Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
The role of diagnosticity in judging robot competence
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 06 February 2026

The role of diagnosticity in judging robot competence

  • Nicholas Surdel1 &
  • Melissa J. Ferguson1 

Scientific Reports , Article number:  (2026) Cite this article

  • 372 Accesses

  • 4 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Human behaviour
  • Psychology

Abstract

Previous research showed people’s explicit (vs. implicit) competence impressions were more sensitive to a robot’s single inconsistent (“oddball”) behavior. We report nine pre-registered studies (N = 3,735 online participants) testing the scope and underlying causes of this dissociation. We found that the dissociation (a) generalized to industrial robots, surgical robots, and self-driving cars; (b) replicated with structurally aligned direct and indirect measures of competence; and (c) is at least partially explained by the diagnosticity of the evidence. We discuss implications for social cognition and human-robot interaction research.

Data availability

All data, materials, and code can be found at: https://osf.io/zwued/?view_only=9bc9367ab70e4935b278972efb662a1c.

References

  1. Fiske, S. T., Cuddy, A. J. & Glick, P. Universal dimensions of social cognition: warmth and competence. Trends Cogn. Sci. 11, 77–83 (2007).

    Google Scholar 

  2. Todorov, A. & Oh, D. The structure and perceptual basis of social judgments from faces. Adv. Exp. Soc. Psychol. 63, 189–245 (2021).

    Google Scholar 

  3. Todorov, A., Mandisodza, A. N., Goren, A. & Hall, C. C. Inferences of competence from faces predict election outcomes. Science 308, 1623–1626 (2005).

    Google Scholar 

  4. Gawronski, B., Luke, D. M. & Creighton, L. A. Dual-Process Theories. in The Oxford Handbook of Social Cognition, Second Edition (eds. Carlston, D. E., Hugenberg, K. & Johnson, K. L.) 319–353 (Oxford University Press, 2024). https://doi.org/10.1093/oxfordhb/9780197763414.013.12

  5. Mann, T. C., Cone, J., Heggeseth, B. & Ferguson, M. J. Updating implicit impressions: new evidence on intentionality and the affect misattribution procedure. J. Pers. Soc. Psychol. 116, 349–374 (2019).

    Google Scholar 

  6. Payne, B. K., Cheng, C. M., Govorun, O. & Stewart, B. D. An inkblot for attitudes: affect misattribution as implicit measurement. J. Pers. Soc. Psychol. 89, 277–293 (2005).

    Google Scholar 

  7. Payne, B. K., Burkley, M. A. & Stokes, M. B. Why do implicit and explicit attitude tests diverge? The role of structural fit. J. Pers. Soc. Psychol. 94, 16–31 (2008).

    Google Scholar 

  8. Gawronski, B. & Sritharan, R. Formation, change, and contextualization of mental associations: determinants and principles of variations in implicit measures. in Handbook of Implicit Social Cognition: Measurement, theory, and Applications 216–240 (The Guilford Press, New York, NY, US, (2010).

    Google Scholar 

  9. Gregg, A. P., Seibt, B. & Banaji, M. R. Easier done than undone: asymmetry in the malleability of implicit preferences. J. Pers. Soc. Psychol. 90, 1–20 (2006).

    Google Scholar 

  10. Peters, K. R. & Gawronski, B. Are we puppets on a string? Comparing the impact of contingency and validity on implicit and explicit evaluations. Pers. Soc. Psychol. Bull. 37, 557–569 (2011).

    Google Scholar 

  11. Rydell, R. J. & McConnell, A. R. Understanding implicit and explicit attitude change: A systems of reasoning analysis. J. Pers. Soc. Psychol. 91, 995–1008 (2006).

    Google Scholar 

  12. Surdel, N. et al. Judging robot ability: how people form implicit and explicit impressions of robot competence. J. Exp. Psychol. Gen. 153, 1309–1335 (2024).

    Google Scholar 

  13. Gawronski, B. & Bodenhausen, G. V. Associative and propositional processes in evaluation: an integrative review of implicit and explicit attitude change. Psychol. Bull. 132, 692–731 (2006).

    Google Scholar 

  14. McConnell, A. R. & Rydell, R. J. The systems of evaluation model. in Dual-process Theories of the Social Mind (eds Sherman, J. W., Gawronski, B. & Trope, Y.) 204–217 (New York: Guilford Press, (2014).

    Google Scholar 

  15. Cao, J. & Banaji, M. R. The base rate principle and the fairness principle in social judgment. Proc. Natl. Acad. Sci. 113, 7475–7480 (2016).

    Google Scholar 

  16. Gawronski, B. & Bodenhausen, G. V. The associative–propositional evaluation model: Theory, evidence, and open questions. Adv. Exp. Soc. Psychol. vol. 44 59–127 (Elsevier, 2011).

  17. Skowronski, J. J. & Carlston, D. E. Negativity and extremity biases in impression formation: A review of explanations. Psychol. Bull. 105, 131–142 (1989).

    Google Scholar 

  18. Cone, J. & Ferguson, M. J. He did what? The role of diagnosticity in revising implicit evaluations. J. Pers. Soc. Psychol. 108, 37–57 (2015).

    Google Scholar 

  19. Skowronski, J. J. & Carlston, D. E. Social judgment and social memory: the role of cue diagnosticity in negativity, positivity, and extremity biases. J. Pers. Soc. Psychol. 52, 689–699 (1987).

    Google Scholar 

  20. Brannon, S. M. & Gawronski, B. A second chance for first impressions? Exploring the Context-(In)Dependent updating of implicit evaluations. Soc. Psychol. Personal Sci. 8, 275–283 (2017).

    Google Scholar 

  21. Kurdi, B., Mann, T. C. & Ferguson, M. J. Persuading the implicit mind: changing negative implicit evaluations with an 8-Minute podcast. Soc. Psychol. Personal Sci. 13, 688–697 (2022).

    Google Scholar 

  22. Mann, T. C. & Ferguson, M. J. Can we undo our first impressions? The role of reinterpretation in reversing implicit evaluations. J. Pers. Soc. Psychol. 108, 823–849 (2015).

    Google Scholar 

  23. Shen, X. & Ferguson, M. J. How resistant are implicit impressions of facial trustworthiness? When new evidence leads to durable updating. J. Exp. Soc. Psychol. 97, 104219 (2021).

    Google Scholar 

  24. Van Dessel, P., Cone, J., Gast, A. & De Houwer, J. The impact of valenced verbal information on implicit and explicit evaluation: the role of information diagnosticity, primacy, and memory cueing. Cogn. Emot. 34, 74–85 (2020).

    Google Scholar 

  25. Ferguson, M. J., Mann, T. C., Cone, J. & Shen, X. When and how implicit first impressions can be updated. Curr. Dir. Psychol. Sci. 28, 331–336 (2019).

    Google Scholar 

  26. Ferguson, M. J., Mann, T. C., Cone, J. & Shen, X. The role of context in implicit and explicit evaluation (2025).

  27. Surdel, N. & Ferguson, M. J. Common Ground, Divergent Evaluations: The Impact of Pragmatics on Competence Impressions (2025).

  28. Orne, M. T. On the social psychology of the psychological experiment: with particular reference to demand characteristics and their implications. Am. Psychol. 17, 776–783 (1962).

    Google Scholar 

  29. Corneille, O. & Lush, P. Sixty years after orne’s American psychologist article: A conceptual framework for subjective experiences elicited by demand characteristics. Personal Soc. Psychol. Rev. 27, 83–101 (2023).

    Google Scholar 

  30. Schwarz, N. Sage Thousand Oaks, CA,. Measurement as cooperative communication: What research participants learn from questionnaires. in The SAGE Handbook of Measurement 43–59 (2010).

  31. Shen, X., Mann, T. C. & Ferguson, M. J. Beware a dishonest face: updating face-based implicit impressions using diagnostic behavioral information. J. Exp. Soc. Psychol. 86, 103888 (2020).

    Google Scholar 

  32. Orne, M. T. Communication by the total experimental situation: Why it is important, how it is evaluated, and its significance for the ecological validity of findings. in Communication and Affect (eds. Pliner, P., Krames, L. & Alloway, T.) 157–191 (Elsevier, 1973).

  33. Kurdi, B., Mann, T. C., Charlesworth, T. E. S. & Banaji, M. R. The relationship between implicit intergroup attitudes and beliefs. Proc. Natl. Acad. Sci. 116, 5862–5871 (2019).

  34. Wojciszke, B. Morality and competence in person- and self-perception. Eur. Rev. Soc. Psychol. 16, 155–188 (2005).

    Google Scholar 

  35. Landy, J. F., Piazza, J. & Goodwin, G. P. When it’s bad to be friendly and smart: the desirability of sociability and competence depends on morality. Pers. Soc. Psychol. Bull. 42, 1272–1290 (2016).

    Google Scholar 

  36. Mende-Siedlecki, P., Baron, S. G. & Todorov, A. Diagnostic value underlies asymmetric updating of impressions in the morality and ability domains. J. Neurosci. 33, 19406–19415 (2013).

    Google Scholar 

  37. Luttrell, A., Sacchi, S. & Brambilla, M. Changing impressions in competence-oriented domains: the primacy of morality endures. J. Exp. Soc. Psychol. 98, 104246 (2022).

    Google Scholar 

  38. Amodio, D. M. & Devine, P. G. Stereotyping and evaluation in implicit race bias: evidence for independent constructs and unique effects on behavior. J Pers. Soc. Psychol 652–661 (2006).

  39. Amodio, D. M. & Ratner, K. G. A memory systems model of implicit social cognition. Curr. Dir. Psychol. Sci. 20, 143–148 (2011).

    Google Scholar 

  40. Amodio, D. M. & Hamilton, H. K. Intergroup anxiety effects on implicit Racial evaluation and stereotyping. Emotion 12, 1273–1280 (2012).

    Google Scholar 

  41. Wykowska, A. Robots as mirrors of the human Mind. Curr. Dir. Psychol. Sci. 30, 34–40 (2021).

    Google Scholar 

  42. Wykowska, A., Chaminade, T. & Cheng, G. Embodied artificial agents for Understanding human social cognition. Philos. Trans. R Soc. B Biol. Sci. 371, 20150375 (2016).

    Google Scholar 

  43. Cone, J., Flaharty, K. & Ferguson, M. J. Believability of evidence matters for correcting social impressions. Proc. Natl. Acad. Sci. USA 116, 9802–9807 (2019).

  44. Carpinella, C. M., Wyman, A. B., Perez, M. A. & Stroessner, S. J. The Robotic Social Attributes Scale (RoSAS): Development and Validation. in Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction 254–262 (ACM, Vienna Austria, 2017). https://doi.org/10.1145/2909824.3020208

  45. Payne, B. K. et al. Intention Invention and the Affect Misattribution Procedure: Reply to Bar-Anan and Nosek Pers. Soc. Psychol. Bull. 39, 375–386 (2012).

  46. Béna, J., Melnikoff, D. E., Mierop, A. & Corneille, O. Revisiting dissociation hypotheses with a structural fit approach: the case of the prepared reflex framework. J. Exp. Soc. Psychol. 100, 104297 (2022).

    Google Scholar 

  47. Corneille, O. & Gawronski, B. Self-reports are better measurement instruments than implicit measures. Nat. Rev. Psychol. 3, 835–846 (2024).

    Google Scholar 

  48. Hancock, P. A. et al. A Meta-Analysis of factors affecting trust in Human-Robot interaction. Hum. Factors. 53, 517–527 (2011).

    Google Scholar 

  49. Baker, A. L., Phillips, E. K., Ullman, D. & Keebler, J. R. Toward an Understanding of trust repair in Human-Robot interaction: current research and future directions. ACM Trans. Interact. Intell. Syst. 8, 1–30 (2018).

    Google Scholar 

  50. Logan, G. D. Toward an instance theory of automatization. Psychol. Rev. 95, 492–527 (1988).

    Google Scholar 

  51. Schwarz, N. Self-reports: how the questions shape the answers. Am. Psychol. 54, 93–105 (1999).

    Google Scholar 

  52. Cone, J., Mann, T. C. & Ferguson, M. J. Changing our implicit minds: How, When, and why implicit evaluations can be rapidly revised. in Advances Experimental Social Psychology 56 131–199 (2017).

  53. Yarkoni, T. The generalizability crisis. Behav. Brain Sci. 45, e1 (2022).

    Google Scholar 

  54. Grice, H. P. Logic and conversation. in Speech Acts 41–58 (Brill, 1975).

  55. Cameron, C. D., Brown-Iannuzzi, J. L. & Payne, B. K. Sequential priming measures of implicit social cognition: A Meta-Analysis of associations with behavior and explicit attitudes. Personal Soc. Psychol. Rev. 16, 330–350 (2012).

    Google Scholar 

  56. Kurdi, B. et al. Relationship between the implicit association test and intergroup behavior: A meta-analysis. Am. Psychol. 74, 569–586 (2019).

    Google Scholar 

  57. Perugini, M., Richetin, J. & Zogmaister, C. Prediction of behavior. in Handbook of Implicit Social Cognition: Measurement, Theory, and Applications (eds Gawronski, B. & Payne, B. K.) 255–277 (New York: Guilford Press, (2010).

    Google Scholar 

  58. Friese, M., Hofmann, W. & Schmitt, M. When and why do implicit measures predict behaviour? Empirical evidence for the moderating role of opportunity, motivation, and process reliance. Eur. Rev. Soc. Psychol. 19, 285–338 (2008).

    Google Scholar 

  59. Greenwald, A. G., Poehlman, T. A., Uhlmann, E. L. & Banaji, M. R. Understanding and using the implicit association test: III. Meta-Analysis of predictive validity. J. Pers. Soc. Psychol. 97, 17–41 (2009).

    Google Scholar 

  60. Oswald, F. L., Mitchell, G., Blanton, H., Jaccard, J. & Tetlock, P. E. Predicting ethnic and Racial discrimination: A Meta-Analysis of IAT criterion studies. J. Pers. Soc. Psychol. 105, 171–192 (2013).

    Google Scholar 

  61. Malle, B. F. Attribution theories: How people make sense of behavior. in Theories in Social Psychology vol. 23 93–119 (Wiley-Blackwell, (2022).

  62. Arrieta, A. B. et al. Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion. 58, 82–115 (2020).

    Google Scholar 

  63. Clark, H. H. & Fischer, K. Social robots as depictions of social agents. Behav. Brain Sci. 46, 1–65 (2023).

    Google Scholar 

  64. Anderson, R. E., Cahill, S. P. & Delahanty, D. L. An experimental test of the impact of varying questionnaire response format on prevalence rates for sexual violence victimization and perpetration. J. interpers. Violence. 37(23–24), NP23541–NP23562. https://doi.org/10.1177/08862605211063913 (2021).

    Google Scholar 

  65. Rivera-Garrido, N., Ramos-Sosa, M. P., Accerenzi, M. & Brañas-Garza, P. Continuous and binary sets of responses differ in the field. Sci. Rep. 12, Article 14376. https://doi.org/10.1038/s41598-022-17907-4 (2022).

  66. Schwarz, N., Bless, H., Bohner, G., Harlacher, U. & Kellenbenz, M. Response scales as frames of reference: the impact of frequency range on diagnostic judgments. Appl. Cogn. Psychol. 5, 37–49 (1991).

    Google Scholar 

  67. Sirota, M. & Juanchich, M. Effect of response format on cognitive reflection: validating a two- and four-option multiple-choice version of the CRT. Behav. Res. Methods. 50, 2511–2522 (2018).

    Google Scholar 

Download references

Acknowledgements

We thank John Bargh, Margaret Clark, Julian Jara-Ettinger, Yarrow Dunham, the Implicit Social Cognition Lab at Yale, OpenAI’s ChatGPT, and Anthropic’s Claude for helpful comments on an earlier version of the manuscript. We also thank Malte Jung and Wen-Ying Lee for their software support, and the Office of Naval Research for funding this research (Award Number: N00014-19-1-2299).

Funding

This research was funded by the Office of Naval Research (Award Number: N00014-19-1-2299) and Yale University.

Author information

Authors and Affiliations

  1. Department of Psychology, Yale University, New Haven, USA

    Nicholas Surdel & Melissa J. Ferguson

Authors
  1. Nicholas Surdel
    View author publications

    Search author on:PubMed Google Scholar

  2. Melissa J. Ferguson
    View author publications

    Search author on:PubMed Google Scholar

Contributions

N.S. and M.F. equally contributed to project conceptualization and methodology. N.S. led data collection and analyses, and drafted the initial manuscript text. M.F. supervised, acquired funding, and revised the manuscript text. Both authors reviewed the manuscript.

Corresponding author

Correspondence to Nicholas Surdel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surdel, N., Ferguson, M.J. The role of diagnosticity in judging robot competence. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35375-y

Download citation

  • Received: 18 January 2025

  • Accepted: 05 January 2026

  • Published: 06 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-35375-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Implicit social cognition
  • Competence
  • Human-Robot interaction
  • Automaticity
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing