to the anatomical 
variability of the LAA, from a clinical perspective, the ED and clinical utility are the more critical metrics. These 
practical outcomes validate the network’s value in clinical practice, regardless of potential limitations in the Dice 
coefficient.

Our method attempts to account for patient movements between the acquisition of the localizer and the scan 
by incorporating a safety margin. However, in rare cases, larger movements may occur, especially if patients 
are larger than those in the study population, in which case the LAA scan could be incomplete. Therefore, 
supervision is required. Additionally, while the network has the potential to standardize the CT scan acquisition 
process compared to the inter-rater variability of technologists, the scan depends on many parameters that are 
not accounted for by the network.

Finally, we used off-the-shelf networks and only optimized the learning rate, which could be improved23. 
While the use of these networks may have limited the methodological innovation, they have proven efficient 
and reliable in our study, as demonstrated by their near-perfect clinical utility. Novel, more task-aligned 
network architectures could potentially improve performance slightly; however, given that the networks we used 
performed very similarly, it is reasonable to conclude that the current limitation lies in the study data. Thus, 
further development should be conducted on a larger, more heterogeneous population.

In conclusion, our study showed that a fully automated scan range delimitation for acquiring a CT of the left 
atrial appendage using a deep neural network is feasible. Compared to the acquisition of the whole heart, this 
approach can reduce radiation exposure to the patient by more than 50%.

Methods
Study data
This retrospective study was approved by the local ethics committee (Institutional Review Board of the University 
Hospital Essen; registry number 23-11244-BO). Due to the retrospective nature of the study, Institutional Review 
Board of the University Hospital Essen waived the need for obtaining informed consent. This study follows all 
relevant guidelines and regulations.

Three cohorts were collected retrospectively in anonymized form by querying the radiological information 
system and the picture archiving and communication system: a training cohort, an internal validation cohort, 
and an external test cohort. The overall study design is shown in Fig. 5.

For the training cohort, 1500 CT examinations of patients who underwent a coronary contrast-enhanced CT 
on second-generation dual-source CT scanners were randomly selected (University Hospital Essen, Germany; 
between January 2010 and December 2020). CT examinations were only included if a corresponding CT 
localizer was found. Examinations of minors (< 18 years) were excluded. In addition, to ensure homogeneity of 
the data, examinations were excluded if the corresponding localizer had a pixel spacing different from 1.0 mm, 
which is the default pixel spacing in the clinical routine. Also, if the heart was not fully acquired in the CT, the 
examination was excluded. Similarly, an internal test cohort was collected: 500 randomly selected CT scans 
between January 2021 and December 2022 were included with similar criteria as the training cohort. During 
collection, it was ensured that no patient from the training set was included in the test set to avoid bias. Finally, 
an external test cohort from a collaborating hospital (Elisabeth Hospital, Essen, Germany) was collected with the 
same criteria between July 2020 and December 2020. A board-certified radiologist visually reviewed CT scans 
and localizers to ensure the image quality met the required standards.

CT scan acquisition
CT localizers and scans were acquired during inspiration in the anterior-posterior direction on modern multi-
slice CT scanners (Siemens Healthineers) (Table  2). Acquisition of the CT was performed using automated 
tube current adaptation, using a prospective adaptive triggering primarily (quality reference mAs: 370 
mAs (Flash)/300 mAs (Force)). An automated tube current modulation (Siemens CARE Dose 4D, Siemens 
Healthineers) was used for all examinations.

Scan range delimitation
Since the LAA is not easily delimited in the CT localizer due to its different anatomical shapes24, the CT scans 
were used instead. We used publicly available segmentation software based on deep learning25 to segment the 
LAA in all CT scans. The slice coordinates of the LAA region were then determined and transferred back to 
the localizer to obtain the delimitation (Fig. 6). Note that the annotations in the localizer may not be visually 
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consistent due to missing landmarks and patient motion, but they would result in a perfect annotation in the 
CT scan.

For the test cohorts, all segmentations of the LAA on the CT scans were reviewed and corrected when 
necessary to avoid errors in the ground truth.

Safety margins
Accurate annotation of the LAA in the localizer would be strongly affected by any movement of the patient (for 
example due to breathing) and may lead to incomplete imaging. In clinical practice, a safety margin is added to 
the annotation, e.g., instead of delimiting the region from the carina to the apex at both boundaries, a margin of 
approximately 1 cm is added. However, the size of the margin is not well-defined and depends strongly on the 
personal preference of the technologist. Thus, instead of fixing such a margin a priori, we considered different 
margins during training and selected the one that yielded the best performance (Fig. 6).

Neural network training
The training data were further split randomly into a training and validation set (80:20). Then, four network 
architectures were trained to detect the scan range delimitation: The Cascade-R-CNN26, the VariFocalNet 
(VFNet)27, the Task-aligned One-stage Object Detection (TOOD) network28, and the You Only Look Once 
v11 (YOLO) network29. All networks were pretrained using the ‘Common Objects in Context’ dataset30. The 
networks were then evaluated based on the expected mean effective radiation dose in the validation split, which 
estimates the patient’s radiation exposure during routine clinical practice if the model’s predictions were to be 
used. In addition, the accuracy (measuring whether the LAA would be fully acquired in the corresponding CT), 
the Dice coefficient, and the absolute difference (in mm) of the total scan length, the absolute difference at the 
upper and lower boundaries, and the number of potentially incomplete scans were computed. The model with 
the best-performing parameters was then retrained on the whole training set and evaluated in the test cohorts.

Fig. 5.  Study design. The aim of this study was to develop a network capable of delimiting the LAA in CT 
localizers, thereby automating the task usually performed by technologists. We used three independent 
cohorts from two hospitals. Due to the variation in the shape of the LAA, annotations from the CT scan were 
transferred back to the localizer. For model development, three networks were validated using a simple 80:20 
split. The best-performing model in terms of the Dice coefficient was selected and tested in two independent 
cohorts. The model was then evaluated for clinical utility (or accuracy) and radiation dose compared to whole-
heart scanning. LAA left atrial appendage, TOOD task-aligned one-stage object detection, VFNet VariFocalNet.
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Implementation details can be found in the Supplementary Materials.

Testing
Both test cohorts were evaluated similarly to the validation set. In addition, all error cases (defined as a 
prediction that resulted in an incomplete CT) were reviewed by a board-certified radiologist (K.N. with 20 years 
of experience and expertise in cardiac CT) to determine whether they would have obstructed the diagnosis, 
which we defined as clinical usefulness.

Expected effective radiation dose
We estimated how much the automatically determined scan range could reduce the radiation exposure to the 
patient. In clinical routine, the technologist would use the network prediction first and check for completeness. 
If the imaging of the LAA was complete, the patient was exposed to the effective radiation dose (ED) for the 
corresponding LAA scan. However, if the imaging was not complete, the technologist would redo the acquisition, 
but since the network failed, they would scan the whole heart. Therefore, the ED to the patient would be the sum 
of the LAA and the whole-heart scan. In addition, in the rare event that the network fails to produce a result 

Fig. 6.  Workflow for network training and model selection. CT scans were automatically segmented using 
the publicly available software TotalSegmentator to identify the left atrial appendage (LAA). Slice coordinates 
defining the LAA region were then transferred to the corresponding CT localizers used to acquire the scans. To 
account for patient motion during acquisition, multiple safety margins were incorporated during the training 
of the network models. The model achieving the lowest expected effective dose (on the validation set) was 
selected as the optimal network.
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(which is technically possible), the technologist would proceed with scanning the whole heart. This combined 
ED is referred to as the expected effective radiation dose.

The ED of each scan was estimated by multiplying the scan length by the volumetric computed tomography 
dose index (CTDIvol), corrected by a factor k. This factor was set to 0.026 mSv·mGy− 1cm− 1 for males and 0.045 
mSv·mGy− 1cm− 1 for females to account for breasts31. These values correspond to the lower limit of the 95% CI 
determined in a recent study32.

Statistical methods
Differences in demographics were assessed by using Chi-square or t-tests. Descriptive values were reported 
as mean ± standard deviation. The evaluation of radiation exposure is based on the assumption that using the 
shorter scan range for the LAA will reduce radiation exposure by at least 1/3 compared to the radiation exposure 
of the whole heart scan. Thus, a one-sided Wilcoxon signed-rank test for superiority was conducted. P values 
below 0.05 were considered significant. Statistical analyses were conducted using the statsmodel library in 
Python 3.8.

Data availability
The code is available in the GitHub repository at https://github.com/aydindemircioglu/LAA. The datasets used 
and/or analyzed during the current study are available from the corresponding author upon reasonable request.
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