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In the fast-paced emergency departments, where crises unfold unpredictably, the systematic 
prioritization of critical patients based on a severity classification is vital for swift and effective 
treatment. This study aimed to enhance the quality of emergency services by automatically 
categorizing the severity levels of incoming patients using AI-powered natural language processing 
(NLP) algorithms to analyze conversations between medical staff and patients. The dataset comprised 
1,028 transcripts of bedside conversations within emergency rooms. To verify the robustness of 
the models, we performed tenfold cross-validation. Based on the area under the receiver operating 
characteristic curve (AUROC) values, the support vector machine achieved the best performance 
among the term frequency-inverse document frequency-based conventional machine learning models 
with an AUROC of 0.764 (95% CI 0.019). Among the neural network models, multilayer perceptron 
performed with an AUROC of 0.759 (± 0.024). This research explored methods for automatically 
classifying patient severity using real-world conversations, including those with nonsensical and 
confused content. To achieve this, artificial intelligence algorithms that consider the frequency and 
order of words used in the conversation were employed alongside neural network models. Our findings 
have the potential to significantly contribute to alleviating overcrowding in emergency departments of 
hospitals, with future extensions involving highly efficient large language models. The results suggest 
that a fluid and immediate response to urgent situations, a reduction in patient waiting time, and 
effectively addressing the special circumstances of the emergency room environment can be achieved 
using this approach.
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Emergency departments face a diverse influx of patients, ranging from minor cases to life threatening 
emergencies, which require prompt and comprehensive assessments by medical professionals. Despite the 
escalating demand for emergency medical services in Korea, the supply of emergency medical professionals has 
not kept up with the increasing demand1. This trend has led to overcrowding within emergency departments, 
disrupting the healthcare system, prolonging patient waiting times, and compromising the quality of emergency 
care. Overcrowding poses a grave concern in emergency medicine, resulting in delays in the treatment for 
severely ill patients, with potentially fatal consequences. Beyond overcrowding, traditional triage systems 
frequently encounter challenges related to triage errors, including over-triage which is assign higher-than-
necessary urgency, and under-triage failing to recognize truly urgent cases. These errors can lead to resource 
misallocation, compromised patient safety, and further strain on already limited emergency medical resources2–7. 
Thus, ensuring the efficient allocation of limited medical resources to address the needs of a large patient volume 
requires the swift and accurate identification of patient severity levels. To overcome these obstacles, there are 
systematic triage systems that reflect the characteristics of each country and region8–11. In Korea, the Korean 
Triage and Acuity Scale (KTAS) was developed by the Ministry of Health and Welfare in 2012 based on the 
Canadian Triage Acuity Scale, and has been implemented since 201612.

1Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea. 2Department 
of Emergency Medicine, Korea University College of Medicine, Seoul 02841, Korea. 3Department of Gachon 
Biomedical & Convergence Institute, Gachon University Gil Medical Center, Incheon 21565, Korea. 4Department 
of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-Si 13120, Korea. 5Jae 
Won Seo and Sung-Joon Park have contributed equally to this work and share the first authorship. email:  
kimkg@gachon.ac.kr; yyh71346@naver.com

OPEN

Scientific Reports |        (2025) 15:16870 1| https://doi.org/10.1038/s41598-025-99874-0

www.nature.com/scientificreports

http://orcid.org/0000-0002-7534-1366
http://orcid.org/0000-0001-6897-8740
http://orcid.org/0000-0001-9714-6038
http://orcid.org/0000-0002-1916-2080
http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-99874-0&domain=pdf&date_stamp=2025-5-15


The rapid advancement of artificial intelligence (AI) has consistently demonstrated impressive performance, 
particularly in natural language processing (NLP) research involving textual and time series data13–15. AI models 
have demonstrated remarkable efficacy, particularly in the medical field, where numerous studies have utilized 
emergency department data to predict patient prognosis and classify severity based on patient information, 
including vital signs and self-reported pain levels16–18. However, previous studies utilizing the KTAS classification 
have primarily relied on simulated data rather than real-time conversation data. The pioneering work by Choi et 
al. utilized NLP to predict KTAS levels based on triage notes recorded by nursing professionals, demonstrating 
the potential of machine learning approaches for severity classification in Korean emergency departments19. 
Chang et al. further advanced this field by developing a clinical support system for KTAS based on federated 
learning20. Additionally, a recent systematic review by Porto highlighted significant opportunities for further 
research in applying machine learning and NLP to emergency department triage, underscoring the relevance of 
our approach21. Moreover, one study achieved a notable AUROC of 0.90 by classifying severity based on voice 
data from medical staff-patient conversations. However, their approach relied on simulated, rather than actual, 
interactions22,23. To the best our knowledge, no study has utilized real bedside conversations collected in the 
emergency department of hospitals in Korea for patient severity triage.

In this study, we automatically classified the severity of patients using only the content of multilateral 
conversations conducted at the bedside. To this end, we used AI-based NLP algorithms, both traditional 
machine learning algorithms and neural network-based algorithms, to analyze the effect of the nature of the 
conversations. Our objective was to investigate the effectiveness of NLP AI algorithms on anomalous real 
clinical data, rather than on simulated data that NLP AI algorithms are typically trained on. While comparing 
the predictive performance of models using structured data such as vital signs versus unstructured conversation 
data would provide additional insights into the relative value of different data types for triage prediction, this 
initial study focuses specifically on establishing the feasibility of using actual bedside conversations for severity 
classification. Such comparative analysis represents a valuable direction for future research that could further 
optimize triage decision support systems.

Materials and methods
Materials
This prospective observational study was conducted at three regional EDs of Korea University Hospital from 
June 2022 to December 2022. Korea University Anam Hospital and Guro Hospital are regional EDs in Seoul 
and Korea University Ansan Hospital is a regional ED in Ansan, Gyeonggi-do, a metropolitan area. The annual 
number of patients visiting the emergency department in all three hospitals was approximately 150,000. In 
this study, voice recordings were acquired from the initial stage of the study patients visiting the emergency 
department until the patients were discharged from the EDs. These data were then re-transcribed by a trained 
recorder, and based on these transcripts, the medical staff participating in the study checked the transcripts for 
abnormalities. These transcripts were also re-labeled as pre-interview stage (so-called “triage” in the medical 
field), initial consultation, medication and examination, explanation, and discharge to generate data. The 
analyzed data comprised 1,048 clinician-patient and companion conversations.

The severity classification, performed in the triage during the first visit to the emergency department, is 
crucial for determining the need for treatment and the formulation of a treatment plan. We specifically focused 
on conversations that clinicians identified as those that occurred during the triage. In Korea, it is legally 
mandated to establish and operate triage stations to ensure that patients undergo triage before entering the 
ED. In most hospitals, triage is performed by nurses, and in the three hospitals included in this study, nurses 
also carried out the triage process. The KTAS is classified from 1 to 5 depending on the severity of the patient 
with KTAS 1 indicating urgent life-threatening situations and KTAS 5 indicating minimal severity. During the 
triage process, informed consent was obtained from patients, and voice recordings of conversations between 
patients and medical staff were collected using a recording device. Since patients classified as KTAS 1–2 often 
required immediate medical intervention, obtaining consent was challenging, making voice data collection 
difficult. Consequently, KTAS 1–2 patients were excluded from the analysis. The severity of the data used was 
based on the KTAS, which utilizes data corresponding to stages 3, 4, and 5. The KTAS scores were continuously 
reevaluated by medical staff and updated according to changes in patient conditions during their stay in the 
emergency department. In this study, only KTAS scores evaluated in the triage were considered. We performed 
a binary classification considering KTAS stage 3 as severe and KTAS stages 4 and 5 as mild, leading to significant 
findings. The characteristics of our datasets, a result of our thorough analysis, are presented in Table 1.

Study design
In this study, AI algorithms were categorized into two broad categories. The first category, “conventional machine 
learning,” included algorithms that require manual processes, such as feature selection, and make decisions 
based on predefined functions derived from these features. These algorithms are primarily used for structured 
data processing and typically involve manual steps, such as feature engineering, which include tasks such as data 
preprocessing, feature extraction, and feature selection. They use specific functions derived from the selected 
features to make decisions and continue to be widely used in many studies as they typically require less time for 
training than deep learning models and perform uniformly well on smaller datasets24–27. In this study, we aimed 
to classify patient severity through conversations by applying support vector machine (SVM), logistic regression 
(LR), random forest (RF), and extreme gradient boosting (XGB), which are among the most commonly used 
classifiers in existing machine learning algorithms. The second category, “deep learning,” was based on artificial 
neural networks. These models can effectively process large amounts of data by automatically generating features 
and making decisions through deep networks. Due to this advantage, they are adept at analyzing complex and 
lengthy data, showing higher performance than traditional machine learning, and have been widely used in NLP 
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tasks28–33. In this study, deep learning models, such as multilayer perceptron (MLP), bidirectional long short-
term memory (BiLSTM), and convolutional neural network (CNN), were used to evaluate their effectiveness 
using conversational data of varying lengths containing transcripts of multi-party conversations between 
patients, clinicians, and companions. Our selection of machine learning and deep learning models was guided 
by both theoretical considerations and empirical evidence from the literature. The traditional machine learning 
algorithms (SVM, LR, RF, XGB) were chosen based on their established performance in text classification tasks 
and their ability to handle high-dimensional, sparse feature spaces typical of NLP applications. As highlighted 
in a recent systematic review by Porto34, XGBoost and deep learning approaches have demonstrated superior 
performance for patient triage prediction in emergency departments. The neural network models (MLP, 
BiLSTM, CNN) were selected for their proven effectiveness in capturing sequential dependencies and contextual 
information in text data, which is particularly valuable when analyzing the complex linguistic patterns in clinical 
conversations. A flow chart of this study is provided in Fig. 1. The code available at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​J​a​e​w​o​​n​-​S​
e​o​​9​7​/​e​r​_​​c​o​n​v​e​r​​s​a​t​i​o​n​​s​_​k​t​a​s​_​v​1​.​g​i​t.

Conventional machine learning models
Conventional machine learning models (e.g. SVM, LR, RF, and XGB) typically utilize feature extraction methods 
from the input raw data. In this study, we employed the Term Frequency–Inverse Document Frequency (TF–
IDF) vectorization technique, which quantifies the importance of words in a document relative to a corpus by 
weighting terms based on their frequency in an individual document offset by their frequency across the entire 
dataset. This approach helps highlight diagnostically significant terms while down-weighting common words 
that carry less clinical relevance. A critical method in NLP, TF–IDF is a numerical measure that reflects the 
importance of each word within a given document, relative to a collection of documents. A practical application 
of TF–IDF involves assessing the importance of a term in a document by considering its frequency in that 
document and its rarity across the corpus. The technique was chosen for this study based on the assumption that 
patient severity would lead to specific patterns and effects in the words used during the conversations, including 
those related to pain, symptoms, and questions. Transcripts of multi-party conversations and the frequency 
of the words used were utilized to vectorize each word. The Scikit-learn library was used to calculate the TF–
IDF values, which follow slightly modified formulas for Term frequency (TF) and Inverse document frequency 
(IDF), as detailed below35.

TF is a practical measure of the frequency of a word within a conversation, which is calculated by dividing 
the number of occurrences of the word by the total number of words in the conversation. This is a useful tool 
for identifying frequently used words in a conversation. For the i-th word in the j-th conversation, let nij  be 
the number of occurrences and 

∑
k
nkj  be the total number of words in the conversation, TFij is represented 

using Eq. (1):

	
TFij = nij∑

k
nkj

� (1)

IDF assesses how uncommon a particular term is in the entire corpus. It is calculated by taking the logarithm of 
the ratio of the number of conversations containing that term to the total number of conversations. This allows 
us to weigh terms down to a standard across all conversations, regardless of severity, where C represents the total 
number of conversations, and Ni denotes the number of documents containing the i-th word:

	
IDFi = log

( 1 + D

1 + Ni

)
+ 1� (2)

Total N distinct 
conversations

Severe Mild

KTAS 3 KTAS 4 KTAS 5

753 221 74

Data set

Train 602 177 59

Validation 75 22 8

Test 76 22 7

Age

20–29 76 41 19

30–39 85 34 8

40–49 87 30 11

50–59 132 38 10

60–69 181 43 13

 > 70 192 35 13

Gender
Female 355 99 36

Male 398 122 38

Average N words per 
conversation (± SD) 923.54 (± 549.47) 805.95 (± 491.69) 602.81 (± 399.19)

Table 1.  Description of emergency conversations datasets. SD, standard deviation.
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The TF–IDF score for a term in a conversation is derived by multiplying the TF and IDF values of that term:

	 TF − IDFij = TFij × IDFI� (3)

As a preprocessing step, we performed morphological tokenization using the Open Korea Text (Okt) 
morphological analyzer of KoNLPy, a Python open-source library. Subsequently, the extracted features were 
used to learn each classification model by applying four machine learning classifiers. For each of the machine 
learning classifiers, hyper-parameters were optimized using a grid search approach. The tuned hyper-parameters 
for each algorithm are provided in Supplemental Table 1.

Neural network based deep learning models
In recent years, the performance of deep learning algorithms based on artificial neural networks has improved 
exponentially. In particular, deep learning models have proven to have valid applications in NLP by outperforming 
conventional machine learning on unstructured data. In this study, we applied MLP, BiLSTM, and CNN models 
based on artificial neural networks to extract and learn features suitable for patient severity classification by 
considering contextual content and sequence in long conversations with multiple speakers. The neural network 
models are trained using tensorflow framework, and.

MLP is the basic form of an artificial neural network and consists of an input layer, one or more hidden 
layers, and an output layer. Because MLPs use nonlinear activation functions, they can effectively learn 
nonlinear relationships between input features. We believe this would be advantageous for capturing patterns 
in conversations and modeling complex interactions, which are important for severity classification. Text-based 
data typically has higher-dimensional features compared to structured data, and MLPs can effectively handle 
these higher-dimensional features. These models are able to learn higher-level abstract representations of text in 
hidden layers beyond simple TF–IDF vectors in the input layer.

BiLSTM is an advanced type of recurrent neural network (RNN) designed to capture dependencies in 
sequential data by processing input sequences in both forward and backward directions. It consists of two LSTM 
networks: one that processes sequences from beginning to end (forward LSTM) and one that processes from 

Fig. 1.  The study process.
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end to beginning (backward LSTM)36. This bidirectional processing allows each word’s preceding and following 
context to be considered. Since the data utilized in this study includes patient and companion responses to 
clinicians’ questions in a multi-party conversation or clinicians’ judgments based on patient and companion’s 
symptom descriptions, each utterance highly depends on the context of the previous or subsequent conversation. 
Therefore, we used the BiLSTM model because utilizing this bidirectional contextual information allows for 
more accurate severity classification.

CNN is a class of deep neural networks known primarily for image processing. However, these models are also 
very effective for specific natural language processing tasks. CNN excels at detecting localized patterns within 
lengthy data. Using filters to extract features from short-term particles in conversations, they can effectively learn 
which words or phrases are essential in determining severity. Moreover, through convolutional operations, they 
can recognize specific patterns regardless of where they are in a single conversation. The data for this study is 
from a real-world emergency room conversation, and the critical information distinguishing severity can occur 
anywhere in the conversation. Given these characteristics, the CNN structure has the advantage of being able to 
detect significant patterns regardless of where the word is located, which was the main reason for utilizing this 
model in the present study.

Results
To train the AI models, we separated the data into three sets (train, validation, and test) in an 8:1:1 ratio. The 
test set, carefully separated from the training data, was not used to train the models, ensuring the validity of our 
analysis. To further confirm the robustness of our models, we performed a tenfold cross-validation. The test set 
was not used for training, and we utilized 105 data entries (76 for KTAS 3, 22 for KTAS 4, and 7 for KTAS 5) to 
ensure that each class was equally represented. The We calculated the AUROC, recall, accuracy, precision, and 
F1-score of the conventional machine learning-based models (e.g. SVM, LR, RF, and XGB) and deep learning 
based neural network models (e.g. MLP, BiLSTM, and CNN)37. Table 2 shows the confusion matrix-based 
performance values obtained to evaluate and compare the models’ average performance from tenfold cross-
validation. Each result of the tenfold model performance is shown in Table S2 (Supplementary 2).

The SVM (0.764; 95% CI 0.019) and LR (0.763; 95% CI 0.016) based on conventional machine learning 
achieved the highest AUROC values, indicating that these two models were effective in classification compared 
to other models for the data used in this experiment. Among the deep learning-based neural networks, MLP 
(0.759; 95% CI 0.023) achieved the highest AUROC, while RF (0.718; 95% CI 0.024), XGB (0.711; 95% CI 0.022), 
and CNN (0.735; 95% CI 0.022) had relatively low AUROC values. Figure 2 shows a box plot comparing the 
performance of each model based on a tenfold cross-validation.

Discussion
The performance evaluation of machine learning models for emergency department triage reveals important 
insights into the effectiveness of different algorithmic approaches for patient severity classification. This 
comprehensive analysis examines traditional machine learning techniques against neural network architectures 
while addressing the unique challenges of processing real-world clinical conversations.

Model performance evaluation
The performance evaluation of the models used in this study showed that among the existing machine learning 
models using TF-IDF-based vectorization based on AUROC values, SVM and LR achieved the highest AUROC 
values (0.764 [95% CI 0.019] and 0.763 [95% CI 0.016], respectively). Because the data used in this study is 

Model

AUROC *Recall Accuracy Precision F1-score

(± 95% CI) (± 95% CI) (± 95% CI) (± 95% CI) (± 95% CI)

Machine learning

SVM
0.764 0.916 0.761 0.787 0.654

(0.746–0.783) (0.891–0.941) (0.745–0.778) (0.779–0.795) (0.632–0.676)

LR
0.763 0.988 0.750 0.746 0.544

(0.747–0.779) (0.979–0.996) (0.741–0.759) (0.740–0.752) (0.521–0.568)

RF
0.718 0.964 0.751 0.757 0.582

(0.694–0.742) (0.953–0.975) (0.741–0.762) (0.748–0.766) (0.553–0.611)

XGB
0.711 0.903 0.745 0.778 0.631

(0.689–0.734) (0.879–0.927) (0.736–0.754) (0.772–0.785) (0.617–0.645)

Neural network

MLP
0.759 0.809 0.740 0.826 0.682

(0.736–0.783) (0.779–0.838) (0.721–0.759) (0.814–0.837) (0.662–0.702)

BiLSTM
0.741 0.846 0.746 0.812 0.670

(0.707–0.775) (0.793–0.898) (0.718–0.774) (0.793–0.831) (0.638–0.702)

CNN
0.735 0.787 0.723 0.821 0.667

(0.713–0.757) (0.751–0.823) (0.702–0.744) (0.809–0.834) (0.646–0.687)

Table 2.  Average performance results from tenfold cross-validation according to the models. SVM, support 
vector machine; LR, logistic regression; RF, random forest; XGB, extreme gradient boosting; MLP, multi-layer 
perceptron; BiLSTM, bidirectional long short-term memory, convolutional neural network; CNN.
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highly imbalanced, the precision and F1-score should also be considered when evaluating the performance of 
the two classes. However, the LR model exhibited the lowest precision and F1-score performance, indicating 
that the LR model’s structure, which specializes in linear separation, was inefficient due to the complexity of 
the real-world clinical-based data used in the experiment. Furthermore, the neural network-based models 
(MLP, BiLSTM, and CNN), which are more effective for non-linear and complex data compared to traditional 
machine learning models, demonstrated relatively consistent overall performances due to the nature of the data. 
In particular, the models that performed above 0.80 for both recall and precision were MLP (recall 0. 809 [95% 
CI 0.030], precision 0.826 [95% CI 0.011]) and BiLSTM (recall 0.846 [95% CI 0.053], precision 0.812 [95% CI 
0.019]), both of which are deep learning-based neural network models that are effective for complex and lengthy 
data and predicted relatively evenly across all classes.

The AUROC values achieved by our models (ranging from 0.711 to 0.763) reflect the inherent challenges 
of analyzing unstructured, real-world clinical conversations compared to more structured healthcare data. 
Several factors contribute to these performance metrics: First, emergency conversations contain significant 
noise, including interruptions, emotional responses, and non-clinical content that can obscure relevant clinical 
information. Second, the linguistic variability across different physicians, patients, and companions introduces 
heterogeneity that challenges standardized analysis. Third, unlike simulated conversations or structured clinical 
notes used in previous studies, our dataset captures the authentic complexity and messiness of real emergency 
interactions, including confused responses from distressed patients and conversational detours. Finally, our 
relatively modest sample size of 1,048 conversations limits the model’s opportunity to learn the full spectrum of 
linguistic patterns associated with different severity levels.

Comparison with related studies
Triage is considered a pivotal way to prevent overcrowding in emergency departments, and some AI-based 
studies for automatic severity classification have been conducted worldwide. The application of machine 
learning in emergency departments extends beyond severity classification to encompass various aspects of 
emergency care using structured data. Recent studies have demonstrated promising results in predicting 
patient arrivals, optimizing resource allocation, and improving triage accuracy across different healthcare 
systems. Chang et al. developed a clinical support system for triage based on federated learning specifically 
for the KTAS, demonstrating how collaborative AI approaches can enhance triage while maintaining patient 
privacy20. Similarly, Choi et al.'s pioneering work with the KTAS system established foundational approaches 
for machine learning-based severity prediction using structured clinical data19. Other researchers have explored 
integrated approaches combining multiple data streams to enhance predictive performance in emergency 
settings34. Some Korean studies were conducted to classify severity using only conversations between patients 
and medical staff. However, these differed from our study in their purpose and data used. Cho et al.38 showed 
similarities in their utilization of conversation data collected from actual clinical sites. However, they extracted 
STT and patient information based on Korean speech data to create an EHR for KTAS classification. In contrast, 

Fig. 2.  Evaluation results from each model with 95% confidence intervals.
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our study classified severity on the basis of conversational texts from patients, companions, and clinicians to 
create a system that enables instant classification using only conversational content. Lee et al.23 and Kim et al.22 
achieved a higher performance (AUROC: 0.89 vs. 0.90) by utilizing AI algorithms to analyze patient information 
based on the conversations in Korean data. However, a critical limitation of their studies was that the data 
comprised recorded clinician-patient conversations in a simulated setting, representing a potentially significant 
divergence from data collected in actual emergency departments. In contrast, the data used in the present study 
represents real clinical conversations, which contains many unpredictable variables, such as interruptions in the 
flow of conversation, irrelevant answers to medical staff questions, and varying length distributions for a single 
conversation. These diverse factors can significantly impact the predictions.

Challenges of korean language processing
Korean is an agglutinative language, one of the most morphologically rich and typologically diverse languages. 
NLP using Korean is more challenging due to the presence of adverbs, inconsistent word spacing, and various 
expressions of predicates that have the same meaning 39. Due to these difficulties, this study has limitations. 
For example, this study did not include a detailed classification of KTAS scores 4 and 5, and our models need 
to be more robust to be utilized in real emergency settings. Although we primarily aimed to accurately triage 
mild cases and prevent overcrowding in emergency departments, our models show relatively low performance 
in the F1-score, which measures accuracy for each class. This is due to the imbalance of severity classes in our 
collected data, which reflects the real-world situation, and is a limitation of our study. We selected the Open 
Korean Text (OKT) analyzer, an open-source tool that efficiently tokenizes and tags parts of speech optimized 
for Korean, including compound word analysis and conjugation processing essential for medical terminology. 
While OKT accommodates common speech patterns and clinical terminology used in emergency settings, 
regional linguistic differences exist throughout Korea, and regions with unique dialects may require additional 
fine-tuning for optimal performance.

Future research directions
Future research should prioritize external validation to establish the generalizability of our conversation-based 
severity classification approach. While our current study demonstrates promising results within the three Korea 
University hospital systems, validation across diverse healthcare settings remains essential yet challenging. 
Collecting conversations in clinical environments faces substantial barriers, including privacy regulations, 
technical difficulties in recording clear audio in noisy emergency departments, and resource-intensive 
transcription processes.

A limitation of our current approach is the lack of explainability analysis. Implementing Explainable AI 
(XAI) techniques such as SHAP (SHapley Additive exPlanations) values would provide valuable insights into 
which conversation elements most strongly influence severity predictions. Such analysis would enhance clinical 
interpretability and reveal diagnostic linguistic patterns specific to different severity levels. Future iterations of 
this research will incorporate these explainability approaches to better understand the decision-making process 
of our models and identify the most clinically relevant conversational features. We also plan to explore Large 
Language Models (LLMs), transformer-based deep learning architectures trained on vast text corpora that can 
understand and process natural language with remarkable capabilities. LLM algorithms based on Korean medical 
data could be processed to handle homophones from different patients and incorporate long contextual data to 
significantly improve model performance. Additionally, we aim to expand our research to include multimodal 
approaches that utilize clinical information such as vital signs to improve prediction performance.

The implementation of AI-based triage systems in clinical practice raises important ethical considerations 
that must be carefully addressed. Primary concerns include maintaining patient privacy during conversation 
recording and analysis, ensuring that algorithmic decisions don’t exacerbate existing healthcare disparities, and 
defining appropriate human oversight of AI recommendations. Our work represents an important advancement 
in applying NLP to authentic clinical scenarios, establishing a foundation for future refinements that could 
incorporate multimodal data to enhance predictive accuracy in emergency triage.

Conclusions
In this study, we used an AI algorithm to classify the severity of patients based on real multilateral dialogues 
between clinicians, patients, and companions collected within emergency department of hospitals in Korea. We 
applied conventional machine learning (e.g. SVM, LR, RF, and XGB) using the TF-IDF technique, which assigns 
importance to each word based on the frequency of occurrence of the word in the conversation. Furthemore, deep 
learning-based models (e.g. MLP, BiLSTM, and CNN), which effectively extract long contextual information, 
were also applied, and the results were analyzed through performance evaluation of the models. The performance 
evaluation results showed that the TF-IDF-based SVM model achieved the highest performance; however, it was 
slightly lower than the results reported in previous studies on severity classification based on conversations 
within emergency department of Korean hospitals.

Notably, this study classified patient severity based on in situ data collected from actual conversations in 
emergency departments. Unlike previous studies that primarily relied on simulated conversations or structured 
clinical data, our approach leverages the authentic, often messy, complexities of real-world clinical interactions. 
By presenting a novel data set for NLP analysis, the results presented in this study provide valuable insights 
that could help facilitate the effective triaging of patients under time-sensitive conditions in the emergency 
department of hospitals in the future.
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Data availability
The data that support the findings of this study are available from The Open AI Dataset Project (AI-Hub, S. 
Korea). Restrictions apply to the availability of these data, which are accessible through AI-Hub (​h​t​t​p​s​:​​/​/​w​w​w​.​​a​
i​h​u​b​.​​o​r​.​k​r​/​​a​i​h​u​b​​d​a​t​a​/​d​​a​t​a​/​v​i​​e​w​.​d​o​?​​c​u​r​r​M​e​n​u = 115&topMenu = 100&aihubDataSe = data&dataSetSn = 71,433). 
Access to the data requires registration on the platform and compliance with the data request procedures, con-
ditions, and methods specified by AI-Hub. Data are available from the corresponding author upon reasonable 
request and with permission from AI-Hub.

Code availability
The code available at ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​J​a​e​w​​​o​n​-​S​e​​o​​9​7​​/​e​​r​_​c​o​n​v​​e​r​s​a​t​​i​​o​n​s​_​​k​t​a​​s​_​v​1​.​g​i​t. In our experiments, we 
used Python 3.8, and the following open-source libraries: tensorflow = 2.10.0, joblib = 1.2.0, JPype1 = 1.4.1, 
konlpy = 0.6.0, h5py = 3.11.0, xgboost = 1.7.2, pandas = 1.5.2, numpy = 1.24.1, scikit-learn = 1.3.1.
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