Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Spatial localization of avian and human influenza A virus receptors in male and female bovine reproductive tissues
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

Spatial localization of avian and human influenza A virus receptors in male and female bovine reproductive tissues

  • Brette D. Poliakiwski1,
  • Thainá Minela1,
  • Damon J. Smith1,
  • Zachary K. Seekford1,
  • Joe W. Cain2,
  • Odile Polanco1,
  • Gregory A. Johnson2,
  • Lacey J. Luense1,
  • Pablo J. Ross3,
  • Kiril M. Dimitrov4,
  • G. Cliff Lamb1,5 &
  • …
  • Ky G. Pohler1 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Microbiology
  • Molecular biology
  • Zoology

Abstract

Highly pathogenic avian influenza virus (HPAIV) of the H5N1 type has recently emerged as a major concern in livestock, with widespread outbreaks now confirmed in U.S. dairy cattle. This raises critical questions about the susceptibility of bovine reproductive tissues to viral entry, replication, and potential transmission. Influenza A viruses (IAV) initiate infection through hemagglutinin (HA) binding to host cell surface sialic acid residues, avian-adapted strains preferentially bind α2,3-linked sialic acids, while human-adapted strains bind α2,6-linked residues. This study aimed to characterize the spatial distribution of α2,6-linked sialic acids (human-like receptors), α2,3-Galβ1-4, and α2,3-Galβ1-3 (avian-like receptors) in male and female bovine reproductive tissues using lectin-based histochemistry. Post-mortem reproductive tissues were collected from bulls (n = 4) and multiparous cows (n = 3) and stained with biotinylated lectins. Human-like receptors were detected in the luminal epithelium of the penile urethra, vas deferens, epididymis, seminiferous tubules, vagina, cervix, uterus, oviduct, and mammary gland. Avian-like receptors were also detected in the penile urethra, epididymis, vagina, cervix, oviduct, and mammary gland, though α2,3-Galβ1-4 and α2,3-Galβ1-3 localization varied by tissue. These findings represent the first comprehensive spatial mapping of IAV receptors in bovine reproductive tissues and highlight potential sites for viral entry or shedding.

Similar content being viewed by others

The potential of H5N1 viruses to adapt to bovine cells varies throughout evolution

Article Open access 15 December 2025

Human-type sialic acid receptors contribute to avian influenza A virus binding and entry by hetero-multivalent interactions

Article Open access 13 July 2022

Emergence of mammalian-adaptive PB2 mutations enhances polymerase activity and pathogenicity of cattle-derived H5N1 influenza A virus

Article Open access 20 December 2025

Data availability

All data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Santos, J. J. et al. Bovine H5N1 binds poorly to human-type sialic acid receptors. Nature 640, E18–E20 (2025).

    Google Scholar 

  2. Peiris, J. M., De Jong, M. D. & Guan, Y. Avian influenza virus (H5N1): a threat to human health. Clin. Microbiol. Rev. 20, 243–267 (2007).

    Google Scholar 

  3. Luo, M. Influenza virus entry. Viral molecular machines, 201–221 (2011).

  4. Hensen, L., Matrosovich, T., Roth, K., Klenk, H.-D. & Matrosovich, M. HA-dependent tropism of H5N1 and H7N9 influenza viruses to human endothelial cells is determined by reduced stability of the HA, which allows the virus to cope with inefficient endosomal acidification and constitutively expressed IFITM3. J. Virolo. 94, 01223–11219 (2019).

    Google Scholar 

  5. Lakadamyali, M., Rust, M. J. & Zhuang, X. Endocytosis of influenza viruses. Microbes Infect. 6, 929–936 (2004).

    Google Scholar 

  6. Gao, J., Gui, M. & Xiang, Y. Structural intermediates in the low pH-induced transition of influenza hemagglutinin. PLoS Pathog. 16, e1009062 (2020).

    Google Scholar 

  7. Matrosovich, M., Herrler, G. & Klenk, H. D. Sialic acid receptors of viruses. Sialoglyco chemistry and biology II: tools and techniques to identify and capture sialoglycans, 1–28 (2013).

  8. Palese, P. & Compans, R. Inhibition of influenza virus replication in tissue culture by 2-deoxy-2, 3-dehydro-N-trifluoroacetylneuraminic acid (FANA): Mechanism of action. J. Gen. Virol. 33, 159–163 (1976).

    Google Scholar 

  9. Sreenivasan, C. C., Thomas, M., Kaushik, R. S., Wang, D. & Li, F. Influenza A in bovine species: A narrative literature review. Viruses 11, 561 (2019).

    Google Scholar 

  10. USDA. HPAI Confirmed Cases in Livestock, <https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections/hpai-confirmed-cases-livestock> (2025).

  11. Caliendo, V. et al. Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021. Sci. Rep. 12, 11729 (2022).

    Google Scholar 

  12. Halwe, N. J. et al. H5N1 clade 2.3. 4.4 b dynamics in experimentally infected calves and cows. Nature 637, 903–912 (2025).

    Google Scholar 

  13. Burrough, E. R. et al. Highly pathogenic avian influenza A (H5N1) clade 2.3 4.4 b virus infection in domestic dairy cattle and cats, United States, 2024. Emerg. Infecti. Dis. 30, 1335 (2024).

    Google Scholar 

  14. Alkie, T. N. et al. Recurring trans-Atlantic incursion of clade 2.3 4.4 b H5N1 viruses by long distance migratory birds from Northern Europe to Canada in 2022/2023. Viruses 15, 1836 (2023).

    Google Scholar 

  15. Himsworth, C. G. et al. Highly Pathogenic Avian Influenza A (H5N1) in wild birds and a human, British Columbia, Canada, 2024. Emerg. Infect. Dis. 31, 1216 (2025).

    Google Scholar 

  16. Caserta, L. C. et al. Spillover of highly pathogenic avian influenza H5N1 virus to dairy cattle. Nature 634, 669–676 (2024).

    Google Scholar 

  17. Mostafa, A. et al. Avian influenza A (H5N1) virus in dairy cattle: origin, evolution, and cross-species transmission. MBio 15, e02542-e12524 (2024).

    Google Scholar 

  18. Kristensen, C., Larsen, L. E., Trebbien, R. & Jensen, H. E. The avian influenza A virus receptor SA-α2, 3-Gal is expressed in the porcine nasal mucosa sustaining the pig as a mixing vessel for new influenza viruses. Virus Res. 340, 199304 (2024).

    Google Scholar 

  19. Chopra, P. et al. Receptor-binding specificity of a bovine influenza A virus. Nature 640, E21–E27 (2025).

    Google Scholar 

  20. Kristensen, C., Jensen, H. E., Trebbien, R., Webby, R. J. & Larsen, L. E. Avian and human influenza A virus receptors in bovine mammary gland. Emerg. Infect. Dis. 30, 1907 (2024).

    Google Scholar 

  21. Ma, X. et al. Sialylation facilitates the maturation of mammalian sperm and affects its survival in female uterus. Biol. Reprod. 94(123), 121–110 (2016).

    Google Scholar 

  22. Clark, G. F. Functional glycosylation in the human and mammalian uterus. Fertility Res. Pract. 1, 17 (2015).

    Google Scholar 

  23. Sen, S., Chowdhury, G. & Chowdhury, M. Sialic acid binding protein of human endometrium: Its regulation by steroids. Mol. Cell. Biochem. 221, 17–23 (2001).

    Google Scholar 

  24. Shinya, K. et al. Influenza virus receptors in the human airway. Nature 440, 435–436 (2006).

    Google Scholar 

  25. Ibricevic, A. et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J. Virol. 80, 7469–7480 (2006).

    Google Scholar 

  26. Gu, Y. et al. Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res. 32, 24–37 (2022).

    Google Scholar 

  27. Baggen, J. et al. TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell entry. Cell 186, 3427–3442 (2023).

    Google Scholar 

  28. Singh, M., Bansal, V. & Feschotte, C. A single-cell RNA expression map of human coronavirus entry factors. Cell Rep. 32, 108175 (2020).

    Google Scholar 

  29. Guo, J. et al. Co-receptor tropism and genetic characteristics of the V3 regions in variants of antiretroviral-naive HIV-1 infected subjects. Epidemiol. Infect. 147, e181 (2019).

    Google Scholar 

  30. Yandrapally, S., Mohareer, K., Arekuti, G., Vadankula, G. R. & Banerjee, S. HIV co-receptor-tropism: cellular and molecular events behind the enigmatic co-receptor switching. Crit. Rev. Microbiol. 47, 499–516 (2021).

    Google Scholar 

  31. Zhao, C., Porter, J. M., Burke, P. C., Arnberg, N. & Smith, J. G. Alpha-defensin binding expands human adenovirus tropism. PLoS Pathog. 20, e1012317 (2024).

    Google Scholar 

  32. Tarnawski, A. S. & Ahluwalia, A. Endothelial cells and blood vessels are major targets for COVID-19-induced tissue injury and spreading to various organs. World J. Gastroenterol. 28, 275 (2022).

    Google Scholar 

  33. Lai, C. M., Mainou, B. A., Kim, K. S. & Dermody, T. S. Directional release of reovirus from the apical surface of polarized endothelial cells. MBio 4, 00049–00013 (2013).

    Google Scholar 

  34. Phillips, M. B., Dina Zita, M., Howells, M. A., Weinkopff, T. & Boehme, K. W. Lymphatic type 1 interferon responses are critical for control of systemic reovirus dissemination. J. Virol. 95, 02167–02120 (2021).

    Google Scholar 

  35. Farrell, H. E. et al. Murine cytomegalovirus spreads by dendritic cell recirculation. MBio 8, 01264–01217 (2017).

    Google Scholar 

  36. Loo, C. P. et al. Lymphatic vessels balance viral dissemination and immune activation following cutaneous viral infection. Cell Rep. 20, 3176–3187 (2017).

    Google Scholar 

  37. Ander, S. E., Li, F. S., Carpentier, K. S. & Morrison, T. E. Innate immune surveillance of the circulation: A review on the removal of circulating virions from the bloodstream. PLoS Pathog. 18, e1010474 (2022).

    Google Scholar 

  38. Brisse, M. E. & Hickman, H. D. Viral infection and dissemination through the lymphatic system. Microorganisms 13, 443 (2025).

    Google Scholar 

  39. Toro, A. et al. Blood matters: the hematological signatures of Coronavirus infection. Cell Death Dis. 15, 863 (2024).

    Google Scholar 

  40. Ghosh, C. C. et al. Gene control of tyrosine kinase TIE2 and vascular manifestations of infections. Proc. Natl. Acad. Sci. 113, 2472–2477 (2016).

    Google Scholar 

  41. LeMessurier, K. S., Tiwary, M., Morin, N. P. & Samarasinghe, A. E. Respiratory barrier as a safeguard and regulator of defense against influenza A virus and Streptococcus pneumoniae. Front. Immunol. 11, 3 (2020).

    Google Scholar 

  42. Wang, K. et al. Zika virus replication on endothelial cells and invasion into the central nervous system by inhibiting interferon β translation. Virology 582, 23–34 (2023).

    Google Scholar 

  43. Yang, B. et al. ZMapp reinforces the airway mucosal barrier against Ebola virus. J. Infect. Dis. 218, 901–910 (2018).

    Google Scholar 

  44. van der Kuyl, A. C. HIV infection and HERV expression: A review. Retrovirology 9, 6 (2012).

    Google Scholar 

  45. Moraes, D. C. et al. Macroepidemiological trends of Influenza A virus detection through reverse transcription real-time polymerase chain reaction (RT-rtPCR) in porcine samples in the United States over the last 20 years. Front. Vet. Sci. 12, 1572237 (2025).

    Google Scholar 

  46. Vashisht, A. & Gahlay, G. K. Understanding seminal plasma in male infertility: Emerging markers and their implications. Andrology 12, 1058–1077 (2024).

    Google Scholar 

  47. Rodriguez-Martinez, H., Martinez, E. A., Calvete, J. J., Pena Vega, F. J. & Roca, J. Seminal plasma: relevant for fertility?. Int. J. Mol. Sci. 22, 4368 (2021).

    Google Scholar 

  48. De Clercq, K. et al. Transmission of bluetongue virus serotype 8 by artificial insemination with frozen–thawed semen from naturally infected bulls. Viruses 13, 652 (2021).

    Google Scholar 

  49. Parsonson, I. & Snowdon, W. The effect of natural and artificial breeding using bulls infected with, or semen contaminated with, infectious bovine rhinotracheitis virus. Aust. Vet. J. 51, 365–369 (1975).

    Google Scholar 

  50. Stewart, G. et al. Transmission of human T-cell lymphotropic virus type III (HTLV-III) by artificial insemination by donor. The Lancet 326, 581–584 (1985).

    Google Scholar 

  51. Young, J. A., Cheung, K.-S. & Lang, D. J. Infection and fertilization of mice after artificial insemination with a mixture of sperm and murine cytomegalovirus. J. Infect. Dis. 135, 837–840 (1977).

    Google Scholar 

  52. de Vries, E., Du, W., Guo, H. & de Haan, C. A. Influenza A virus hemagglutinin–neuraminidase–receptor balance: Preserving virus motility. Trends Microbiol. 28, 57–67 (2020).

    Google Scholar 

  53. Guo, H. et al. Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces. PLoS Pathog. 14, e1007233 (2018).

    Google Scholar 

  54. Su, J. et al. Study of spermatogenic and Sertoli cells in the Hu sheep testes at different developmental stages. FASEB J. 37, e23084 (2023).

    Google Scholar 

  55. Antalíková, J. et al. Expression of αV integrin and its potential partners in bull reproductive tissues, germ cells and spermatozoa. Int. J. Biol. Macromol. 209, 542–551 (2022).

    Google Scholar 

  56. Hiroshige, T. et al. Identification of PDGFRα-positive interstitial cells in the distal segment of the murine vas deferens. Sci. Rep. 11, 7553 (2021).

    Google Scholar 

  57. Maginnis, M. S. Virus–receptor interactions: The key to cellular invasion. J. Mol. Biol. 430, 2590–2611 (2018).

    Google Scholar 

  58. Speranza, E. Understanding virus–host interactions in tissues. Nat. Microbiol. 8, 1397–1407 (2023).

    Google Scholar 

  59. Liu, M., van Kuppeveld, F. J., de Haan, C. A. & de Vries, E. Gradual adaptation of animal influenza A viruses to human-type sialic acid receptors. Curr. Opin. Virol. 60, 101314 (2023).

    Google Scholar 

  60. Ferraz, M. D. A., Carothers, A., Dahal, R., Noonan, M. J. & Songsasen, N. Oviductal extracellular vesicles interact with the spermatozoon’s head and mid-piece and improves its motility and fertilizing ability in the domestic cat. Sci. Rep. 9, 9484 (2019).

    Google Scholar 

  61. Rossato, M., Ion Popa, F., Ferigo, M., Clari, G. & Foresta, C. Human sperm express cannabinoid receptor Cb1, the activation of which inhibits motility, acrosome reaction, and mitochondrial function. J. Clin. Endocrinol. Metab. 90, 984–991 (2005).

    Google Scholar 

  62. Duggal, N. K. et al. Frequent Zika virus sexual transmission and prolonged viral RNA shedding in an immunodeficient mouse model. Cell Rep. 18, 1751–1760 (2017).

    Google Scholar 

  63. Feldmann, H. Vol. 378 1440–1441 (Mass Medical Soc, 2018).

  64. Le Tortorec, A. et al. From ancient to emerging infections: The odyssey of viruses in the male genital tract. Physiol. Rev. 100, 1349–1414 (2020).

    Google Scholar 

  65. Garolla, A. et al. Sperm viral infection and male infertility: focus on HBV, HCV, HIV, HPV, HSV, HCMV, and AAV. J. Reprod. Immunol. 100, 20–29 (2013).

    Google Scholar 

  66. Guo, Y. et al. Correlation between viral infections in male semen and infertility: A literature review. Virol. J. 21, 167 (2024).

    Google Scholar 

  67. Dejucq-Rainsford, N. & Jegou, B. Viruses in semen and male genital tissues-consequences for the reproductive system and therapeutic perspectives. Curr. Pharm. Des. 10, 557–575 (2004).

    Google Scholar 

  68. Cao, X. et al. Impact of human papillomavirus infection in semen on sperm progressive motility in infertile men: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 18, 38 (2020).

    Google Scholar 

  69. Ferraz, H. et al. Screening semen samples for Zika virus infection: Role for serologic and RT-PCR testing. Front. Trop. Dis. 5, 1489647 (2025).

    Google Scholar 

  70. Mead, P. S. et al. Zika virus shedding in semen of symptomatic infected men. N. Engl. J. Med. 378, 1377–1385 (2018).

    Google Scholar 

  71. Matheron, S. et al. Long-lasting persistence of Zika virus in semen. Clin. Infect. Dis. 63, 1264–1264 (2016).

    Google Scholar 

  72. Atkinson, B. et al. Presence and persistence of Zika virus RNA in semen, United Kingdom, 2016. Emerg. Infect. Dis. 23, 611 (2017).

    Google Scholar 

  73. Gaskell, K. M., Houlihan, C., Nastouli, E. & Checkley, A. M. Persistent Zika virus detection in semen in a traveler returning to the United Kingdom from Brazil, 2016. Emerg. Infect. Dis. 23, 137 (2017).

    Google Scholar 

  74. Pley, C. et al. Duration of viral persistence in human semen after acute viral infection: a systematic review. The Lancet Microbe (2024).

  75. Piotr, L. et al. Viral infection and its impact on fertility, medically assisted reproduction and early pregnancy–a narrative review. Reprod. Biol. Endocrinol. 23, 68 (2025).

    Google Scholar 

  76. Depuydt, C. et al. SARS-CoV-2 infection reduces quality of sperm parameters: prospective one year follow-up study in 93 patients. EBioMedicine 93 (2023).

  77. Vj, A., Pj, A., Tm, A. & Akhigbe, R. SARS-CoV-2 impairs male fertility by targeting semen quality and testosterone level: A systematic review and meta-analysis. PLoS ONE 19, e0307396 (2024).

    Google Scholar 

  78. Xie, Y. et al. SARS-CoV-2 effects on sperm parameters: A meta-analysis study. J. Assist. Reprod. Genet. 39, 1555–1563 (2022).

    Google Scholar 

  79. Racicot, K. et al. Viral infection of the pregnant cervix predisposes to ascending bacterial infection. J. Immunol. 191, 934–941 (2013).

    Google Scholar 

  80. Zhao, X. et al. Role of toll-like receptors in common infectious diseases of the female lower genital tract. Front. Biosci. Landmark 28, 232 (2023).

    Google Scholar 

  81. Muñoz, N., Castellsagué, X., de González, A. B. & Gissmann, L. HPV in the etiology of human cancer. Vaccine 24, S1–S10 (2006).

    Google Scholar 

  82. Li, T. et al. The features of high-risk human papillomavirus infection in different female genital sites and impacts on HPV-based cervical cancer screening. Virol. J. 20, 116 (2023).

    Google Scholar 

  83. da Silva, M. B. et al. Frequency of human papillomavirus types 16, 18, 31, and 33 and sites of cervical lesions in gynecological patients from Recife Brazil. Geneti. Mol. Res. 11, 462–466 (2012).

    Google Scholar 

  84. Schiffman, M., Castle, P. E., Jeronimo, J., Rodriguez, A. C. & Wacholder, S. Human papillomavirus and cervical cancer. The lancet 370, 890–907 (2007).

    Google Scholar 

  85. Crosbie, E. J., Einstein, M. H., Franceschi, S. & Kitchener, H. C. Human papillomavirus and cervical cancer. The Lancet 382, 889–899 (2013).

    Google Scholar 

  86. De Rosa, N., Santangelo, F., Todisco, C., Dequerquis, F. & Santangelo, C. Collagen-based ovule therapy reduces inflammation and improve cervical epithelialization in patients with fungal, viral, and bacterial cervico-vaginitis. Medicina 59, 1490 (2023).

    Google Scholar 

  87. Pudney, J., Quayle, A. J. & Anderson, D. J. Immunological microenvironments in the human vagina and cervix: Mediators of cellular immunity are concentrated in the cervical transformation zone. Biol. Reprod. 73, 1253–1263 (2005).

    Google Scholar 

  88. Tang, W. W. et al. A mouse model of Zika virus sexual transmission and vaginal viral replication. Cell Rep. 17, 3091–3098 (2016).

    Google Scholar 

  89. Miller, C. J. Localization of Simian immunodeficiency virus-infected cells in the genital tract of male and female Rhesus macaques. J. Reprod. Immunol. 41, 331–339 (1998).

    Google Scholar 

  90. Caine, E. A. et al. Interferon lambda protects the female reproductive tract against Zika virus infection. Nat. Commun. 10, 280 (2019).

    Google Scholar 

  91. Tantengco, O. A. G. & Menon, R. Breaking down the barrier: The role of cervical infection and inflammation in preterm birth. Front. Global Women’s Health 2, 777643 (2022).

    Google Scholar 

  92. Chilaka, V. N., Navti, O. B., Al Beloushi, M., Ahmed, B. & Konje, J. C. Human papillomavirus (HPV) in pregnancy–An update. Eur. J. Obstet. Gynecol. Reprod. Biol. 264, 340–348 (2021).

    Google Scholar 

  93. Condrat, C. E., Filip, L., Gherghe, M., Cretoiu, D. & Suciu, N. Maternal HPV infection: Effects on pregnancy outcome. Viruses 13, 2455 (2021).

    Google Scholar 

  94. Popescu, S. D. et al. Maternal HPV infection and the estimated risks for adverse pregnancy outcomes—a systematic review. Diagnostics 12, 1471 (2022).

    Google Scholar 

  95. Niyibizi, J., Zanré, N., Mayrand, M.-H. & Trottier, H. Association between maternal human papillomavirus infection and adverse pregnancy outcomes: Systematic review and meta-analysis. J. Infect. Dis. 221, 1925–1937 (2020).

    Google Scholar 

  96. Chudnovets, A., Liu, J., Narasimhan, H., Liu, Y. & Burd, I. Role of inflammation in virus pathogenesis during pregnancy. J. Virol. 95, 01381–01319 (2020).

    Google Scholar 

  97. Charostad, J. et al. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Med. Infect. Dis. 55, 102638 (2023).

    Google Scholar 

  98. Ruangrung, K. et al. Analysis of Influenza A virus infection in human induced pluripotent stem cells (hiPSCs) and their derivatives. Virus Res. 323, 199009 (2023).

    Google Scholar 

  99. Maillo, V. et al. Oviductal response to gametes and early embryos in mammals. (2016).

  100. Finnerty, R. M. et al. Multi-omics analyses and machine learning prediction of oviductal responses in the presence of gametes and embryos. Elife 13, RP100705 (2025).

    Google Scholar 

  101. Mak, J. S. & Lao, T. T. Assisted reproduction in hepatitis carrier couples. Best Pract. Res. Clin. Obstet. Gynaecol. 68, 103–108 (2020).

    Google Scholar 

  102. Kalter, S. et al. Vertical transmission of C-type viruses: Their presence in baboon follicular oocytes and tubal ova. J. Natl Cancer Inst. 54, 1173–1176 (1975).

    Google Scholar 

  103. Wang, D. et al. The integrated HIV-1 provirus in patient sperm chromosome and its transfer into the early embryo by fertilization. PLoS ONE 6, e28586 (2011).

    Google Scholar 

  104. Block, L. N. et al. Embryotoxic impact of Zika virus in a rhesus macaque in vitro implantation model. Biol. Reprod. 102, 806–816 (2020).

    Google Scholar 

  105. Nelli, R. K. et al. Sialic acid receptor specificity in mammary gland of dairy cattle infected with highly pathogenic avian influenza A (H5N1) virus. Emerg. Infect. Dis. 30, 1361 (2024).

    Google Scholar 

  106. Ríos Carrasco, M., Gröne, A., van den Brand, J. M. & de Vries, R. P. The mammary glands of cows abundantly display receptors for circulating avian H5 viruses. J. Virol. 98, e01052 (2024).

    Google Scholar 

  107. Imai, M. et al. Highly pathogenic avian H5N1 influenza A virus replication in ex vivo cultures of bovine mammary gland and teat tissues. Emerging Microbes Infect. 14, 2450029 (2025).

    Google Scholar 

  108. Baker, A. L. et al. Dairy cows inoculated with highly pathogenic avian influenza virus H5N1. Nature 637, 913–920 (2025).

    Google Scholar 

  109. Halwe, N. J. et al. Outcome of H5N1 clade 2.3. 4.4 b virus infection in calves and lactating cows. bioRxiv (2024).

  110. Baker, P. H. et al. Intramammary infection of bovine H5N1 influenza virus in ferrets leads to transmission and mortality in suckling neonates. bioRxiv, 2024.2011. 2015.623885 (2024).

  111. Le Sage, V., Campbell, A., Reed, D. S., Duprex, W. P. & Lakdawala, S. S. Persistence of influenza H5N1 and H1N1 viruses in unpasteurized milk on milking unit surfaces. Emerg. Infect. Dis. 30, 1721 (2024).

    Google Scholar 

  112. Brooks, S. A. & Hall, D. M. Lectin histochemistry to detect altered glycosylation in cells and tissues. Metastasis Res. Protocols, 31–50 (2012).

Download references

Acknowledgements

We thank Dr. Gregory Johnson for his expert guidance in interpreting histological images and providing critical insights during data analysis. We also thank Lone Star Beef Processors (San Angelo, TX, USA) for facilitating access to bovine reproductive tissues used in this study. 

Funding

Financial support for this study was provided by ST Genetics.

Author information

Authors and Affiliations

  1. Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA

    Brette D. Poliakiwski, Thainá Minela, Damon J. Smith, Zachary K. Seekford, Odile Polanco, Lacey J. Luense, G. Cliff Lamb & Ky G. Pohler

  2. Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA

    Joe W. Cain & Gregory A. Johnson

  3. ST Genetics, Navasota, TX, USA

    Pablo J. Ross

  4. Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX, 77843, USA

    Kiril M. Dimitrov

  5. Texas A&M AgriLife Research, College Station, TX, USA

    G. Cliff Lamb

Authors
  1. Brette D. Poliakiwski
    View author publications

    Search author on:PubMed Google Scholar

  2. Thainá Minela
    View author publications

    Search author on:PubMed Google Scholar

  3. Damon J. Smith
    View author publications

    Search author on:PubMed Google Scholar

  4. Zachary K. Seekford
    View author publications

    Search author on:PubMed Google Scholar

  5. Joe W. Cain
    View author publications

    Search author on:PubMed Google Scholar

  6. Odile Polanco
    View author publications

    Search author on:PubMed Google Scholar

  7. Gregory A. Johnson
    View author publications

    Search author on:PubMed Google Scholar

  8. Lacey J. Luense
    View author publications

    Search author on:PubMed Google Scholar

  9. Pablo J. Ross
    View author publications

    Search author on:PubMed Google Scholar

  10. Kiril M. Dimitrov
    View author publications

    Search author on:PubMed Google Scholar

  11. G. Cliff Lamb
    View author publications

    Search author on:PubMed Google Scholar

  12. Ky G. Pohler
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Sample collection was performed by B.P., D.S., and O.P. Lectin histochemistry was conducted by B.P. Data analysis and interpretation were carried out by B.P., T.M., J.C., and G.J. The manuscript and figures were prepared by B.P. with contributions, edits, and approval from G.J., T.M., D.S., J.C., Z.S., L.L., P.R., K.D., G.C.L., and K.P.

Corresponding author

Correspondence to Ky G. Pohler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poliakiwski, B.D., Minela, T., Smith, D. . et al. Spatial localization of avian and human influenza A virus receptors in male and female bovine reproductive tissues. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36120-1

Download citation

  • Received: 22 October 2025

  • Accepted: 09 January 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-36120-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Avian Influenza
  • Sialic acid receptors
  • Bovine
  • MAA-I
  • MAA-II
  • SNA
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology