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This paper proposes a dynamic multi-scenario modeling approach for air conditioning (AC) cluster 
loads, integrating occupant behavior, spatiotemporal activity distributions, and meteorological 
factors. A refined unregulated load baseline is established to better isolate and evaluate the effects 
of AC usage on overall distribution network loads. Simulation results under various scenarios indicate 
that the proposed framework accurately captures cluster-level load responses, effectively reflecting 
the interplay among occupant activities, temperature variations, and regional characteristics. The 
outcomes demonstrate the model’s potential to enhance AC load forecasting and support intelligent 
demand-side management in smart grids, offering both theoretical and practical insights for future 
load regulation strategies.
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As global warming becomes an increasingly urgent issue, major economies are facing unprecedented pressure 
to reduce energy consumption and carbon emissions1. According to the goals outlined in the Paris Agreement, 
substantial reductions in greenhouse gas emissions are required globally, which presents an urgent demand for 
the transformation of energy structures. In recent years, traditional fossil fuels have been gradually restricted, 
while clean energy sources such as wind and solar power have attracted significant investments due to their 
environmental advantages2. However, the volatility and intermittency of these clean energy sources limit their 
stable replacement of conventional thermal power plants, posing challenges to grid stability3.

In response to these challenges, countries have been actively developing emerging technologies such as 
energy storage, virtual power plants, and demand response, all aimed at enhancing the absorption capacity of 
clean energy and improving the stability of power systems4. Among these, demand response technology has 
become a research hotspot due to its ability to achieve precise load regulation at the consumer end5. However, 
the effectiveness of demand response is highly dependent on user electricity consumption behavior, particularly 
the impact of complex and variable air conditioning loads on regional supply-demand balance. Air conditioning, 
as a typical high-energy-consumption load, is influenced by multiple factors such as environmental temperature, 
user demand, and equipment characteristics6. Studies have shown that in summer, air conditioning loads 
contribute to over 40% of the grid’s peak demand, making their regulation a critical element in peak shaving, 
valley filling, and load optimization. For instance7, demonstrated that smart electricity technologies, through 
demand response mechanisms, enable flexible interaction between the grid and users, significantly enhancing 
the regulation capability of air conditioning loads. Additionally8, proposed an adaptive PID control method 
for photovoltaic air conditioning systems, which effectively improves power tracking performance while 
maintaining indoor thermal comfort9. further validated the potential of air conditioning loads in energy savings 
and thermal comfort through an optimized control strategy for multi-zone variable air volume systems.

However, the response behavior of air conditioning loads at the cluster level exhibits significant diversity and 
randomness, presenting substantial challenges for modeling. For example10, developed a cluster air conditioning 
load model based on heat exchange balance principles and verified the feasibility of air conditioning loads 
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participating in microgrid frequency regulation by adjusting target temperatures11. proposed an emergency 
demand response strategy based on the whale optimization algorithm, which effectively improves power system 
voltage stability while reducing fluctuations in air conditioning loads12. integrated active and passive heating, 
cooling, lighting, shading, and ventilation systems, significantly reducing building energy consumption and 
improving user comfort.

Most existing research on air conditioning load modeling focuses on single scenarios or specific regions. 
While these studies provide valuable insights into the characteristics of air conditioning load response, they 
often fail to fully capture the impact of multi-scenario and multi-factor interactions on collective load response 
characteristics. For instance13, proposed an aggregate flexibility model for thermostatically controlled loads, 
treating air conditioning loads as a stochastic battery model to effectively capture their dynamic response 
characteristics14. introduced a control strategy for aggregated air conditioning loads based on room thermal 
models, significantly improving reserve capacity and response time by resetting temperature setpoints15. 
modeled air conditioning loads as virtual energy storage devices, demonstrating their potential in providing 
regulation services16. implemented a cloud-based platform for smart building interconnection and proposed 
a distributed load control algorithm based on comfort levels and charging priorities, further expanding the 
application of air conditioning loads in demand response.

Existing air conditioning load modeling methods can be broadly classified into the following categories: 

	1.	 Physics-based methods: These methods simulate air conditioning load response behaviors using heat bal-
ance equations. For example, in17, a model based on the indoor-outdoor temperature differential is proposed, 
which can accurately simulate the start-up and shutdown states of the equipment. These approaches provide 
a solid theoretical foundation for air conditioning load modeling but rely heavily on numerous physical 
parameters (e.g., room thermal capacitance and heat dissipation coefficients), making parameter acquisi-
tion challenging in complex environments18,19. Within this category, multi-scenario modeling extends the 
framework by classifying loads across residential, commercial, and industrial contexts, integrating scenar-
io-specific variations (e.g., regional climate or building types) with heat balance principles. However, such 
models often focus on static analysis, neglecting dynamic factors like inter-regional human movement and 
time-varying interactions that influence load characteristics20,21.

	2.	 Data-driven methods: These methods train models using historical data and employ machine learning 
techniques to predict air conditioning load profiles. They offer computational efficiency and can quickly fit 
existing data, but often fail to capture dynamic response characteristics, limiting adaptability in real-time de-
mand response scenarios20–22. In some cases, data-driven techniques complement physics-based approaches, 
including multi-scenario modeling, by providing empirical trends to refine predictions.

Although the aforementioned studies provide valuable theoretical insights for air conditioning load modeling, 
most methods struggle to effectively capture the diversity and dynamic characteristics of air conditioning cluster 
load responses in complex environments and diverse scenarios23. The regulation behavior of air conditioning 
loads is not only influenced by ambient temperature and user demand but also closely related to residents’ 
time-use behavior24. Therefore, accurately modeling the dynamic response characteristics of air conditioning 
loads, especially the cluster response behavior in multiple scenarios, has become a current research hotspot 
and challenge. To address this, the present study proposes a novel approach, wherein the activity states of 
individuals in multiple scenarios are simulated as the driving force for air conditioning cluster behavior, thereby 
constructing a multi-scenario air conditioning cluster response model for intelligent distribution network load 
management. While intelligent load management increasingly incorporates advanced algorithms to enhance 
demand response capabilities25–27, this study prioritizes a physics-based approach to model air conditioning 
cluster responses across multiple scenarios. This framework aims to capture the dynamic influences of occupant 
behavior and environmental factors, providing a foundation for future integration with algorithmic techniques.

The main contributions of this study: A multi-scenario dynamic model is developed, including a time-
space dynamic distribution model for residential activities and a non-controllable load dynamic change model. 
Based on the principle of heat balance, meteorological data and location-specific characteristics are integrated 
to derive an indoor temperature model, and an air conditioning operation signal model is developed that aligns 
with the dynamic behavior of individuals. Furthermore, considering the temperature differential environment, 
an energy consumption model for the air conditioning cluster is established, quantifying the response patterns 
of air conditioning load across multiple scenarios. The model framework is illustrated in figure 1.

Multi-scenario dynamic model setup
The multi-scenario dynamic model includes a time-space dynamic distribution model for residential activities 
and a distribution network non-controllable load model. This section provides a detailed description of the basic 
setup of the model, along with an explanation of the interrelationships and logical support.

Time-space dynamic distribution setup for the distribution network
This part simulates the dynamic distribution characteristics of residential activities within the distribution 
network using both temporal and spatial dimensions:

•	 Temporal Dimension: Based on date types (e.g., weekdays, weekends, holidays) and different time periods 
within a day, the model simulates the patterns of residential activities and load variations. Load fluctuations 
are captured through time series mapping, reflecting changes in electricity demand during various periods 
of the day.
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•	 Spatial Dimension: Considering commuting times between residential areas and various functional zones 
(such as administrative districts, industrial zones, and commercial districts), this aspect accounts for the im-
pact of regional locations on population distribution. It then estimates the load response characteristics across 
different regions based on this spatial distribution.

Dynamic activity setup for the distribution network population

•	 Baseline Population for Regions: The baseline population of residential areas is determined by the number 
of households and the proportion of family sizes, while the baseline population of functional areas is calculat-
ed based on the allocation coefficients between residential areas and various functional zones.

•	 Activity States within Regions: Within residential areas, individuals are classified into three activity 
states-resting, active, and away-based on their home status. In functional areas, it is assumed that individuals 
are always in an active state to reflect the specific load demand patterns of those regions.

•	 Inter-Regional Population Migration: The model assumes that only migration between residential areas 
and functional zones is considered, and migration between functional zones is neglected to simplify compu-
tational complexity. Migration data is used to analyze the dynamic characteristics of the population in areas 
such as commercial districts.

Dynamic load variation rules for distribution network regions
This section describes the dynamic characteristics of each region based on the classification of regional types and 
load patterns.The simulation characteristics for different region types are summarized in Table 1.

Note: This model allows for flexible adjustments of baseline populations and allocation coefficients to meet 
the specific economic and social characteristics of different regions.

The above setup forms the foundation for the construction of the multi-scenario dynamic model. Based on 
this foundation, the model is further divided into the following two main parts:

•	 Time-Space Dynamic Distribution Model for Residential Activities: Describes the dynamic changes in the 
population within the distribution network and simulates their impact on load.

Region Type Dynamic Characteristics Load Pattern Simulation Setup Description

Residential Area Significant daily activity patterns Strong consistency in electricity load 
composition

Simulates energy consumption of the resident 
population in different areas

Administrative Area Fixed working hour patterns Stable load Simulates the work load in centralized office areas

Industrial Area Mixed shift and non-shift operations Strong regularity in high load Simulates high-energy consumption industrial 
parks located away from urban centers

Commercial Area Significant fluctuations in population flow High volatility and uncertainty Simulates the fluctuating characteristics of 
commercial activities

Table 1.  Simulation Characteristics by Region Type.

 

Fig. 1.  Model framework diagram.
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•	 Non-Regulated Load Dynamic Variation Model: Simulates load variation patterns across different regions 
and captures the load fluctuation characteristics.

Time-space dynamic distribution model for residential activities
The time-space dynamic distribution model of residential activities is crucial for understanding air conditioning 
load response behavior. Studies have shown that there is a significant causal relationship between residents’ time-
use behavior and energy consumption24. For instance, residents’ activity states during different time periods 
(resting, active, or going out) directly influence the frequency of air conditioner usage and energy consumption28. 
Therefore, this paper constructs a time-space dynamic distribution model to simulate residents’ activity patterns 
in different scenarios, and integrates this with a non-regulated load model to quantify regional load changes.

Dynamic modeling of residential area population
In the residential area, households are considered the basic unit, with family sizes ranging from 1 to 6 people, 
serving as a key factor in modeling occupant behavior for intelligent load control in urban settings. The 
distribution of family sizes varies by region, but for this study, a representative distribution is proposed based 
on general urban demographic trends observed in recent years29,30. As shown in Table 2, families of 1 to 3 
members are assumed to dominate, with 2-member families comprising a significant portion, reflecting urban 
environments where energy demand is influenced by population density and lifestyles. These proportions are 
intentionally broad and hypothetical, designed to capture a range of plausible scenarios rather than a specific 
dataset. In the model, family size proportions are randomly generated within these ranges (summing to 100%) 
by default, with the flexibility to manually input specific proportions for tailored scenarios.

Home State Matrix (HSM)
Description of the state matrix
The home behavior states of residents in the residential area vary with time periods and are mainly divided into 
the following three states:

•	 Resting State: Residents are in a sleeping state.
•	 Active State: Residents are engaged in household chores, entertainment, etc., at home.
•	 Out State: Residents are either out or working.

Thus, the home status matrix (HSM) can be represented as:

	

HSM =




hsre,1 hsac,1 hsou,1
hsre,2 hsac,2 hsou,2

...
...

...
hsre,10 hsac,10 hsou,10




where:

hsre,i: The proportion of the resting state in the i-th time period; hsac,i: The proportion of the active state in 
the i-th time period; hsou,i: The proportion of the out state in the i-th time period.

Each row represents the proportion distribution of the three states in a specific time period.

Generation of the state matrix
Definition of Upper and Lower Bounds for Date Attributes For each time period, the upper and lower bounds 
for the resting and active states are defined based on the date type (e.g., working days, weekends, holidays). The 
matrix is as follows:

	 RangesDatetype = {(hsredown,i , hsreup,i , hsacdown,i , hsacup,i ) | i = 1, 2 . . . 10}

where:

hsacdown,i  and hsacup,i : The lower and upper bounds of the activity state proportion in the i-th time period;

Family Size Proportion (%)

1 20%–35%

2 30%–40%

3 20%–30%

4 5%–15%

5 1%–5%

6 0%–2%

Table 2.  Family Size Distribution in Urban Residential Areas. Note:Proportions are hypothetical and broad, 
inspired by urban trends29,30, with random generation and optional manual input.
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hsreup,i + hsacup,i < 1: Ensures that the sum of the state proportions in each time period does not exceed 1.

Random Generation of State Proportions Within the defined upper and lower bounds, the resting and 
active state proportions for each time period are randomly generated. The out state proportion is determined by 
the complement:

	

HSMhsre,i ∼ Uniform(hsredowni , hsreupi )
HSMhsac,i ∼ Uniform(hsacdowni , hsacupi )
HSMhsou,i = 1 − HSMhsre,i − HSMhsac,i

where:

HSMhsre,i, HSMhsac,i, and HSMhsou,i: The proportions of resting, active, and away states in time period 
i, respectively, and their sum equals 1.

Generation of minute-level dynamic data
After the status matrix is generated, it is interpolated a minute-level time series. Combined with household 
numbers and family size, dynamic population data is generated.

Timestamp Range Matrix: The start and end times for each time period are defined. The time stamp matrix 
is as follows:

	

Rangesstamp =




stampdown1 stampup1
stampdown2 stampup2

...
...

stampdown10 stampup10




Minute-Level Dynamic Data Interpolation: For each family size, dynamic data is generated and interpolated:

	 RP DDfs = pchip(Stampfs, HSMfs, T imeseries) · nhfs · fs

where:

RP DDfs: Minute-level dynamic data for households of size fs; nhfs: Number of households in the resi-
dential area;
fs: Family size; Timeseries: Minute-level time series.

Finally, the dynamic data for each residential area is combined to form the residential population dynamic 
model:

	 Prec = {RP DDfs | fs = 1, 2, ..., 6}

Dynamic modeling of personnel in administrative areas
The personnel dynamics in administrative areas are influenced by fixed work hours, and the modeling is based 
on predefined time nodes. Considering the changes in commuting numbers on different date types (weekdays, 
weekends, and holidays), this paper constructs a personnel status matrix for the administrative area and 
combines it with the residential area personnel dynamic model Prec and the corresponding timestamp matrix 
for modeling.

Personnel Status Matrix for Administrative Areas: The personnel status matrix for administrative areas is 
defined as follows:

	
P SMadm =

[
pawd,1 pawd,2 · · · pawd,n

pawe,1 pawe,2 · · · pawe,n

pahd,1 pahd,2 · · · pahd,n

]

where:

pawd,i: Personnel percentage at the i-th time point on weekdays; pawe,i: Personnel percentage at the i-th time 
point on weekends; pahd,i: Personnel percentage at the i-th time point on holidays.

Introduction of Random Fluctuations: To simulate the randomness of personnel changes, a uniform 
distribution-based random fluctuation is applied to the personnel percentage at each time point, as given by:

	 pai = pai · (1 + Uniform(εad, εau))

where:

εad: Lower limit of the random fluctuation; εau: Upper limit of the random fluctuation.

Generation of Minute-Level Dynamic Data:
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Timestamp Matrix for Administrative Areas:
The timestamp matrix for the administrative area Rangesstampadm is defined as:

	 Rangesstampadm = [stampadm1, stampadm2, · · · , stampadmn]

where stampadmi is the timestamp of the i-th time point in the administrative area.
Minute-Level Dynamic Data Interpolation:
By interpolating the personnel status matrix of the administrative area, the administrative area personnel 

dynamic model Padm is obtained:

	 Padm = pchip(Rangesstampadm, P SMadm, T imeseries) · Prec · ξadm

where ξadm is Commuting coefficient from the residential area to the administrative area.

Dynamic modeling of personnel in industrial areas
In industrial enterprises, there is no unified schedule for work shifts, and each enterprise independently 
determines its shift system. To simplify the modeling, the shift systems are categorized into two types: three-
shift systems and non-three-shift systems. The characteristic of a three-shift system is that personnel rotate 
through shifts, including night shifts, with a constant number of personnel during each shift change. In contrast, 
the non-three-shift system is more flexible and dispersed according to production demands, leading to a broader 
range of working hours for employees.

Dynamic Data for Three-Shift System Personnel: Personnel in the three-shift system typically rotate 
through shifts, including night shifts, and the number of personnel per shift remains stable. In the model, the 
number of three-shift system personnel is related to the minimum number of people leaving the residential area 
and a fixed proportional coefficient αsts, calculated as:

	 PST S = Prec,oumin · αsts

where:

PSTS: Three-shift system personnel dynamic data; Prec,oumin : Minimum number of residents leaving the 
residential area; αsts: Proportional coefficient representing the proportion of shift workers (mainly night shift 
workers) among the outbound personnel.

Non-Three-Shift Personnel State Matrix:
Shift Allocation Proportions
For non-three-shift personnel, there is no unified working schedule. Instead, their work hours are distributed 

across different time periods based on production requirements. The model divides the shift system of the 
industrial zone into 10 types, with each type’s personnel proportion denoted as βi, and the sum of these 
proportions satisfies:

	

10∑
i=1

βind = 1

Determination of Population Base

	1.	 The total population base of the industrial zone is determined by the total number of residents in the residen-
tial area and the commuting coefficient ξind: 

	 Pbaseline,ind = Prec · ξind

	2.	 After subtracting the three-shift personnel (where the number of personnel per shift is fixed), the baseline 
number of non-three-shift personnel is: 

	 Pbaseline,NTS = Pbaseline,ind − 3 × PST S

	3.	 The baseline population value for the k-th type of shift system is: 

	 Pbaseline,k = Pbaseline,NTS · βk

Non-Three-Shift Industrial Personnel Dynamic Matrix

	1.	 The dynamic state matrix for non-three-shift personnel is: 

	
P SMind,k =

[
piwd,1,k, piwd,2,k, . . . , piwd,n,k

piwe,1,k, piwe,2,k, . . . , piwe,n,k

pihd,1,k, pihd,2,k, . . . , pihd,n,k

]
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	 where:

piwd,i,k : The percentage of personnel at time point i for the k-th shift system on a weekday; piwe,i,k : The 
percentage of personnel at time point i for the k-th shift system on weekends; pihd,i,k: The percentage of 
personnel at time point i for the k-th shift system on holidays.

	2.	 Introduction of Random Fluctuations: To model the random fluctuations in personnel flow, the following 
random disturbance is introduced: 

	 pii = pii · (1 + Uniform(εid, εiu))

	 where:

εid: The lower limit of the random fluctuation; εiu: The upper limit of the random fluctuation.

	3.	 Non-Three-Shift Time Stamp Matrix: The set of time stamps for the multi-shift systems in the industrial 
zone, denoted as Rangesstampind, is defined as: 

	 Rangesstampind,k = {[stampind1,k, stampind2,k . . . stampindn,k] | k = 1, 2 . . . 10}

	 where stampindi,k represents the time stamp at time point i for the k-th shift system.

	4.	 Minute-Level Dynamic Data Interpolation: Based on the industrial zone personnel state matrix, minute-lev-
el dynamic data is generated using interpolation: 

	 IP DDk = pchip(Rangesstampind, P SMind,k, T imeseries) · Pbaseline,k

	 where Pbaseline,k  is the baseline population value for the k-th shift system.

Non-Three-Shift Personnel Dynamic Data:

	
PNTS =

10∑
k=1

IP DDk

Final Industrial Zone Personnel Dynamic Data: The final industrial zone personnel dynamic model is obtained 
by combining the three-shift personnel and non-three-shift personnel data:

	 Pind = PST S + PNT S

Dynamic modeling of personnel in commercial areas
The population dynamics in commercial areas exhibit high randomness, with significant differences in patterns 
compared to administrative and industrial zones. To construct a reasonable population dynamic model for 
commercial areas, the following assumptions are made:

•	 Spatial Distance and Commuting Time: The population movement must consider the spatial distance be-
tween residential areas and functional zones (e.g., administrative, industrial, and commercial areas), with 
commuting time used as a representation.

•	 Dynamic Increment Modeling: The dynamic population change is described by the incremental change in 
population per unit of time (e.g., per minute).

•	 Initial Conditions and Random Fluctuations: The population distribution in the commercial area is set 
based on initial values, and a random fluctuation adjustment mechanism is introduced.

Dynamic increment modeling of population
Dynamic Increment for Administrative and Industrial Areas: The dynamic increment for the administrative 
and industrial areas is calculated as:

	 ∆Padm = Padm(t) − Padm(t − 1) ∆Pind = Pind(t) − Pind(t − 1)

Residential Area Outbound Population Increment:

	 ∆Pres,ou = Pres,ou(t) − Pres,ou(t − 1)

Increment Shift (Commuting Time): Based on the commuting time range, the time offset for the population 
dynamic increment from administrative and industrial areas (either arriving or departing) is calculated as:
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∆P ′
adm(ti) =∆Padm(ti)

t′
i =ti + δt′

i

δt′
i =

{ −|δti| if ∆Padm(ti) > 0
+|δti| if ∆Padm(ti) < 0

δti ∈[Drza,down, Drza,up]

where:

Drza,down and Drza,up: The lower and upper bounds of the commuting time range, respectively.

Similarly, the adjustment for the industrial area increment is:

	 ∆P ′
ind(ti) = ∆Pind(ti)

Dynamic Increment of Population in Commercial Areas: In the outbound population dynamic increment 
from the residential area, the portion directed toward administrative and industrial zones is excluded, resulting 
in the corrected outbound increment for the residential area:

	 ∆P ′
res,ou = {∆Pres,ou −

(
∆P ′

adm(ti) + ∆P ′
ind(ti)

)
}

Based on the corrected outbound increment from the residential area, the dynamic increment of the commercial 
area population is calculated as:

	 ∆Pcom(t) = ∆P ′
res,ou(t) · ξcom · Uniform(εcomdown , εcomup )

where:

ξcomj : The commuting coefficient from residential areas to commercial areas;
εcomj,down  and εcomj,up : The upper and lower bounds for dynamic fluctuations in population migration to 
commercial areas.

Dynamic data generation
Initial Population Migration Conditions:

	 Pcom(1) = Pres,ou(1) · αcom

The dynamic model for the population in commercial areas is obtained by summing the population migration 
increments for each residential area:

	
Pcom = Pcom(1) +

tend∑
t=1

∆Pcom(t)

Distribution network non-controlled load model
The distribution network non-controlled load model is an essential component of intelligent power load 
management, providing energy consumption reference. This study constructs non-controlled load models 
for residential and functional areas based on the load characteristics in different zones within the distribution 
network. After removing the impact of air conditioning loads, this model serves as a benchmark for verifying the 
accuracy and practicality of air conditioning load modeling.

Non-controlled load classification and modeling strategy
Non-controlled loads are categorized into residential non-controlled load and functional area non-controlled 
load, with modeling strategies tailored to the characteristics of each area:

•	 Residential Non-Controlled Load: The non-controlled load in residential areas exhibits significant aggrega-
tion characteristics, with different load types dominating during specific time periods. For instance, kitchen 
load dominates during mealtime periods, electronic equipment load predominates after work hours, and 
standby load dominates at night31. Studies show that residents’ activity patterns are closely related to the fre-
quency of appliance usage, particularly as appliance usage frequency varies with the residents’ activity status 
during different time periods32. Therefore, this paper constructs a dynamic usage frequency model combined 
with the home state matrix to simulate the fluctuation characteristics of residential non-controlled loads.

•	 Functional Area Non-Controlled Load:

	– Administrative Load: This type of load generally exhibits a stable average power.
	– Industrial Load: Industrial loads have higher power levels due to varying production processes and fluc-

tuate according to production patterns.
	– Commercial Load: The load in commercial areas is complex and difficult to decompose into a single load 

object.
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Residential non-controlled load model
Residential loads are categorized into six major types:

	 Load Categories: {SBL, IL, EEL, KL, LL, OL}

where the definitions of load types are as follows:

SBL: Standby Load (e.g., refrigerators, freezers, TVs)
IL: Instantaneous Load (e.g., water heaters)
EEL: Electronic Equipment Load (e.g., computers, TVs)
KL: Kitchen Load (e.g., ovens, microwave ovens)
LL: LED Lighting Load (e.g., LED lamps)
OL: Other Loads (e.g., miscellaneous small appliances)

Each load type corresponds to a set of typical devices:

	 DSBL, DIL, DEEL, DKL, DLL, DOL

For example, the standby load (SBL) device set DSBL includes devices such as refrigerators, freezers, and 
televisions.

Device power dataset
Each device’s rated power dataset, Pd represents the possible rated power values for device d. For example, the 
power dataset for a refrigerator is:

	 PFridge = {70, 90, 100, 130, 150, 170, 180, 200} (W)

The full set of rated powers for all devices is:

	
PSBL =

∪
d∈DSBL

Pd PIL =
∪

d∈DIL

Pd . . . POL =
∪

d∈DOL

Pd

For standby load (SBL), the typical devices and power set are represented as:

	 DSBL = {Fridge, Freez, TV, Rtr, OSD}

The power set is as follows:

	 PFridge = {70, 90, 100, 130, 150, 170, 180, 200} (W)

	 PFreez = {50, 70, 90, 120, 140, 160, 180, 200} (W)

Power distribution modeling
For each device, an appropriate probability distribution is chosen to simulate the fluctuation of its power values.
The probability distribution types used in the model are detailed in Table 3.

Family size dependence of power distribution
Family Size influences the selected power for devices in two main ways:

•	 As the Family population increases, device demand and power levels exhibit an increasing trend.
•	 The probability distribution for device power selection varies significantly across different Family sizes.

Average Load Power:
The average load power ALPL(fz) is calculated as:

	
ALPL(fz) =

∑
d∈DL

(Pd · PDS(fz))

Distribution Type Chosen Probability Distribution

Front Heavy Distribution [0.25, 0.3, 0.2, 0.15, 0.04, 0.03, 0.02, 0.01]

Mid-front Heavy Distribution [0.1, 0.35, 0.3, 0.15, 0.04, 0.03, 0.02, 0.01]

Mid Heavy Distribution [0.02, 0.08, 0.1, 0.3, 0.3, 0.1, 0.08, 0.02]

Mid-rear Heavy Distribution [0.01, 0.02, 0.03, 0.04, 0.15, 0.3, 0.35, 0.1]

Rear Heavy Distribution [0.01, 0.02, 0.03, 0.04, 0.1, 0.15, 0.3, 0.35]

Uniform Distribution [0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125]

Table 3.  Probability Distribution Types.
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where:

L denotes the load type;
fz represents the household size;
DL is the device set for load type L;
P DS(fz) is the power distribution corresponding to the household size fz.

Dynamic usage frequency modeling
The frequency of usage is related to the home state matrix, where the frequency of device usage varies with the 
three possible home states: resting, active, and away. The state correlation matrix RL for load type L consists of 
Boolean elements representing the relationship between the load type and the state. For instance:

	
RSBL =

[
1
0
1

]
RLL =

[
1
0
0

]
ROL =

[
0
1
0

]

To describe device usage frequency, two sets are defined: one for the timestamp range set (Timestamp Range Set) 
TRSL and the other for the usage probability set (Usage Probability Set) UPSL.

For each load type L, the timestamp range set TRSL and usage probability set UPSL are defined as:

	

TRSL ={[td,1, tu,1], [td,2, tu,2] . . . [td,n, tu,n]}
UPSL ={fr1, fr2 . . . frn}

ti ∼ Uniform(td,i, tu,i) | i =1, 2, . . . , n

UTPSL ={t1, t2 . . . tn}

At each timestamp, a set of usage time points UTPSL is generated randomly and interpolated to minute-level 
discrete points using the piecewise cubic Hermite interpolating polynomial (PCHIP), resulting in the minute-
level usage probability set ISUCL:

	 ISUCL(t) = pchip(UTPSL, UPSL, Timeseries)

The dynamic usage frequency data DUL(t) is calculated as:

	 DUL(t) = RL · HSEM(hs) · ISUCL(t)

Residential Non-Controlled Load:

	
LRNC(t) =

6∑
fz=1

DUL(t) · ALPL(fz) · (1 + εrt)

where:

fz is the family size;
εt is the dynamic fluctuation term, with εtd  and εtu  representing the lower and upper bounds of the fluctu-
ation term.

Non-regulated load model of functional zones
The load types in functional zones are complex and diverse, making it difficult to analyze their composition 
individually. Therefore, a simplified mean value modeling approach is adopted in this study to construct the load 
model for functional zones, providing data support for further analysis and regulation.

Administrative Load
The dynamic load of the administrative area is based on the timestamp set of personnel flow, Rangesstampadm, 
and the corresponding per capita load set, P CLadm( Per Capita Load Set by Administrative Area). Interpolation 
is used to extend the data. The load model is given by the following equation:

	 Ladm(t) = pchip(Rangesstampadm, P CLadm, Timeseries) · (1 + εat)

where:

εat represents the fluctuation term of the administrative zone load, which accounts for load variations due to 
personnel dynamics and external factors such as weather changes.

Industrial load
The modeling of the industrial load considers that during night shifts or overtime, the number of operators may 
decrease, but the production lines continue to operate. To model this, the mean value method is used, and the 
load of the industrial zone is calculated by inversely mapping the dynamic personnel count. The load model is 
expressed as:
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Lind(t) =

{
Lmin if t = Tmax
Lmax if t = Tmin

Lmin + (Lmax − Lmin) · Pind(t)−Pindmin
Pindmax−Pindmin

otherwise

where:

Tmax denotes the index for the maximum value;
Tmin denotes the index for the minimum value;
Pindmin and Pindmax represent the minimum and maximum personnel flow values in the industrial area;
Lmax and Lmin are the maximum and minimum industrial load values.

Commercial load
The load in the commercial area exhibits significant temporal dependence, especially during peak meal times 
when the load increases. At night, the load also increases as lighting and personnel in entertainment venues 
grow. Thus, the model is constructed using an extended time point set, RangesTcom , and the corresponding 
average load set, RangesLcom . The load model is formulated as:

	 Lcom(t) = Pcom · pchip(RangesTcom , RangesLcom , Timeseries) · (1 + εct)

where:

εct represents the fluctuation term of the commercial zone load, which reflects the impact of factors such as 
commercial peak periods and personnel flow.

Indoor temperature model
The indoor temperature is a key variable for determining the operational state of AC units. This model is based 
on the principle of heat balance, incorporating factors such as solar radiation, heat transfer between indoor 
and outdoor environments, heat generated by human activities, and heat loss related to wind speed33. Studies 
have shown that the impact of solar radiation on indoor temperature depends not only on window orientation 
and area but also on the building’s thermal mass and ventilation conditions34. Additionally, heat dissipation 
from human activities constitutes an essential part of the indoor heat load, with the amount of heat generated 
closely related to the intensity and state of the activity35. By constructing a heat balance model and integrating 
meteorological data and human dynamics, the variations in indoor temperature are accurately simulated.

Heat balance model
Indoor temperature variations are governed by the balance between heat input and output. Using discrete time 
steps, the numerical calculation of indoor temperature is expressed as:

	
Tindoor(t + ∆t) = Tindoor(t) + ∆t

kc · Cindoor
· (Qin − Qloss)

where:

Cindoor: Total thermal capacity of the air-conditioned room (J/K), determined by room volume and material 
properties;
kc: Thermal capacity coefficient, the values are shown in Table 10;
Qin: Heat input, including solar radiation and heat generated by human activities;
Qloss: Heat loss, including heat transfer and wind speed-related dissipation.

Heat input
Solar radiation is a primary source of indoor heat, influenced by factors such as window orientation, area, and 
solar radiation intensity36. Research indicates that window orientation and solar intensity significantly affect 
the distribution of indoor temperatures, especially as solar heat input fluctuates with changing sun angles over 
time37. Additionally, heat generated by human activities forms a crucial part of the indoor heat load, with the 
heat dissipation closely tied to the intensity and state of resident activity35. Therefore, solar radiation and human 
activity heat input processes are simulated using corresponding models, supported by meteorological and 
human dynamics data.

Solar radiation heat input
Solar radiation heat input is modeled as follows:

	 Qsolar = Awindow · Isolar · fangle

where:

Awindow: Window area (m2), determined by building design;
Isolar: Solar radiation intensity per unit area (W/m2), generated via interpolation of meteorological data;
fangle: Orientation correction factor, dependent on window orientation and solar angle.
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Human activity heat generation
Heat generated by residents depends on activity intensity and living conditions, modeled as follows:

	 Qhuman = PDMact · Pactivity

where:

PDMact: Activity state count derived from the dynamic personnel model;
Pactivity: Heat dissipation per individual (W), determined based on resident activity curves and randomized 
factors.

Resting state: Approximately 70 W.
Light activity: Approximately 100 W.
Intense activity: Approximately 200 W.

Indoor-outdoor heat transfer
Heat transfer between indoor and outdoor environments contributes to the total heat input, depending on 
the temperature difference and building thermal properties38. This term accounts for heat gain when outdoor 
temperatures exceed indoor levels, and heat loss in the opposite scenario, integrated into the input framework as 
requested by reviewer feedback. The model is:

	 Qconductive = ka · Aexposed · (Toutdoor − Tindoor)

where:

Aexposed: Total exposed area of external walls and windows (m2), generated randomly;
Toutdoor: Outdoor temperature from meteorological data;
ka: Heat transfer coefficient (W/m2 · K), randomly generated based on the thermal insulation properties of 
building materials.

A positive Qconductive indicates heat inflow from the outdoor environment, while a negative value reflects heat 
loss, both incorporated into the total heat input.

Fresh air heat gain
Fresh air intake introduces additional heat gain, particularly in air-conditioned spaces, as outdoor air exchanges 
with indoor air through ventilation or infiltration. This term is included to address reviewer feedback on the 
omission of fresh air effects. The heat gain due to fresh air is modeled as:

	 Qfresh = ṁfresh · cp · (Toutdoor − Tindoor)

where:

ṁfresh: Mass flow rate of fresh air (kg/s), set to a typical value of 0.005 kg/s for minimal ventilation in closed 
rooms;
cp: Specific heat capacity of air (kJ/kg · K), approximately 1.005 kJ/kg · K;
Toutdoor − Tindoor: Temperature difference between outdoor and indoor air (°C).

This term contributes positively to heat input when outdoor temperatures exceed indoor levels, with its small 
magnitude ensuring minimal disruption to the overall model, as validated in simulations.

The total heat input is updated as:

	 Qin = ks · Qsolar + kp · Qhuman + Qconductive + Qfresh

where:

ks: Solar coefficient;
kp: Human heat coefficient.

Heat loss
Heat loss is primarily influenced by wind speed-related dissipation, exacerbated by outdoor wind speeds and 
building ventilation areas40. Studies suggest that building thermal mass and ventilation conditions significantly 
affect heat transfer efficiency, with higher wind speeds increasing dissipation36. The heat loss process is simulated 
using wind-related models supported by meteorological and building-specific data. Regarding ventilation effects, 
the model implicitly accounts for natural ventilation through the wind speed and exposed area parameters, as 
these factors capture the convective heat exchange driven by outdoor air movement. Mechanical ventilation, 
such as forced air exchange via air-conditioning systems, is not separately modeled here, as its primary thermal 
contribution is addressed in the heat input section through fresh air heat gain. This approach simplifies the 
heat loss formulation while maintaining consistency with the overall energy balance, though future refinements 
could explicitly incorporate mechanical ventilation effects if detailed system data were available.
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Wind speed-related heat dissipation
Wind speed accelerates heat exchange between indoor and outdoor environments, increasing heat loss. The 
wind-related heat dissipation model is:

	 Qwind = vwind · Aexposed

where:

Aexposed: Ventilation area matrix (m2), generated randomly based on indoor area, representing the effective 
area for natural convective exchange;
vwind: Outdoor wind speed (m/s) from meteorological data, driving both natural ventilation and associated 
heat dissipation.

This formulation integrates the effects of wind-induced natural ventilation, with Aexposed reflecting potential 
openings such as windows or vents, while mechanical ventilation impacts are subsumed under the fresh air heat 
gain term in the heat input model.

The total heat loss is:

	 Qloss = kloss · Qwind

where:

kloss: Wind heat dissipation coefficient, generated based on the building environment, encapsulating the ef-
ficiency of convective heat loss.

The indoor temperature variations over 24 hours for all air-conditioned rooms, reflecting the updated heat input 
and loss models, are depicted in Figure 2, exhibiting diverse profiles while demonstrating a general trend tied to 
the variability of room heat balance and correlation with outdoor temperature fluctuations.

Air conditioning operation signal model
The on/off state of air conditioners is influenced not only by temperature regulation strategies but also by residents’ 
activity states and thermal comfort requirements38. Studies show that residents’ tolerance to temperature 
fluctuations and AC usage habits significantly affect the operating status of air conditioners, particularly in 
different time periods, where activation frequency and duration vary with activity states40. Therefore, this study 
constructs threshold temperature and tolerance time models, integrating residents’ activity states and AC usage 
habits, to simulate the operational status of air conditioners.

Generation of threshold temperature and tolerance time
By generating threshold temperatures and tolerance times with statistical characteristics, the model reflects 
diverse AC usage habits, effectively simulating load fluctuations.

Threshold temperature generation
The indoor temperature threshold for activating air conditioners typically ranges from 26◦C to 29◦C, with 
26.5◦C being the most common value. To simulate this phenomenon, a triangular distribution is adopted, with 
the peak set at 26.5◦C to emphasize the concentrated nature of the temperature distribution. The generation 
formula is as follows:

Fig. 2.  Indoor Temperature Variations Over 24 Hours.
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Tthresh,i =

{
Tmin +

√
2 · u · (Tmax − Tmin) · (Tpeak − Tmin), u < 0.5

Tmax −
√

2 · (1 − u) · (Tmax − Tmin) · (Tmax − Tpeak), u ≥ 0.5

where:

u ∼ U(0, 1): A random number uniformly distributed between 0 and 1.

Tolerance time generation
When the indoor temperature reaches the set threshold, the user’s tolerance to temperature changes determines 
the delay before AC is activated. The tolerance time usually ranges from 0 to 15 minutes, with the most common 
value being 7.5 minutes. A triangular distribution is used, with the peak value set as T olpeak and the range 
defined as [T olmin, T olmax]. The generation formula is:

	
T oltime,i =

{ √
2 · v · T olmax · T olpeak, v < 0.5

T olmax −
√

2 · (1 − v) · T olmax · T olpeak, v ≥ 0.5

where:

v ∼ U(0, 1): A uniformly distributed random number.

0–1 state matrix modeling
The on/off state of air conditioners is not only governed by temperature regulation strategies but is also closely 
related to residents’ activity states, air conditioner configurations, and usage habits. Thus, modeling the 
operational state of air conditioners requires a comprehensive consideration of the dynamic interactions among 
these factors. This section details the modeling process, focusing on temperature control mechanisms, residents’ 
activity states, AC units, and their dynamic adjustments.

Step 1: initial on/off state
The preliminary on/off state C(t) is determined based on the threshold temperature Tthresh(t) and the indoor 
temperature Tin(t). This matrix represents the air conditioner state at different time points, where 1 indicates 
“on” and 0 indicates “off ”.The 0–1 state area charts corresponding to the steps are shown in Figures 3, 4, 5, 6 and 
7.

Step 2: removal of short-term activation
If the activation duration of any air conditioner is less than the minimum sustained time ∆Tmin, these short-
term activations are considered invalid and set to 0 to avoid unreasonable fluctuations.

Step 3: dynamic scaling based on room characteristics and activities
Residents’ activity states directly affect the number of activated air conditioners. Under different activity states 
(e.g., resting, working, or being away), the on/off state of air conditioners changes significantly. The scaled 
activation state is adjusted dynamically using the personnel dynamic model:

	 Cscaled(t) = Cfiltered(t) × (1 + wA · PDM · NAC(t))

Fig. 3.  Living Room Air Conditioning 0–1 State Matrix (Step 1).
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where:

wA: Activity intensity weight;
PDM(t): Personnel dynamic model, including Prec, Padm, Pind, and Pcom to reflect activity intensities;
NAC(t): Number of air conditioners.

Step 4: state matrix optimization with inheritance adjustment
To avoid excessive fluctuations, the scaled matrix is optimized using an inheritance mechanism. The current 
state is fused with the previous state using a weighting factor λ:

	 Coptimized(t) = Cscaled(t) + λ · Cscaled(t − 1)

where:

λ: Inheritance coefficient, controlling the influence of the previous state on the current state.

Step 5: repairing and connecting discontinuous states
After optimization, discontinuities in the on/off state (e.g., short “0” or “1” states) may still exist, particularly 
during significant changes in activity intensity. Short “off ” states are repaired to “on” based on a repair threshold 
∆Trepair:

Fig. 5.  Living Room Air Conditioning 0–1 State Matrix (Step 4).

 

Fig. 4.  Living Room Air Conditioning 0–1 State Matrix (Step 2).
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Crepaired(t) =

{ 1 if duration(Coptimized(t)) < ∆Trepair
Coptimized(t) otherwise

where:

∆Trepair: Time threshold for repairing.

Step 6: filtering short-term states again
After the repair, the matrix is filtered to remove newly generated short-term states using a threshold ∆Tfilter.

Through these steps, the AC operation signal model effectively simulates dynamic on/off states by integrating 
activity patterns, environmental temperatures, and the number of air conditioners, accurately reflecting the 
characteristics of AC load dynamics.

Air conditioning system power modeling
Power modeling of air conditioning systems is a core technology in intelligent load control, encompassing 
power calculation, energy efficiency correction, cooling capacity adjustment, and dynamic temperature updates. 
These modules work collaboratively to simulate operational states and energy consumption characteristics of air 
conditioning systems, providing a reference for practical control strategies.

Fig. 7.  Living Room Air Conditioning 0–1 State Matrix (Step 6).

 

Fig. 6.  Living Room Air Conditioning 0–1 State Matrix (Step 5).
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Power calculation model
The total power consumption of an air conditioning system comprises compressor power and fan power, both 
dynamically influenced by indoor-outdoor temperature differences and setpoint deviations39. Studies indicate 
that outdoor temperature variations significantly affect the coefficient of performance (COP) and operational 
efficiency, with efficiency declining under high-temperature conditions40. To enhance realism, the compressor 
power model was revised to base its output primarily on the indoor-outdoor temperature difference (∆Tc), with 
dynamic adjustments driven by the setpoint temperature difference (∆Tset), as updated per reviewer feedback. 
This study constructs a power calculation model coupled with energy efficiency corrections and dynamic 
temperature updates to accurately simulate energy consumption characteristics under varying conditions.

Outdoor temperature difference
The outdoor temperature difference, defined as the deviation between the outdoor temperature Tout and the 
indoor temperature Tin:

	 ∆Tc = Tout − Tin

determines the baseline compressor power and influences both the COP and fan power demand. A larger ∆Tc 
increases the baseline power required to overcome environmental thermal loads, reflecting the system’s response 
to external conditions. This foundational parameter drives the initial power calculation, subsequently adjusted 
by setpoint considerations.

Setpoint temperature difference
The setpoint temperature difference, defined as the deviation between the current indoor temperature Tin and 
the setpoint temperature Tset:

	 ∆Tset = Tin − Tset

dynamically adjusts the compressor power through a control factor. Larger ∆Tset values increase power output 
to align the indoor temperature with the setpoint, while smaller values reduce power to maintain stability, 
ensuring responsive and efficient temperature regulation.

Compressor power
The compressor power is modeled based on the indoor-outdoor temperature difference (∆Tc), with adjustments 
driven by the setpoint temperature difference (∆Tset). The baseline compressor power is calculated as:

	
Pcomp, base = Pmax ·

(
a + b · |∆Tc|

∆Tmax

)

where:

Pmax: Maximum compressor power;
a: Base power coefficient;
b: Scaling coefficient;
∆Tmax: Maximum allowable temperature difference.

The final compressor power incorporates a nonlinear control factor to enhance temperature regulation:

	
Pcomp = Pcomp, base ·

[(
Cf1 + ∆Tset

∆Tmax

)2

− Cf2

]
· Sfan

where:

Cf1, Cf2: Coefficients of the nonlinear control function;
Sfan: Switch signal (0 or 1), determined by operational state.

The control factor is constrained to [0, 5], allowing greater power scaling compared to the previous linear 
formulation, which was limited to [0, 1]. This revised model better captures real-world compressor behavior 
under varying external and setpoint-driven conditions, improving temperature control accuracy.

Fan power
Fan power depends on the outdoor temperature difference and follows a nonlinear correction function:

	
Pfan = Pfan, base ·

(
0.5 +

(
1 − cos

(
π

2 · ∆Tc

Kf

)))

where:

Pfan, base: Baseline fan power;
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Kf : Fan power correction coefficient, determined by equipment characteristics and environmental factors.

Total power
The total power consumption of the air conditioning system is the sum of compressor power and fan power:

	 Ptotal = Pcomp + Pfan

Energy efficiency coefficient correction
The coefficient of performance (COP) of air conditioners varies with outdoor temperature conditions, impacting 
the system’s energy efficiency. It is corrected using a linear function based on the deviation from a reference 
temperature:

	 COP = EER − kcop · (Tout − Tref)

where:

EER: Energy efficiency ratio under rated conditions;
kcop: Correction coefficient reflecting the decline in efficiency with increasing outdoor temperatures;
Tref: Reference temperature.

This dynamic COP adjustment ensures alignment with real-world performance, complementing the power 
model’s dependency on temperature differences.

Dynamic cooling capacity adjustment
The cooling capacity dynamically responds to the indoor-outdoor temperature difference (∆Tc) and external 
environmental conditions, adjusted as follows:

	 CoolingCapacity = Ptotal · COP · kcool

where:

Ptotal: Total power consumption;
COP: Coefficient of performance, corrected dynamically;
kcool: Cooling capacity adjustment factor, calculated as: 

	
kcool =

(
1 + Kc1 · ∆Tc

∆Tmax

)
·
(

1 − Kc2 · ∆Tc

Tref

)

Kc1: Indoor temperature difference adjustment coefficient;
Kc2: External environment correction coefficient.

This formulation enhances the cooling capacity’s sensitivity to ∆Tc, improving temperature regulation under 
varying thermal loads compared to the previous model.

Dynamic temperature updates
The indoor temperature is updated dynamically at each time step based on the net heat balance:

	
Tin, new = Tin, old + Q − CoolingCapacity

Cindoor

where:

Q: Total indoor heat load, including contributions from solar radiation, human activity, conductive transfer, 
and fresh air intake, corrected as: 

	 Q = Qs + Qc · (1 − kq · Sfan) + Qp + Qfresh − Qloss

kq : Heat load correction coefficient;
CoolingCapacity: Dynamic cooling capacity, as defined above;
Cindoor: Indoor thermal capacitance.

Note: For enclosed spaces typical of air conditioner usage, the heat transfer coefficient ka in the indoor heat 
load calculation is corrected using a scaling factor ca, ensuring accurate load estimation. The updated process 
integrates ∆Tc, ∆Tset, power consumption, and COP, providing precise modeling under complex conditions.

Simulation verification and result analysis
This study validates the effectiveness of the model through simulation. First, the temperature control and power 
output effects of a single air conditioner model are verified. Then, based on dynamic scenarios, the response 
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of an air conditioner cluster is evaluated, and the impacts of environmental temperature, regional economic 
characteristics, and spatiotemporal changes on air conditioner energy consumption are analyzed. Finally, the 
effects of different temperature control strategies on the energy consumption of the air conditioner cluster are 
examined, further validating the model’s control response capability.

Air conditioner cluster performance validation
This section validates the proposed model through simulation, focusing on air conditioner cluster performance. 
It evaluates averaged cluster metrics to confirm reliability, compares simulation methods to highlight the model’s 
strengths, and analyzes cluster responses to dynamic scenarios-spatiotemporal variations, temperature changes, 
and control strategies-demonstrating its robustness for intelligent load management.

A 24-hour simulation period was set, with the date designated as a weekday. In residential areas, air 
conditioners were divided into bedroom and living room units, as shown in Table 4. The weather data were 
derived from real measurements in three adjacent districts of a northwestern city in China, as illustrated in 
Figure 8.

As an example, Figure 9 shows the simulation data curve of a single air conditioner in a residential area, 
illustrating the interrelationships among the modules. The left y-axis indicates temperature, while the right 
y-axis represents power output. The outdoor temperature is taken from “weather1” in Figure 8. The indoor 
temperature is composed of three parts: its initial value is randomly generated from the outdoor temperature; 
when the air conditioner is off, the temperature is calculated using the indoor temperature model; and when the 
air conditioner is on, the temperature is jointly determined by the indoor temperature and the power model. 
The setpoint temperature data comprehensively considers outdoor temperature, resident occupancy status, 
temperature thresholds, and tolerance time, which is normalized to obtain on/off states. The power output is 
derived from the power model. This schematic indicates that the air conditioner responds rapidly to the on/
off signal, can stably track the setpoint temperature, and that power fluctuations reflect the instantaneous peak 
during start-up as well as efficiency reduction effects when the temperature difference is large.

Table 5 compares the air conditioner cluster performance indicators across four regions. Stabilization time 
is defined as the duration required after an on-signal until |∆Tset| < 1.5◦C. Because residential areas have 
relatively lower rated power, stabilization requires approximately 11 minutes, whereas the functional areas 
stabilize within 5–6 minutes. The steady-state mean absolute error (MAE), calculated by

	
MAE = 1

n

n∑
i=1

∣∣yi − ŷi

∣∣

ranges from 0.26 to 0.46°C, reflecting stable tracking of the setpoint temperature.

Fig. 8.  Micro Environment Temperature.

 

Region Res(Bed/Live) Adm Ind Com

Units 1174/779 716 540 252

Avg. Rated Power (W) 813/1168 1502 2090 1505

Weather Weather1 Weather1 Weather3 Weather2

Table 4.  Regional Setup and Weather Conditions.
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The Pearson correlation coefficient between the indoor-outdoor temperature difference and power is given 
by

	

ρ =
∑

(Pi − P )(∆Tc,i − ∆Tc)√∑
(Pi − P )2

∑
(∆Tc,i − ∆Tc)2

with values in the 0.75–0.85 range, indicating a moderately strong positive correlation. The average on-time, 
average energy consumption, and peak load periods reflect the operational and economic characteristics of the 
air conditioner clusters in each region. Overall, these indicators collectively illustrate the reliability of the model 
for cluster load management.

Simulation method comparison and analysis
To address the limitations of real-world data, this study employs simulated air conditioner operation data to 
validate the effectiveness of the proposed approach. Centered on user activity states, the behavior-based model 
generates Tset and Sfan by incorporating ambient temperature, threshold parameters, and tolerance time. Using 
the administrative district case (716 air conditioners, 1440 minutes), we compare three common methods: the 
randomized switching model and the threshold-triggered model alongside the proposed method. The only 
differences lie in how setpoint temperature and on/off signals are generated, highlighting the advantages of 
behavioral modeling for intelligent load management.

Method description
1. Proposed Behavior-Based Model This method dynamically generates Tset and Sfan based on user activity 
states (e.g., the typical “9-to-5” routine in an administrative district), Tout, threshold temperature, and tolerance 
time.

2. Randomized Switching Model The on/off signal Sfan is generated via segment-based probabilities, 
dividing the day into three time periods:

	
Sfan ∼ Bernoulli

(
Pon(t)

)
, Pon(t) =

{ 0.2, t ∈ [1, 540] ∪ [1021, 1440],
0.8, t ∈ [541, 1020].

where:

Area Res (Bed/Live) Adm Ind Com

Stabilization Time (min) 11 5 5 6

Steady-State MAE (°C) 0.46 0.26 0.29 0.27

Power-∆Tc  Corr. (ρ) 0.8398 0.7961 0.7564 0.8055

Avg. On-Time (min) 218/504 316 727 716

Avg. Energy (kWh) 1.67/4.93 3.66 12.57 8.86

Peak Load Periods 00:09-05:27/18:05–24:00 11:32-17:21 10:14–18:55 12:19–22:59

Table 5.  Performance Statistics Across Representative Regions.

 

Fig. 9.  Single Air Conditioner Schematic Diagram.
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Pon(t): Probability that the air conditioner is switched on at time t.Once turned on, it remains active for 
120–300 minutes.

3. Threshold-Triggered Model The on/off signal Sfan is determined by comparing indoor temperature Tin 
with preset thresholds:

	
Sfan(t) =

{
1, Tin(t) > Tupper = 28◦C,
0, Tin(t) < Tlower = 24◦C,
Sfan(t-1), Tlower ≤ Tin(t) ≤ Tupper.

When switched on, Tset is uniformly sampled from 20–26°C and remains constant during the on period.

Simulation results and analysis
Figure 10 shows the average power curves of the three methods. The power of the behavior-based model 
concentrates between 10:00 and 20:00, reflecting the routine of an administrative district. In the randomized 
switching model, power distribution is scattered, with lower peak and total power, and does not account for 
Tout. In the threshold-triggered model, operation persists under high outdoor temperatures, maintaining high 
power output until Tout decreases.

As shown in Table 6, the behavior-based model achieves the shortest stabilization time (5 minutes) and 
lowest MAE (0.26°C), indicating accurate tracking. In contrast, the randomized switching model requires 9 
minutes for stabilization (+80%), with its MAE increasing to 0.41°C (+57.7%). Although on-time and energy 
usage are reduced by about 15%, its response is relatively insufficient. The threshold-triggered model, on the 
other hand, runs 709 minutes on average, consumes 9.45 kWh-more than double-and extends its peak period 
until midnight, resulting in lower efficiency. Overall, the behavior-based model more accurately reflects user 
activity states and regional characteristics, enhancing its applicability to intelligent load management.

Cluster response in dynamic scenarios
Cluster response to temporal-spatial changes
Cluster Response to Date Types

The model considers the energy consumption variation of air conditioner clusters on different types of dates 
(working days, weekends, holidays). The analysis results shown in Figure 11 show that the energy consumption 
of air conditioners in residential areas increases on weekends and holidays, which aligns with the change in 
residential activity status. In contrast, energy consumption in industrial and administrative areas decreases on 
weekends and holidays, reflecting the service nature of these areas.

Cluster Response to Spatial Distance
Different commuting times reflect the spatial influence on personnel movement in different regions. In the 

model, the personnel dynamics of administrative and industrial areas are relatively stable, while commuting 
time mainly affects the air conditioner cluster response in commercial areas. The following shows the progressive 
changes of three commuting time schemes and the resulting changes in air conditioner power-on quantity and 
energy consumption in the commercial area.Three commuting time schemes are shown in Table 7, 8 and 9.

Figure 12 shows the variation in air conditioner power-on quantity under different commuting schemes. 
As commuting time increases, the response of commercial area air conditioners becomes more noticeable. 
Especially in Scheme 3, with the increase in commuting time, the power-on quantity in the commercial area 
shows a significant decrease during off-hours.

Fig. 10.  Administrative District Power Under Three Models.
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Figure 13 shows the relationship between increased commuting time and energy consumption in commercial 
areas. As the commuting distance between residential and commercial areas increases, energy consumption in 
the commercial area gradually decreases, with the energy consumption drop occurring earlier. This indicates 
that commuting time has a noticeable impact on the energy consumption of the commercial area air conditioner 
cluster.

Cluster response to environmental temperature
Temperature, as an important environmental factor for air conditioner operation, is a key indicator for verifying 
the dynamic performance of the air conditioner cluster. By setting a 2◦C temperature gradient, the response 
characteristics of the air conditioner cluster in terms of average power consumption, number of units switched 
on, and daily power consumption are observed at different temperatures.

Area adm ind com1 com2

area1 15–25 40–50 55–60 60–75

area2 10–20 40–50 60–75 55–60

area3 10–20 20–30 60–75 60–75

Table 8.  Commuting Time in Commercial Areas (55–75 minutes).

 

Area adm ind com1 com2

area1 15–25 40–50 5–10 10–15

area2 10–20 40–50 10–15 5–10

area3 10–20 20–30 10–15 10–15

Table 7.  Commuting Time in Commercial Areas (5–15 minutes).

 

Fig. 11.  Cluster Energy Date Types.

 

Indicator Behavior-Based Randomized Switching Threshold-Triggered

Stabilization Time (min, ±1.5) 5 9 9

Steady-State MAE (°C) 0.26 0.41 0.29

Avg. On-Time (min) 316 268 709

Avg. Energy (kWh) 3.66 3.13 9.45

Peak Usage Period 11:32-17:21 11:34-17:29 12:27-24:00

Power-∆T  Corr. (ρ) 0.7961 0.6618 0.7734

Table 6.  Performance Indicators of the Three Models.
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Figure 14 shows that, as the temperature increases, the daily average energy consumption of the air 
conditioner cluster increases in a progressive manner with each 2◦C rise. Specifically, with every 2◦C increase, 
the daily average energy consumption of the cluster rises by 20%, 23.7%, 29%, and 26% respectively, while the 
number of air conditioners turned on increases by 6%, 10.4%, 35.9%, and 42.8%.

Figure 15 further confirms the impact of temperature on the response of the air conditioner cluster.
From Figure 16, it is evident that the incremental increase in air conditioning power consumption varies 

at different temperatures and times. For residential areas, the increase in power consumption during the night 
becomes noticeable when the outdoor temperature rises by 6 − 8◦C, indicating that lower temperatures have 
less impact on air conditioning energy use. In contrast, at higher temperatures, the increase in air conditioning 
usage becomes more pronounced, which is consistent with common observations of air conditioner usage.

Fig. 13.  Energy Consumption Change with Commuting Time.

 

Fig. 12.  Air Conditioner Power-On Quantity under Different Commuting Schemes.

 

Area adm ind com1 com2

area1 15–25 40–50 110–130 140–160

area2 10–20 40–50 140–160 110–130

area3 10–20 20–30 140–160 140–160

Table 9.  Commuting Time in Commercial Areas (110–160 minutes).
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Cluster response to set temperature regulation
Set temperature, a key parameter in air conditioner cluster regulation, directly affects energy consumption. 
This study examines its impact through simulation, incrementally reducing set temperature by 1 °C across 
five ranges. Control strategies were applied to residential and industrial regions, with a random subset of units 
regulated. Energy consumption increments were analyzed based on set temperature changes and the proportion 
of controlled units.

Figure 17 shows energy consumption increments in residential clusters, revealing a rising trend as set 
temperature decreases, with fluctuations attributed to varying unit proportions and specifications. Similarly, 
Figure 18 illustrates increments in industrial clusters, displaying notable variability under regulation.

Trends across regions indicate energy consumption increases with decreasing set temperature, though not 
linearly, due to fluctuations from user mobility and unit power variations. Default proportions of air conditioners 
are 77.7% (residential) and 7.0% (industrial), with interquartile power ranges of 460 W and 1325 W, and standard 
deviations of 365 W and 830 W, respectively. At 100% regulation, a 1 °C reduction consistently raises energy use 
by approximately 8% daily.

The model effectively captures load dynamics under varying set temperatures and ambient conditions, 
aligning with findings that energy use reflects temperature, user preferences, and habits41,42. These results 
validate the model’s accuracy and its utility for intelligent load management in distribution networks.

Fig. 15.  Number of Air Conditioners Turned On Bar Chart.

 

Fig. 14.  Average Energy Consumption Bar Chart.
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Conclusions and future prospects
This study develops an air conditioning cluster response model for intelligent load management in distribution 
networks. By integrating heat balance and dynamic temperature updates, the model accurately simulates cluster 
switching states and energy consumption across diverse regions. Simulations reveal that energy use varies with 
ambient temperature, regional economic traits, activity patterns, and set temperature adjustments, significantly 
affecting cluster load dynamics.

Multidimensional simulations-covering environmental, economic, and spatiotemporal factors-validate the 
model’s ability to reflect real-world cluster behavior and support efficient control strategies for energy savings. 
Set temperature adjustments further demonstrate its potential for precise load management under dynamic 
conditions, providing robust decision support for distribution networks.

Future improvements include:
Refined Behavioral Modeling: Incorporate advanced activity patterns for greater precision. Multi-Device 

Integration: Extend to appliances like water heaters and electric vehicles. Data-Driven Enhancement: Use 
real-world data and machine learning to optimize parameters. Smart Control Algorithms: Develop real-time, 
optimized load management strategies. Regional Coordination: Explore cross-regional cluster control for 
efficient energy scheduling. In conclusion, ongoing refinements will enhance the model’s role in smart grid 
forecasting, energy optimization, and decision-making.

Fig. 17.  Energy Consumption Increments under Different Set Temperatures for Residential Areas.

 

Fig. 16.  Daily Power Curve of the Air Conditioner Cluster at Different Temperatures.
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Data availability 
The datasets generated and/or analyzed during the current study are available from the first author (ZhiYong 
Zhang, email: 962086671@qq.com) on reasonable request.

Appendix A: Model parameter values
See Table 10.
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