Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Benchmarking MedMNIST dataset on real quantum hardware
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Benchmarking MedMNIST dataset on real quantum hardware

  • Gurinder Singh1,
  • Hongni Jin1 &
  • Kenneth M. Merz Jr.1 

Scientific Reports , Article number:  (2026) Cite this article

  • 1422 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Computational science
  • Medical imaging
  • Quantum information

Abstract

Quantum machine learning (QML) has emerged as a promising domain to leverage the computational capabilities of quantum systems to solve complex classification tasks. In this work, we present the first comprehensive QML study by benchmarking the MedMNIST-a diverse collection of medical imaging datasets on a 127-qubit real IBM quantum hardware, to evaluate the feasibility and performance of quantum models (without any classical neural networks) in practical applications. This study explores recent advancements in quantum computing such as device-aware quantum circuits, error suppression, and mitigation for medical image classification. The proposed methodology is comprised of three stages: preprocessing, generation of noise-resilient and hardware-efficient quantum circuits, optimizing/training of quantum circuits on classical hardware, and inference on real IBM quantum hardware. Firstly, we process all input images in the preprocessing stage to reduce the spatial dimension due to quantum hardware limitations. We generate hardware-efficient quantum circuits using backend properties expressible to learn complex patterns for medical image classification. After classical optimization of QML models, we perform inference on real quantum hardware. We also incorporate advanced error suppression and mitigation techniques in our QML workflow, including dynamical decoupling (DD), gate twirling (Twir), and matrix-free measurement mitigation (M3) to mitigate the effects of noise and improve classification performance. The experimental results showcase the potential of quantum computing for medical imaging and establish a benchmark for future advancements in QML applied to healthcare.

Similar content being viewed by others

Clinical data classification with noisy intermediate scale quantum computers

Article Open access 03 February 2022

A systematic review of quantum machine learning for digital health

Article Open access 02 May 2025

Quantum computing and the implementation of precision medicine

Article Open access 03 December 2025

Data availability

The MedMNIST datasets used in this benchmarking study can be accessed using https://medmnist.com/.

Code availability

All the related codes are available at https://github.com/gurinder-hub/QML_MedMNIST.

References

  1. Yang, J. et al. Medmnist v2–A large-scale lightweight benchmark for 2d and 3d biomedical image classification. Sci. Data. https://doi.org/10.1038/s41597-022-01721-8 (2023).

    Google Scholar 

  2. Kumar, R., Kumbharkar, P., Vanam, S. & Sharma, S. Medical images classification using deep learning: A survey. Multimed. Tools Appl. 83, 19683–19728 (2024).

    Google Scholar 

  3. Yue, Y. & Li, Z. Medmamba: Vision mamba for medical image classification (2024). arXiv:2403.03849.

  4. Ma, J. et al. Segment anything in medical images. Nat. Commun. https://doi.org/10.1038/s41467-024-44824-z (2024).

    Google Scholar 

  5. Zhang, Y., Shen, Z. & Jiao, R. Segment anything model for medical image segmentation: Current applications and future directions (2024). arXiv:2401.03495.

  6. Webber, G. & Reader, A. J. Diffusion models for medical image reconstruction. BJR Artif. Intell. 1, ubae013 (2024).

    Google Scholar 

  7. Khader, F. et al. Medical diffusion: Denoising diffusion probabilistic models for 3d medical image generation (2023). arXiv:2211.03364.

  8. Liu, Y., Arunachalam, S. & Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. 17, 1013–1017. https://doi.org/10.1038/s41567-021-01287-z (2021).

    Google Scholar 

  9. Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409. https://doi.org/10.1038/s43588-021-00084-1 (2021).

    Google Scholar 

  10. Jin, H. & Jr, K. M. M. Integrating machine learning and quantum circuits for proton affinity predictions (2024). arXiv:2411.17856.

  11. Yamasaki, H., Isogai, N. & Murao, M. Advantage of quantum machine learning from general computational advantages (2023). arXiv:2312.03057.

  12. Xiao, T., Zhai, X., Wu, X., Fan, J. & Zeng, G. Practical advantage of quantum machine learning in ghost imaging. Commun. Phys. 6, 171 (2023).

    Google Scholar 

  13. Acharya, R. et al. Quantum error correction below the surface code threshold (2024). arXiv:2408.13687.

  14. Grant, E. et al. Hierarchical quantum classifiers. NPJ Quant. Inform. https://doi.org/10.1038/s41534-018-0116-9 (2018).

    Google Scholar 

  15. Farhi, E. & Neven, H. Classification with quantum neural networks on near term processors (2018). arXiv:1802.06002.

  16. Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212. https://doi.org/10.1038/s41586-019-0980-2 (2019).

    Google Scholar 

  17. Kerenidis, I., Landman, J. & Prakash, A. Quantum algorithms for deep convolutional neural networks (2019). arXiv:1911.01117.

  18. Cong, I., Choi, S. & Lukin, M. D. Quantum convolutional neural networks. Nat. Phys. 15, 1273–1278. https://doi.org/10.1038/s41567-019-0648-8 (2019).

    Google Scholar 

  19. Allcock, J., Hsieh, C.-Y., Kerenidis, I. & Zhang, S. Quantum algorithms for feedforward neural networks (2019). arXiv:1812.03089.

  20. Hernández, H. I. G., Ruiz, R. T. & Sun, G.-H. Image classification via quantum machine learning (2020). arXiv:2011.02831.

  21. Kiani, B. T., Villanyi, A. & Lloyd, S. Quantum medical imaging algorithms (2020). arXiv:2004.02036.

  22. Nakaji, K. & Yamamoto, N. Quantum semi-supervised generative adversarial network for enhanced data classification. Sci. Rep. https://doi.org/10.1038/s41598-021-98933-6 (2021).

    Google Scholar 

  23. Schuld, M., Sweke, R. & Meyer, J. J. Effect of data encoding on the expressive power of variational quantum-machine-learning models. Phys. Rev. A 103, 032430 (2021).

    Google Scholar 

  24. Schuld, M., Petruccione, F., Schuld, M. & Petruccione, F. Quantum models as kernel methods. Mach. Learn. Quant. Computers. 217–245 (2021).

  25. Kollias, G., Kalantzis, V., Salonidis, T. & Ubaru, S. Quantum graph transformers. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5 (IEEE, 2023).

  26. Cherrat, E. A. et al. Quantum vision transformers. Quantum 8, 1265 (2024).

    Google Scholar 

  27. Fan, F., Shi, Y., Guggemos, T. & Zhu, X. X. Hybrid quantum-classical convolutional neural network model for image classification. IEEE Trans. Neural Netw. Learn. Syst. (2023).

  28. Wang, A., Hu, J., Zhang, S. & Li, L. Shallow hybrid quantum-classical convolutional neural network model for image classification. Quant. Inform. Process. 23, 17 (2024).

    Google Scholar 

  29. Benedetti, M., Lloyd, E., Sack, S. & Fiorentini, M. Parameterized quantum circuits as machine learning models. Quant. Sci. Technol. 4, 043001. https://doi.org/10.1088/2058-9565/ab4eb5 (2019).

    Google Scholar 

  30. Mitarai, K., Negoro, M., Kitagawa, M. & Fujii, K. Quantum circuit learning. Phys. Rev. A 98, 032309 (2018).

    Google Scholar 

  31. Adhikary, S., Dangwal, S. & Bhowmik, D. Supervised learning with a quantum classifier using multi-level systems. Quant. Inform. Process. https://doi.org/10.1007/s11128-020-2587-9 (2020).

    Google Scholar 

  32. Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A. https://doi.org/10.1103/physreva.101.032308 (2020).

    Google Scholar 

  33. Acar, E. & Yilmaz, I. Covid-19 detection on ibm quantum computer with classical-quantum transfer learning. Turk. J. Electr. Eng. Computer Sci. 29, 46–61 (2021).

    Google Scholar 

  34. Moradi, S. et al. Clinical data classification with noisy intermediate scale quantum computers. Sci. Rep. 12, 1851 (2022).

    Google Scholar 

  35. Houssein, E. H., Abohashima, Z., Elhoseny, M. & Mohamed, W. M. Hybrid quantum-classical convolutional neural network model for covid-19 prediction using chest x-ray images. J. Comput. Design En. 9, 343–363 (2022).

    Google Scholar 

  36. Toledo-Cortés, S., Useche, D. H., Müller, H. & González, F. A. Grading diabetic retinopathy and prostate cancer diagnostic images with deep quantum ordinal regression. Comput. Biol. Med. 145, 105472 (2022).

    Google Scholar 

  37. Azevedo, V., Silva, C. & Dutra, I. Quantum transfer learning for breast cancer detection. Quant. Mach. Intell. 4, 5 (2022).

    Google Scholar 

  38. Parisi, L., Neagu, D., Ma, R. & Campean, F. Quantum relu activation for convolutional neural networks to improve diagnosis of parkinson’s disease and covid-19. Expert Syst. Appl. 187, 115892 (2022).

    Google Scholar 

  39. Landman, J. et al. Quantum methods for neural networks and application to medical image classification. Quantum 6, 881 (2022).

    Google Scholar 

  40. Scikit-learn Developers. ROC AUC Score – Scikit-learn Documentation (2025). Accessed: January 3, 2025.

  41. IBM Quantum. Combine error mitigation options with the estimator primitive. https://learning.quantum.ibm.com/tutorial/combine-error-mitigation-options-with-the-estimator-primitive (2025). Accessed: June 26, 2025.

  42. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778 (2016).

  43. Feurer, M. et al. Auto-sklearn: Efficient and Robust Automated Machine Learning 113–134 (Springer International Publishing, 2019).

    Google Scholar 

  44. Jin, H., Song, Q. & Hu, X. Auto-keras: An efficient neural architecture search system. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 1946–1956 (2019).

  45. Google automl vision. https://cloud.google.com/vision/automl/docs.

  46. Anagolum, S. et al. élivágar: Efficient quantum circuit search for classification (2024). arXiv:2401.09393.

  47. Wang, H. et al. Quantumnas: Noise-adaptive search for robust quantum circuits. In The 28th IEEE International Symposium on High-Performance Computer Architecture (HPCA-28) (2022).

  48. Nation, P. D., Kang, H., Sundaresan, N. & Gambetta, J. M. Scalable mitigation of measurement errors on quantum computers. PRX Quant. https://doi.org/10.1103/prxquantum.2.040326 (2021).

    Google Scholar 

Download references

Acknowledgements

We extend our sincere gratitude to Danil Kaliakin (Research Associate, Cleveland Clinic) and Abdullah Ash Saki (Researcher at IBM Quantum) for their valuable insights and support throughout this project. We are also grateful to the authors of Élivágar and Torchquantum for their great work and open-sourcing the code.

Funding

The research is funded by the NIH (GM130641).

Author information

Authors and Affiliations

  1. Center for Computational Life Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA

    Gurinder Singh, Hongni Jin & Kenneth M. Merz Jr.

Authors
  1. Gurinder Singh
    View author publications

    Search author on:PubMed Google Scholar

  2. Hongni Jin
    View author publications

    Search author on:PubMed Google Scholar

  3. Kenneth M. Merz Jr.
    View author publications

    Search author on:PubMed Google Scholar

Contributions

G. Singh and H. Jin proposed and designed the study of benchmarking MedMNIST datasets using quantum machine learning on real IBM Cleveland hardware. G. Singh and H. Jin performed the experiments under the supervision of K.M. Merz. G. Singh wrote the manuscript, with inputs and contributions from all authors.

Corresponding author

Correspondence to Kenneth M. Merz Jr..

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Jin, H. & Merz Jr., K.M. Benchmarking MedMNIST dataset on real quantum hardware. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35605-3

Download citation

  • Received: 04 April 2025

  • Accepted: 07 January 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-35605-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Quantum Machine Learning (QML)

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics