Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Enhanced terahertz radiation generation by phase-controlled two-color laser pulses interacting with an under-dense plasma
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 February 2026

Enhanced terahertz radiation generation by phase-controlled two-color laser pulses interacting with an under-dense plasma

  • K. P. Anjana1,2,
  • Rohit Kumar Srivastav1 &
  • Mrityunjay Kundu1,2 

Scientific Reports , Article number:  (2026) Cite this article

  • 393 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Optics and photonics
  • Physics

Abstract

We investigate terahertz (THz) radiation generation at the vacuum-plasma interface driven by the oblique incidence of s-polarized Gaussian laser pulse(s) on a semi-infinite underdense plasma. Extending beyond the conventional single-frequency bipolar pulse (B-pulse), this work focuses on leveraging two-color mixed-frequency pulse– (M-pulse) excitation to enhance THz performance in terms of strength and broadening that can be tuned through controlled amplitude and phase of the constituent pulses of the M-pulse. A new expression for the ponderomotive force (PF)—which acts as the main driver of THz radiation at the vacuum-plasma boundary—is derived to capture the hitherto unexplored effects of phase asymmetry intrinsic to the M-pulse, in contrast to a single B-pulse where its phase is irrelevant. This PF formulation captures the underlying cycle-to-cycle symmetry-breaking for the M-pulse field, responsible for efficient THz emission. We demonstrate analytically that such M-pulses of the same total energy as a B-pulse may generate significantly enhanced PF, leading to THz yields several orders of magnitude higher. With a judicious choice of low-frequency to high-frequency ratio, the M-pulse configuration is shown to emerge as a highly efficient, phase-controllable driver of THz radiation and offers a promising route for optimizing THz source design via tailored two-color laser-plasma interactions. Particle-in-cell simulations performed with a finite-size plasma corroborate the main findings of the analytical model.

Similar content being viewed by others

Dephasingless two-color terahertz generation

Article Open access 04 November 2024

Intense multicycle THz pulse generation from laser-produced nanoplasmas

Article Open access 14 March 2023

Multi-millijoule terahertz emission from laser-wakefield-accelerated electrons

Article Open access 06 February 2023

Data availability

The data supporting the findings of this article are available from the corresponding author upon reasonable request. However, due to other novel findings, authors won’t be able to make the raw data public. Correspondence and requests for materials should be addressed to M.K.

References

  1. Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).

    Google Scholar 

  2. Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002).

    Google Scholar 

  3. Kang, B. J. et al. Time-resolved thz stark spectroscopy of molecules in solution. Nat. Commun. 15, 4212 (2024).

    Google Scholar 

  4. Zhang, F. et al. Application of thz vibrational spectroscopy to molecular characterization and the theoretical fundamentals: An illustration using saccharide molecules. Chem.-An Asian J. 12, 324–331 (2017).

    Google Scholar 

  5. Pickwell, E., Cole, B., Fitzgerald, A., Wallace, V. & Pepper, M. Simulation of terahertz pulse propagation in biological systems. Appl. Phys. Lett. 84, 2190–2192 (2004).

    Google Scholar 

  6. Pickwell, E., Cole, B. E., Fitzgerald, A. J., Pepper, M. & Wallace, V. P. In vivo study of human skin using pulsed terahertz radiation. Phys. Med. Biol. 49, 1595 (2004).

    Google Scholar 

  7. Bergé, L. et al. Terahertz spectroscopy from air plasmas created by two-color femtosecond laser pulses: The altesse project. Europhys. Lett. 126, 24001. https://doi.org/10.1209/0295-5075/126/24001 (2019).

    Google Scholar 

  8. Liu, K. et al. High-speed 0.22 thz communication system with 84 gbps for real-time uncompressed 8k video transmission of live events. Nat. Commun. 15, 8037 (2024).

    Google Scholar 

  9. Sarieddeen, H., Saeed, N., Al-Naffouri, T. Y. & Alouini, M.-S. Next generation terahertz communications: A rendezvous of sensing, imaging, and localization. IEEE Commun. Mag. 58, 69–75 (2020).

    Google Scholar 

  10. Li, B., Zhang, D. & Shen, Y. Study on terahertz spectrum analysis and recognition modeling of common agricultural diseases. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 243, 118820 (2020).

    Google Scholar 

  11. Hadjiloucas, S., Karatzas, L. S. & Bowen, J. W. Measurements of leaf water content using terahertz radiation. IEEE Trans. Microw. Theory Tech. 47, 142–149 (1999).

    Google Scholar 

  12. Tzydynzhapov, G. et al. New real-time sub-terahertz security body scanner. J. Infrared Millimeter Terahertz Waves 41, 632–641 (2020).

    Google Scholar 

  13. Palka, N. et al. Thz spectroscopy and imaging in security applications. In 2012 19th International Conference on Microwaves, Radar & Wireless Communications, vol. 1, pp. 265–270 (IEEE, 2012).

  14. Johnston, M. B., Whittaker, D. M., Corchia, A., Davies, A. & Linfield, E. H. Simulation of terahertz generation at semiconductor surfaces. Phys. Rev. B 65, 165301 (2002).

    Google Scholar 

  15. Dekorsy, T., Auer, H., Bakker, H. J., Roskos, H. G. & Kurz, H. Thz electromagnetic emission by coherent infrared-active phonons. Phys. Rev. B 53, 4005 (1996).

    Google Scholar 

  16. Heyman, J. et al. Terahertz emission from gaas and inas in a magnetic field. Phys. Rev. B 64, 085202 (2001).

    Google Scholar 

  17. Dey, I. et al. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nat. Commun. 8, 1184. https://doi.org/10.1038/s41467-017-01382-x (2017).

    Google Scholar 

  18. Yun, H., Bae, L. J., Mirzaie, M. & Kim, H. T. Laser-plasma-based radiation sources with intense laser pulses. Rev. Modern Plasma Phys. 9, 13. https://doi.org/10.1007/s41614-025-00181-y (2025).

    Google Scholar 

  19. Carrig, T. J., Rodriguez, G., Sharp Clement, T., Taylor, A. J. & Stewart, K. R. Generation of terahertz radiation using electro-optic crystal mosaics. Appl. Phys. Lett. 66, 10–12 (1995).

    Google Scholar 

  20. Zhong, H., Karpowicz, N. & Zhang, X.-C. Terahertz emission profile from laser-induced air plasma. Appl. Phys. Lett. 88, (2006).

  21. Xie, X., Xu, J., Dai, J. & Zhang, X.-C. Enhancement of terahertz wave generation from laser induced plasma. Appl. Phys. Lett. 90, (2007).

  22. Thiele, I. et al. Theory of terahertz emission from femtosecond-laser-induced microplasmas. Phys. Rev. E 94, 063202 (2016).

    Google Scholar 

  23. Cheng, C.-C., Wright, E. M. & Moloney, J. V. Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings. Phys. Rev. Lett. 87, 213001 (2001).

    Google Scholar 

  24. Sheng, Z.-M., Mima, K., Zhang, J. & Sanuki, H. Emission of electromagnetic pulses from laser wakefields through linear mode conversion. Phys. Rev. Lett. 94, 095003 (2005).

    Google Scholar 

  25. Sheng, Z.-M., Mima, K. & Zhang, J. Powerful terahertz emission from laser wake fields excited in inhomogeneous plasmas. Phys. Plasmas 12, (2005).

  26. Déchard, J., Debayle, A., Davoine, X., Gremillet, L. & Bergé, L. Terahertz pulse generation in underdense relativistic plasmas: From photoionization-induced radiation to coherent transition radiation. Phys. Rev. Lett. 120, 144801. https://doi.org/10.1103/PhysRevLett.120.144801 (2018).

    Google Scholar 

  27. Gorbunov, L. & Frolov, A. Transition radiation generated by a short laser pulse at a plasma-vacuum interface. Plasma Phys. Rep. 32, 850–865 (2006).

    Google Scholar 

  28. Frolov, A. Terahertz wave emission at an oblique incidence of the laser pulse on rarefied plasma. Plasma Phys. Controlled Fusion 62, 095002 (2020).

    Google Scholar 

  29. Lei, H.-Y. et al. Highly efficient generation of gv/m-level terahertz pulses from intense femtosecond laser-foil interactions. Iscience 25, (2022).

  30. Hua, J. et al. Enhanced terahertz radiation generated by intense laser interaction with a two-layer thin solid target. Phys. Rev. Accelerat. Beams 27, 081301 (2024).

    Google Scholar 

  31. Shao, S.-T. et al. Efficiently laser driven terahertz surface plasmon polaritons on long metal wire. Phys. Rev. X 15, 031025. https://doi.org/10.1103/mkyj-77k8 (2025).

    Google Scholar 

  32. Malik, A. K., Malik, H. K. & Stroth, U. Terahertz radiation generation by beating of two spatial-gaussian lasers in the presence of a static magnetic field. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 85, 016401 (2012).

    Google Scholar 

  33. Bhasin, L., Tripathi, V. & Kumar, P. Laser beat wave resonant terahertz generation in a magnetized plasma channel. Phys. Plasmas 23, (2016).

  34. Nguyen, A. et al. Spectral dynamics of thz pulses generated by two-color laser filaments in air: The role of kerr nonlinearities and pump wavelength. Opt. Express 25, 4720–4740 (2017).

    Google Scholar 

  35. Malevich, V. L., Adomavicius, R. & Krotkus, A. Thz emission from semiconductor surfaces. Comptes Rendus. Physique 9, 130–141 (2008).

    Google Scholar 

  36. Si, K. et al. Terahertz surface emission from layered semiconductor wse2. Appl. Surf. Sci. 448, 416–423 (2018).

    Google Scholar 

  37. Arkhipov, R. M., Arkhipov, M. V. & Rosanov, N. N. Unipolar light: Existence, generation, propagation, and impact on microobjects. Quantum Electron. 50, 801 (2020).

    Google Scholar 

  38. Rosanov, N. N. Unipolar pulse of an electromagnetic field with uniform motion of a charge in a vacuum. Usp. Fiz. Nauk 193, 1127–1133 (2023).

    Google Scholar 

  39. Gorelov, S. D., Novokovskaya, A. L., Bodrov, S. B., Sarafanova, M. V. & Bakunov, M. I. Unipolar fields produced by ultrafast optical gating of terahertz pulses. Appl. Phys. Lett. 126, 011104. https://doi.org/10.1063/5.0243002 (2025).

    Google Scholar 

  40. Calegari, F., Sansone, G., Stagira, S., Vozzi, C. & Nisoli, M. Advances in attosecond science. J. Phys. B: At. Mol. Opt. Phys. 49, 062001. https://doi.org/10.1088/0953-4075/49/6/062001 (2016).

    Google Scholar 

  41. Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66–70. https://doi.org/10.1038/nature16528 (2016).

    Google Scholar 

  42. Zeng, Z. et al. Generation of isolated attosecond pulses in the far field by two-color laser fields. Phys. Rev. A 76, 021804. https://doi.org/10.1103/PhysRevA.76.021804 (2007).

    Google Scholar 

  43. Jones, R. R., You, D. & Bucksbaum, P. H. Ionization of rydberg atoms by subpicosecond half-cycle electromagnetic pulses. Phys. Rev. Lett. 70, 1236–1239. https://doi.org/10.1103/PhysRevLett.70.1236 (1993).

    Google Scholar 

  44. You, D., Jones, R. R. & Bucksbaum, P. H. Generation of single-cycle pulses in the far-infrared by optical rectification. Opt. Lett. 20, 431–433. https://doi.org/10.1364/OL.20.000431 (1995).

    Google Scholar 

  45. Rousseau, P. et al. Efficient laser pulse steepening in plasma for applications to high-order harmonic generation. Phys. Rev. Lett. 96, 163901. https://doi.org/10.1103/PhysRevLett.96.163901 (2006).

    Google Scholar 

  46. Matsuoka, T. et al. Pulse compression and asymmetric pulse shaping in plasma for laser-wakefield acceleration. Opt. Express 16, 18152–18159. https://doi.org/10.1364/OE.16.018152 (2008).

    Google Scholar 

  47. Gopal, K., Gupta, D. N., Kim, Y. K., Hur, M. S. & Suk, H. Large-scale magnetic field generation by asymmetric laser-pulse interactions with a plasma in low-intensity regime. J. Appl. Phys. 119, 123101. https://doi.org/10.1063/1.4943180 (2016).

    Google Scholar 

  48. Singh, M., Gopal, K. & Gupta, D. N. Temporally asymmetric laser pulse for magnetic-field generation in plasmas. Phys. Lett. A 380, 1437–1441. https://doi.org/10.1016/j.physleta.2016.02.015 (2016).

    Google Scholar 

  49. Birdsall, C. K. & Langdon, A. B. Plasma Physics via Computer Simulation Series on Plasma Physics. (Adam Hilger, New York, 1991).

  50. Kundu, M. Beyond the conventional collisional absorption of laser light in under-dense plasma: A particle-in-cell simulation study. Pramana J. Phys. 92, 50. https://doi.org/10.1007/s12043-018-1716-9 (2019).

    Google Scholar 

  51. Chen, F. F. Introduction to Plasma Physics and Controlled Fusion (Springer, 1984).

    Google Scholar 

  52. Lichters, R., Meyer-ter-Vehn, J. & Pukhov, A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 3425–3437. https://doi.org/10.1063/1.871619 (1996).

    Google Scholar 

  53. Pfund, R. E. W., Lichters, R. & Meyer-ter Vehn, J. Lpic++ a parallel one-dimensional relativistic electromagnetic particle-in-cell code for simulating laser-plasma-interaction. AIP Conf. Proc. 426, 141–146. https://doi.org/10.1063/1.55199 (1998).

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge Dr. Sudip Sengupta for careful reading of the manuscript and ANTYA HPC facility at IPR for executing numerical programs as well as visualization.

Funding

Authors received no specific funding for this work. It is covered by the Institute for Plasma Research, under the Department of Atomic Energy, India.

Author information

Authors and Affiliations

  1. Institute for Plasma Research, Bhat, Gandhinagar, 382428, India

    K. P. Anjana, Rohit Kumar Srivastav & Mrityunjay Kundu

  2. Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India

    K. P. Anjana & Mrityunjay Kundu

Authors
  1. K. P. Anjana
    View author publications

    Search author on:PubMed Google Scholar

  2. Rohit Kumar Srivastav
    View author publications

    Search author on:PubMed Google Scholar

  3. Mrityunjay Kundu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.K.P. and M.K. developed the methodology and worked for formal analysis; M.K. conceptualized the work; A.K.P. and R.K.S. validated results; A.K.P., M.K., and R.K.S. prepared figures and the original draft of the manuscript; Review and editing of the final manuscript done by all authors.

Corresponding author

Correspondence to Mrityunjay Kundu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjana, K.P., Srivastav, R.K. & Kundu, M. Enhanced terahertz radiation generation by phase-controlled two-color laser pulses interacting with an under-dense plasma. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35800-2

Download citation

  • Received: 08 September 2025

  • Accepted: 08 January 2026

  • Published: 14 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-35800-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing