Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Molecular characterization of multi-drug resistance Escherichia coli O157:H7 from calf feces and cow milk in Bangladesh
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 February 2026

Molecular characterization of multi-drug resistance Escherichia coli O157:H7 from calf feces and cow milk in Bangladesh

  • Mohammed A. Samad1,
  • Md. Rezaul Karim2,
  • Mohammad Asheak Mahmud3,
  • Md Shahjalal Sagor3,
  • Muhammad Sazzad Hossain3,
  • A. S. M. Ashab Uddin1,3,
  • Mahmudul Hasan3,
  • Anowar Hossen1 &
  • …
  • Mst. Nazia Akter1 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Diseases
  • Microbiology
  • Molecular biology

Abstract

Escherichia coli O157:H7 is one of the several zoonotic bacteria that causes food-borne disease, has socioeconomic sphere and public health impacts. Cattle are an important reservoir of E. coli O157:H7, and shed in their feces as well as contaminate animal-origin food products, sometimes leading to transmission to humans. This study investigated the prevalence, antimicrobial resistance (AMR) patterns, and genomic characteristics of E. coli O157:H7 from calf fecal swabs and cow milk in Bangladesh. A total of 290 samples were collected from dairy cattle of different areas, screened using real-time PCR and selective culture, followed by phenotypic and genotypic AMR profiling, and whole‑genome sequencing with comparative genomics. Overall, 20% of samples tested positive in real-time PCR with a higher prevalence in fecal samples (24.8%) than milk (7.5%). All E. coli O157:H7 isolates were susceptible to amoxicillin‑clavulanate, azithromycin, tetracycline, and gentamicin; however, 50% were multidrug‑resistant (MARI up to 0.33). Genomic analysis revealed the presence of stx2 and eae virulence genes, and multiple AMR genes including acrA, acrS, emrR, emrB, and marA. This also explores the E. coli O157:H7 belongs to lineage ST11 which harbor mobile genetic elements, multiple plasmid types and stx-converting prophage, and showed high genomic similarity to outbreak‑associated Sakai strain. The co‑occurrence of high‑risk virulence genes, multidrug resistance, and an epidemic lineage highlights an urgent need for integrated genomic surveillance, improved hygiene, and responsible antimicrobial use within a One Health framework to mitigate zoonotic transmission of E. coli O157:H7 through the dairy value chain.

Data availability

The datasets generated and/or analysed during the current study are available in NCBI GenBank under the genome accession number [CP178336.1](https:/www.ncbi.nlm.nih.gov/nuccore/CP178336.1) .

References

  1. Subedi, D., Paudel, M., Poudel, S. & Koirala, N. Food safety in developing countries: common foodborne and waterborne illnesses, regulations, organizational structure, and challenges of food safety in the context of Nepal. Food Front. 6, 86–123 (2025).

    Google Scholar 

  2. Alemu, M., Motbianor, A., Birhanu, D. & Birara, A. Food safety practice and associated factors of food handlers working in food industries in Bahir Dar City, Amhara Regional State, Northwest Ethiopia, Environ. Health Insights 17 (2023), (2021).

  3. Othman, C., Khidhir, Z. & Arif, E. Prevalence of the CopA gene in Escherichia coli isolated from common carp in Sulaymaniyah Province. Pak Vet. J. 44, 190–194 (2024).

    Google Scholar 

  4. Castro, V. S., Carvalho, R. C. T., Conte-Junior, C. A. & Figuiredo, E. E. S. Shiga‐toxin producing Escherichia coli: pathogenicity, supershedding, diagnostic methods, occurrence, and foodborne outbreaks. Compr. Rev. Food Sci. Food Saf. 16, 1269–1280 (2017).

    Google Scholar 

  5. Rahal, E. A., Kazzi, N., Nassar, F. J. & Matar, G. M. Escherichia coli O157:H7—clinical aspects and novel treatment approaches. Front. Cell. Infect. Microbiol. 2, 138 (2012).

    Google Scholar 

  6. Ferens, W. A. & Hovde, C. J. Escherichia coli O157:H7: animal reservoir and sources of human infection. Foodborne Pathog Dis. 8, 465–487 (2011).

    Google Scholar 

  7. Abebe, E. et al. Occurrence and antimicrobial resistance pattern of E. coli O157:H7 isolated from foods of bovine origin in Dessie and Kombolcha towns, Ethiopia. PLoS Negl. Trop. Dis. 17, e0010706 (2023).

    Google Scholar 

  8. Abebe, E., Gugsa, G. & Ahmed, M. Review on major food-borne zoonotic bacterial pathogens. J. Trop. Med. 1–19 (2020). (2020).

  9. Bach, S. J., McAllister, T. A., Veira, D. M., Gannon, V. P. J. & Holley, R. A. Transmission and control of Escherichia coli O157:H7—a review. Can. J. Anim. Sci. 82, 475–490 (2002).

    Google Scholar 

  10. Farrokh, C. et al. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int. J. Food Microbiol. 162, 190–212 (2013).

    Google Scholar 

  11. Chui, L. et al. Molecular profiling of Escherichia coli O157: H7 and non-O157 strains isolated from humans and cattle in Alberta, Canada. J. Clin. Microbiol. 53, 986–990 (2015).

    Google Scholar 

  12. Castro, V. S. et al. Inconsistent PCR detection of Shiga toxin-producing Escherichia coli: insights from whole genome sequence analyses. PLoS One. 16, e0257168 (2021).

    Google Scholar 

  13. Lisboa, L. F. et al. Epidemiology of Shiga toxin-producing Escherichia coli O157 in the Province of Alberta, Canada, 2009–2016. Toxins (Basel). 11, 613 (2019).

    Google Scholar 

  14. Kolodziejek, A. M., Minnich, S. A. & Hovde, C. J. Escherichia coli 0157:H7 virulence factors and the ruminant reservoir. Curr. Opin. Infect. Dis. 35, 205–214 (2022).

    Google Scholar 

  15. Blanco, M. et al. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolatesfrom cattle in Spain and identification of a New Intimin VariantGene (eae- ξ). J. Clin. Microbiol. 42, 645–651 (2004). Serotypes.

    Google Scholar 

  16. Abu-Ali, G. S. et al. Increased adherence and expression of virulence genes in a lineage of Escherichia coli O157: H7 commonly associated with human infections. PLoS One. 5, e10167 (2010).

    Google Scholar 

  17. Sagor, M. S. et al. Phenotypic and genotypic antibiotic resistance and virulence profiling of Enterococcus faecalis isolated from poultry at two major districts in Bangladesh. Pak Vet. J. 42, 153–160 (2022).

    Google Scholar 

  18. Li, X., Zhu, X. & Xue, Y. Drug resistance and genetic relatedness of Escherichia coli from Mink in Northeast China. Pak Vet. J. 43, 824–827 (2023).

    Google Scholar 

  19. Li, B. & Chen, J. Q. Real-time PCR methodology for selective detection of viable Escherichia coli O157: H7CELLS by targeting Z3276 as a genetic marker. Appl. Environ. Microbiol. 78, 5297–5304 (2012).

    Google Scholar 

  20. Cappuccino, J. C. & Sherman, S. Microbiology: A Laboratory Manual (New Delhi, 2014).

  21. Crawford-Miksza, L. K. et al. Misidentification of a variant biotype of Escherichia coli O157:H7 as Escherichia Fergusonii by Vitek 2 compact. J. Clin. Microbiol. 47, 872–873 (2009).

    Google Scholar 

  22. CLSI. CLSI Standards for Antimicrobial Susceptibility Testing (AST). 6, 15–18. (2019).

  23. Sweeney, M. T., Lubbers, B. V., Schwarz, S. & Watts, J. L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 73, 1460–1463 (2018).

    Google Scholar 

  24. Krumperman, P. H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 46, 165–170 (1983).

    Google Scholar 

  25. Titilawo, Y., Sibanda, T., Obi, L. & Okoh, A. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of faecal contamination of water. Environ. Sci. Pollut Res. 22, 10969–10980 (2015).

    Google Scholar 

  26. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Google Scholar 

  27. Majowicz, S. E. et al. Global incidence of human Shiga toxin–producing Escherichia coli infections and deaths: a systematic review and knowledge synthesis. Foodborne Pathog Dis. 11, 447–455 (2014).

    Google Scholar 

  28. Nataro, J. P. & Kaper, J. B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142–201 (1998).

    Google Scholar 

  29. Jiang, L. et al. Virulence-related O Islands in enterohemorrhagic Escherichia coli O157: H7. Gut Microbes. 13, 1992237 (2021).

    Google Scholar 

  30. Sharma, V. K., Akavaram, S., Schaut, R. G. & Bayles, D. O. Comparative genomics reveals structural and functional features specific to the genome of a foodborne Escherichia coli O157: H7. BMC Genom. 20, 1–18 (2019).

    Google Scholar 

  31. Alikhan, N. F., Petty, N. K., Zakour, B., Beatson, S. & N. L. & A. BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genom. 12, 1–10 (2011).

    Google Scholar 

  32. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 1–9 (2009).

    Google Scholar 

  33. Carattoli, A. et al. PlasmidFinder and pMLST: in Silico detection and typing of plasmids. Antimicrob. Agents Chemother. AAC, 2412–2414 (2014).

    Google Scholar 

  34. Bortolaia, V. et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75, 3491–3500 (2020).

    Google Scholar 

  35. Johansson, M. H. K. et al. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: mobileelementfinder. J. Antimicrob. Chemother. 76, 101–109 (2021).

    Google Scholar 

  36. Wishart, D. S. et al. PHASTEST: faster than PHASTER, better than PHAST. Nucleic Acids Res. 51, W443–W450 (2023).

    Google Scholar 

  37. Heuvelink, A. E. et al. Occurrence of verocytotoxin-producing Escherichia coli O157 on Dutch dairy farms. J. Clin. Microbiol. 36, 3480–3487 (1998).

    Google Scholar 

  38. Hancock, D. D., Rice, D. H., Thomas, L. A., Dargatz, D. A. & Besser, T. E. Epidemiology of Escherichia coli O157 in feedlot cattle. J. Food Prot. 60, 462–465 (1997).

    Google Scholar 

  39. Oliver, S. P. et al. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog. Dis. 6, 793–806 (2009).

  40. Aslani, M. M. & Alikhani, M. Y. Molecular characterization and antimicrobial resistance patterns of E. coli O157:H7 strains isolated from unpasteurized milk. Iran. J. Microbiol. 3, 180–184 (2011).

    Google Scholar 

  41. Bettelheim, K. A. The non-O157 Shiga-toxigenic (verocytotoxigenic) Escherichia coli: undervalued pathogens. Crit. Rev. Microbiol. 33, 67–87 (2007).

    Google Scholar 

  42. Beutin, L. & others. Evaluation of molecular and culture-based methods for the detection of Shiga toxin-producing Escherichia coli in Raw milk. Appl. Environ. Microbiol. 75, 6466–6474 (2009).

    Google Scholar 

  43. Jamshidi, A., Bassami, M. R. & Rasooli, M. Isolation of Escherichia coli O157:H7 from ground beef samples collected from beef markets, using conventional culture and polymerase chain reaction in Mashhad, Northeastern Iran. Iran. J. Vet. Res. 9, 72–76 (2008).

    Google Scholar 

  44. Church, D. L., Emshey, D., Semeniuk, H., Lloyd, T. & Pitout, J. D. Evaluation of BBL CHROMagar O157 versus Sorbitol-MacConkey medium for routine detection of Escherichia coli O157 in a centralized regional clinical microbiology laboratory. J. Clin. Microbiol. 45, 3098–3100 (2007).

    Google Scholar 

  45. Schroeder, C. M. et al. Antimicrobial resistance of Escherichia coli O157:H7 isolated from humans, cattle, swine, and food. Appl. Environ. Microbiol. 68, 576–581 (2002).

  46. Robicsek, A. et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 12, 83–88 (2006).

  47. Karmali, M. A. et al. Association of genomic O islands of Escherichia coli O157:H7 with clinical features of human infection. J. Infect. Dis. 187, 594–601 (2003).

  48. Paton, J. C. & Paton, A. W. Pathogenesis and diagnosis of Shiga toxin–producing Escherichia coli infections. Clin. Microbiol. Rev. 11, 450–479 (1998).

    Google Scholar 

  49. Zhang, W. & others Molecular characterization and typing of Escherichia coli O157:H7 isolates from different sources. J. Clin. Microbiol. 45, 1570–1580 (2007).

    Google Scholar 

  50. Mellmann, A. & others Sequence types and clonal relationships of Shiga toxin-producing Escherichia coli. Emerg. Infect. Dis. 14, 769–772 (2008).

    Google Scholar 

  51. Ziebell, K. & others. Molecular characterization of E. coli O157:H7 isolates from animals, foods, and humans. Appl. Environ. Microbiol. 74, 1886–1896 (2008).

    Google Scholar 

  52. Joensen, K. G. & others. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 53, 1501–1510 (2015).

    Google Scholar 

  53. Sharma, P. et al. Molecular characterization of antimicrobial resistance in STEC from dairy cattle. Front. Microbiol. 8, 814 (2017).

  54. Villa, L. & others. IncF plasmids: a rising concern in the spread of ESBLs and MDR. J. Antimicrob. Chemother. 65, 233–238 (2010).

    Google Scholar 

  55. Toleman, M. A. et al. Acquired insertion sequences and their role in resistance gene spread. Clin. Microbiol. Rev. 19, 57–71 (2006).

    Google Scholar 

  56. McDaniel, T. K. others. Genetic determinants of enterohemorrhagic E. coli O157:H7 virulence. Microbes Infect. 3, 115–121 (2001).

    Google Scholar 

  57. Hayashi, T. & others Complete genome sequence of enterohemorrhagic E. coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8, 11–22 (2001).

    Google Scholar 

  58. Ohnishi, M., Kurokawa, K. & Hayashi, T. Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol. 9, 481–485 (2001).

    Google Scholar 

  59. Naidoo, N. & Zishiri, O. T. Comparative genomics analysis and characterization of Shiga toxin-producing Escherichia coli O157:H7 strains reveal virulence genes, resistance genes, prophages and plasmids. BMC Genom. 24, 1–12 (2023).

    Google Scholar 

  60. Asadulghani, M. et al. The defective prophage pool of Escherichia coli O157: prophage–prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog. 5, e1000408 (2009).

    Google Scholar 

  61. Mesele, F., Leta, S., Amenu, K. & Abunna, F. Occurrence of Escherichia coli O157:H7 in lactating cows and dairy farm environment and the antimicrobial susceptibility pattern at Adami Tulu Jido Kombolcha District, Ethiopia. BMC Vet. Res. 19, 1–10 (2023).

    Google Scholar 

  62. Ullah, S. et al. Multiple-drug resistant shiga toxin-producing E. coli in raw milk of dairy bovine. Trop. Med. Infect. Dis. 9, 64 (2024).

    Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

  1. Transboundary Animal Disease Research Center, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh

    Mohammed A. Samad, A. S. M. Ashab Uddin, Anowar Hossen & Mst. Nazia Akter

  2. AMR Reference Laboratory (Research), Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh

    Md. Rezaul Karim

  3. Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh

    Mohammad Asheak Mahmud, Md Shahjalal Sagor, Muhammad Sazzad Hossain, A. S. M. Ashab Uddin & Mahmudul Hasan

Authors
  1. Mohammed A. Samad
    View author publications

    Search author on:PubMed Google Scholar

  2. Md. Rezaul Karim
    View author publications

    Search author on:PubMed Google Scholar

  3. Mohammad Asheak Mahmud
    View author publications

    Search author on:PubMed Google Scholar

  4. Md Shahjalal Sagor
    View author publications

    Search author on:PubMed Google Scholar

  5. Muhammad Sazzad Hossain
    View author publications

    Search author on:PubMed Google Scholar

  6. A. S. M. Ashab Uddin
    View author publications

    Search author on:PubMed Google Scholar

  7. Mahmudul Hasan
    View author publications

    Search author on:PubMed Google Scholar

  8. Anowar Hossen
    View author publications

    Search author on:PubMed Google Scholar

  9. Mst. Nazia Akter
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Mohammed Abdus Samad: Conceptualization, Methodology, Microbiological investigation, Writing - original draft, Writing - critical review & editing, Supervision, Validation. Md. Rezaul Karim: Conceptualization, Methodology, Microbiological investigation, Writing - original draft, Data curation, Data Collection, Data analyses, Validation. Mohammad Asheak Mahmud: Microbiological investigation, Data curation, Data analysis and interpretation, Writing - original draft, Validation. Md Shahjalal Sagor: Microbiological investigation, Data curation, Writing - original draft, Validation. Muhammad Sazzad Hossain: Microbiological investigation, Conceptualization, Methodology, Writing – critical review & editing, Supervision, Validation. ASM Ashab Uddin: Microbiological investigation, Conceptualization, Methodology, Writing –critical review & editing, Supervision, Validation. Mahmudul Hasan: Microbiological investigation, Data curation, Writing - original draft, Validation. Anowar Hossen: Microbiological investigation, Data curation, Conceptualization, Methodology, Writing –critical review & editing, Supervision, Validation. Mst. Nazia Akter: Microbiological investigation, Conceptualization, Methodology, Writing –critical review & editing, Supervision, Validation.

Corresponding author

Correspondence to Mohammed A. Samad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samad, M.A., Karim, M.R., Mahmud, M.A. et al. Molecular characterization of multi-drug resistance Escherichia coli O157:H7 from calf feces and cow milk in Bangladesh. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36237-3

Download citation

  • Received: 19 May 2025

  • Accepted: 11 January 2026

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-36237-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • E. coli O157:H7
  • Multi-drug resistance
  • Next-generation sequencing
  • Calf fecal
  • Cow milk
  • Bangladesh
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology