Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Increased and varied radiation during the Sun’s encounters with cold clouds in the last 10 million years
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 February 2026

Increased and varied radiation during the Sun’s encounters with cold clouds in the last 10 million years

  • Merav Opher1,
  • Joe Giacalone2,
  • Abraham Loeb3,
  • Evan P. Economo4,5,
  • Alan Cummings6,
  • Jennifer Middleton7,
  • Catherine Zucker8,
  • Jesse A. Miller1,
  • Anna Nica1 &
  • …
  • Maria Hatzaki9 

Scientific Reports , Article number:  (2026) Cite this article

  • 571 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Astronomy and planetary science
  • Climate sciences
  • Environmental sciences
  • Planetary science

Abstract

Recent research raises the possibility that 2–3 and 6–7 million years ago, the Sun encountered massive clouds that shrank the heliosphere —the solar cocoon protecting our solar system— exposing Earth to its interstellar environment, in agreement with geological evidence from 60Fe and 244Pu isotopes. Here we show that during such encounters Earth was exposed to increased radiation in the form of high-energy particles. During periods of Earth’s immersion in the heliosphere, it received particle radiation that we name Heliospheric Energetic Particles (HEPs). The intensity of < 10 MeV protons was at least an order of magnitude more intense than today’s most extreme solar energetic particle (SEP) events. SEPs today last minutes to hours, but HEP exposure then lasted for extensive periods of several months, making it a prolonged external driver. During Earth’s excursion outside the heliosphere, it was exposed to a galactic cosmic ray radiation with the intensity of < 1 GeV protons at least an order of magnitude more intense than today. Therefore, the space surrounding Earth was permeated by a variable high-energy radiation. We discuss the implications for Earth’s climate and biodiversity.

Similar content being viewed by others

A possible direct exposure of the Earth to the cold dense interstellar medium 2–3 Myr ago

Article Open access 10 June 2024

Holocene solar activity inferred from global and hemispherical cosmic-ray proxy records

Article Open access 21 June 2024

Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP

Article Open access 11 January 2022

Data availability

Original data created for the study are of will be available in a persistent repository upon publication in [https://zenodo.org/].

References

  1. Cummings, A. C. et al. Galactic cosmic rays in the local interstellar medium: voyager 1 observations and model results. Astrophys. J. 831, 18 (21pp) (2016).

  2. Begelman, M. & Rees, M. Can cosmic clouds cause Climatic catastrophes? Nature 261, 298–299 (1976).

    Google Scholar 

  3. Yeghikyan, A. & Fahr, H. Chapter 11 of Solar journey, the Significance of our Galactic Environment for the Heliosphere and earth, Pricilla C (Frisch Editor, 2006).

  4. Miller, J. A. & Fields, B. D. Heliospheric compressions due to recent nearby supernova explosions. Astrophys. J. 934, 32 (13pp) (2022).

  5. Fields, B. D., Athanassiadou, T. & Johnson, S. R. Supernova collisions with the heliosphere. Astrophys. J. 678, 549–562 (2008).

    Google Scholar 

  6. Fields, B. D. et al. Supernova triggers for end-Devonian extinctions. PNAS 117, 21008–21010 (2020).

    Google Scholar 

  7. Frisch, P. C. & Muller H-R time variability in the interstellar boundary conditions of the heliosphere: effect of the solar journey on the galactic cosmic ray flux at Earth. Space Sci. Rev. 76, 21–34 (2013).

    Google Scholar 

  8. Florinski, V. & Zank, G. P. The Galactic Cosmic Ray Intensity in the Heliosphere in Response To Variable Interstellar Environments, chap. 10 of Solar journey, the Significance of our Galactic Environment for the Heliosphere and earth, Pricilla C (Frisch Editor, 2006).

  9. Shaviv, N. J. Cosmic ray diffusion from the galactic spiral arms, iron meteorites, and a possible Climatic connection? Phys. Rev. Lett. 89, 051102–051105 (2002).

    Google Scholar 

  10. Opher, M., Loeb, A. & Peek, J. E. G. A possible direct exposure of the Earth to the cold interstellar medium 2–3 Myr ago. Nat. Astron. 8, 983–990 (2024).

    Google Scholar 

  11. Opher, M. et al. Effect of the passage of the sun through the edge of the local bubble. Astrophys. J. 972, 201–212 (2024).

    Google Scholar 

  12. Zucker, C. et al. On the Three-dimensional structure of local molecular clouds. Astrophys. J. 919, 35 (34pp) (2021).

  13. Opher, M. et al. Solar wind with hydrogen ion charge exchange and large-scale dynamics (SHIELD) DRIVE science center. Front. Space Sci. Astrophys. 10, 1179344: 01–26 (2023).

    Google Scholar 

  14. Wallner, A. et al. Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe. Nature 532, 69–72 (2016).

    Google Scholar 

  15. Wallner, A. et al. 60Fe and 244Pu deposited on Earth constrain the r-process yields of recent nearby supernovae. Science 372, 742–745 (2021).

    Google Scholar 

  16. Koll, D. et al. Interstellar 60Fe in Antarctica. Phys. Rev. Lett. 123, 072701 (2019).

    Google Scholar 

  17. Binns, W. R. et al. Observation of the 60Fe nucleosynthesis-clock isotope in galactic cosmic rays. Science 352, 677–680 (2016).

    Google Scholar 

  18. Fimiani, L. et al. Interstellar 60Fe on the surface of the Moon. Phys. Rev. Lett. 116, 151104 (2016).

    Google Scholar 

  19. McKay, C. & Thomas, G. E. Consequences of a past encounter of the Earth with an interstellar cloud geophys. Res. Lett. 5, 215–218 (1978).

    Google Scholar 

  20. Zachos, J. et al. Trends, Rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Google Scholar 

  21. Westerhold, T. N. et al. An astronomically dated record of earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Google Scholar 

  22. Miller, J. A. et al. Earth’s mesosphere during possible encounters with massive interstellar clouds 2 and 7 Million Years Ago, Geophys. Res. Letter 51, (2024). e2024GL110174.

  23. Ertel, A. F. & Fields, B. D. Distances to recent near-earth supernovae from geological and lunar 60Fe. Astrophys. J. 972, 179 (2024).

    Google Scholar 

  24. Gehrels, N. et al. Ozone depletion from nearby supernovae. Astrophys. J. 585, 1169 (2003).

    Google Scholar 

  25. Fry, B. J., Fields, B. D. & Ellis, J. R. Magnetic imprisonment of dusty pinballs by a supernova remnant. Astrophys. J. 894, 109 (2020).

    Google Scholar 

  26. Athanassiadou, T. & Fields, B. D. Penetration of nearby supernova dust in the inner solar system. NewA 16, 229 (2011).

    Google Scholar 

  27. Zucker, C. et al. Star. Formation Near Sun Is Driven Expansion Local. Bubble Nat. 601, 334 (2022).

    Google Scholar 

  28. Talbot, R. J., Butler, D. M. & Newman, M. J. Climatic effects during passage of the solar system through interstellar clouds nature 262, 561–563 (1976).

  29. Talbot, R. J. & Newman, M. J. Encounters between stars and dense interstellar clouds. Ap J. Suppl. 34, 295–308 (1977).

    Google Scholar 

  30. Yabushita, S. & Allen, A. J. On the effect of accreted interstellar matter on the terrestrial environment. Mon not R Astron. Soc. 238, 1465–1478 (1989).

    Google Scholar 

  31. Meyer, D. M. et al. The remarkable high pressure of the local Leo cold cloud. Astrophys. J. 752, 119 (15pp) (2012).

  32. Giacalone, J. et al. Anomalous cosmic rays and heliospheric energetic particles. Space Sci. Rev. 218, 22 (2022).

    Google Scholar 

  33. Giacalone, J. Large-scale hybrid simulations of particle acceleration at a parallel shock. Astrophys. J. 609, 452–458 (2004).

    Google Scholar 

  34. Leroy, M. M. et al. Simulation of a perpendicular bow shock. Geophys. Res. Lett. Vol. 8 (12), 1269 (1981).

    Google Scholar 

  35. Parker, E. N. The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 99–49 (1965).

    Google Scholar 

  36. Giacalone, J. & Jokipii, J. R. The longitudinal transport of energetic ions from impulsive solar flares in interplanetary space. Astrophys. J. 751 (5pp), L33 (2012).

    Google Scholar 

  37. Chen, X., Giacalone, J. & Guo, F. Solar energetic particle acceleration at a spherical shock with the shock normal angle theta-BN evolving in space and time. Astrophys. J. 941 (8), 23 (2022).

    Google Scholar 

  38. Giacalone, J. et al. Analyses of ∼0.05–2 MeV ions associated with the 2022 February 16 energetic storm particle event observed by Parker solar probe. Astrophys. J. 958, 144 (2023).

    Google Scholar 

  39. Chen, X., Giacalone, J., Guo, F. & Klein, K. G. Parallel diffusion coefficient of energetic charged particles in the inner heliosphere from the turbulent magnetic fields measured by Parker solar probe. Astrophys. J. 965, 61 (2024).

    Google Scholar 

  40. Giacalone, J. et al. Hybrid simulations of Interstellar Pickup Protons Accelerated at the Solar-Wind Termination Shock at Multiple Location, The Astrophysical Journal 911, Issue 1, id. 27, 8pp (2021).

  41. Giacalone, J., Burgess, D., Schwartz, S. J. & Ellison, D. C. Ion injection and acceleration at parallel shocks: comparisons of Self-Consistent plasma simulations with existing theories. Astrophys. J. 402, 550–559 (1993).

    Google Scholar 

  42. Winske, D. & Omidi, N. A non-specialists’ guide to kinetic simulations of space plasmas. J. Geophys. Res. 101, 17287–17303 (1996).

    Google Scholar 

  43. Giacalone, J., Burgess, J., Schwartz, D., Ellison, S. J. & Bennett, D. C. Injection and acceleration of thermal protons at quasi-parallel shocks: A hybrid simulation parameter survey. J. Geophys. Res. 102, 19789–19804 (1997).

    Google Scholar 

  44. Mewaldt, R. A. et al. Proton, helium, and electron spectra during the large solar particle events of October–November 2003. J. Geophys. Research: Space Phys. 110 https://doi.org/10.1029/2005JA011038 (2005).

  45. Quest, K. B. Theory and simulation of collisionless parallel shocks. J. Geophys. Res. 93, 9649–9680 (1988).

    Google Scholar 

  46. Jokipii, J. R. Particle acceleration at a termination shock: 1. Application to the solar wind and the anomalous component. J. Geophys. Res. 91, 2929 (1986).

    Google Scholar 

  47. Gosling, J. T., Asbrdge, J. R., Bame, S. J., Paschmann, G. & Sckopke, N. Observations of two distinct populations of bow shock ions in the upstream solar wind. Geophys. Res. Lett. 5, 957–970 (1978).

    Google Scholar 

  48. Ipavich, F. M., Gosling, J. T. & Scholer, M. Correlation between the He/H ratios in upstream particle events and in the solar wind. J. Geophys. Res. 89, 1501–1507 (1984).

    Google Scholar 

  49. Ellison, D. C. Shock acceleration of diffuse ions at the earth’s bow shock: acceleration efficiency and A/Z enhancements. J. Geophys. Res. 90, 29–38 (1985).

    Google Scholar 

  50. Gosling, J. T. et al. Interplanetary ions during an energetic storm particle event: The distribution function from solar wind thermal energies to 1.6 MeV. J. Geophys. Res. 86, 547 (1981).

    Google Scholar 

  51. Lario, D. et al. E. C. Evolution of the suprathermal proton population at interplanetary shocks, The Astronomical Journal 158, article id. 12 (2019).

  52. Giacalone, J. Diffusive shock acceleration of high-energy charged particles at fast interplanetary shocks: a parameter survey. Astrophys. J. 799, articleid80–12pp (2015).

    Google Scholar 

  53. Florinski, V. & Pogorelov, N. V. Four-dimensional transport of galactic cosmic rays in the outer heliosphere and heliosheath. Astrophys. J. 701, 642–651 (2009).

    Google Scholar 

  54. Usoskin, I. G. et al. The AD775 cosmic event revisited: the sun is to blame. Astron. Astrophys. 552, L3 (4pp) (2013).

  55. Usoskin, I. G. et al. Solar proton events in cosmogenic isotope data. Geophys. Res. Lett. 33 (4pp), L08107 (2006).

    Google Scholar 

  56. Miyake, F. et al. A signature of cosmic-ray increase in AS 774–775 from tree rings in Japan. Nature 486, 240–242 (2012).

    Google Scholar 

  57. Haud, U. Gaussian decomposition of H I surveys V. Search for very cold clouds. Astron. Astrophys. 514 (7pp), A27 (2010).

    Google Scholar 

  58. Vannier, H. et al. Mapping our path through the local interstellar medium: high-resolution ultraviolet absorption spectroscopy of sight lines along the sun’s historical trajectory. Astrophys. J. 981, 102 (2025).

    Google Scholar 

  59. Peek, J. et al. 245th Meeting of the American Astronomical Society, id. 174.08. Bulletin of the American Astronomical Society, 57: No. 2 e-id 2025n2i174p08 (2025).

  60. Poluianov, S. V., Kovaltsov, G. A., Mishev, A. L. & Usoskin, I. G. Production of cosmogenic isotopes 7Be, 10Be, 14 C, 22Na, and Cl in the atmosphere: altitudinal profiles of yield functions. J. Geophys. Res. : Atmos. 121, 8125–8136 (2016).

    Google Scholar 

  61. Brehm, N. et al. Eleven-year solar cycles over the last millennium revealed by radio carbon in tree rings. Nat. Geosci. 14, 10 (2021).

    Google Scholar 

  62. Miyake, F. et al. A single-year cosmic ray event at 5410 BCE registered in 14 C of tree rings, Geophys. Res. Lett. 48, eGL093419 (2021). (2021).

  63. Delaygue, G. & Bard, E. An Antarctic view of beryllium-10 and solar activity for the past millenium. Clim. Dyn. 36, 3301 (2011).

    Google Scholar 

  64. Frank, M. et al. A 200 Kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments. Earth Planet. Sci. Lett. 149, 121–129 (1997).

    Google Scholar 

  65. Nica, A., Opher, M., Miller, J. & Middleton, J. L. Modeling cosmogenic 10Be during the heliosphere’s encounter with an interstellar cold cloud. Geophys. Res. Lett. Rev. (2025).

  66. Koll, D. et al. A cosmogenic 10Be anomaly during the late miocene as independent time marker for marine archives. Nat. Commun. 16, 866, 1 (2025).

    Google Scholar 

  67. Koll, D., Feige, J., Lachner, J. & Wallner, A. No indication for a strong increase in GCR intensity 2–3 Myr ago from cosmogenic nuclides, matter arising, (2025). Nature Astronomy in review.

  68. Frank, M. et al. Beryllium isotopes in central Arctic ocean sediments over the past 12.3 million years: stratigraphic and paleoclimatic implications. Paleoceanography 23, PA1S02 (2008). (12 pp).

  69. Opher, M. et al. Reply to No indication for a strong increase in GCR intensity 2–3 Myr ago from cosmogenic nuclides by Dominik Koll, Matter Arising, Nature Astronomy, in review (2025).

  70. Usoskin, I. G. & Kovaltsov, A. Cosmic ray induced ionization in the atmosphere: full modeling and practical applications. J. Geophys. Res. 111 (9), D21206 (2006).

    Google Scholar 

  71. Nica, A., Opher, M., Miller, J. & Hatzaki, M. Impact of galactic cosmic rays on earth’s climate during an encounter with the local Lynx of cold clouds 2–3 Myr ago. J. Geophys. Research:Atmospheres. 130, e2025JD044084. https://doi.org/10.1029/2025JD044084 (2025).

  72. Tanaka, H., Kono, M. & Uchimura, H. Some global features of paleointensity in geologic time. Geophys. J. Int. 120, 97–102 (1995).

    Google Scholar 

  73. Valet, J. P., Meynadier, L. & Guyodo, Y. Geomagnetic dipole strength and reversal rate over the past two million years. Nature 435, 802–805 (2005).

    Google Scholar 

  74. Ogg, J. G. Chapter 5- geomagnetic Polarity time scale. Geologic time Scale. 2020 1, 159–192 (2020).

    Google Scholar 

  75. Merill, R. T. & McFadden, P. L. Geomagnetic Polarity transitions. Rev. Geophys. 37, 201–226 (1999).

    Google Scholar 

  76. Knie, K. et al. Phys. Rev. Lett. 83: 18 (1999).

    Google Scholar 

  77. Melott, A. L., Thomas, B. C., Kacherlrieb, M., Semikoz, D. V. & Overholt, A. C. A supernova at 50pc: effects on the earth’s atmosphere and biota. Astrophys. J. 840 (9), 105 (2017).

    Google Scholar 

  78. Mironova, I. A. et al. Energetic particle influence on the earth’s atmosphere. Space Sci. Rev. 194, 1–96 (2015).

    Google Scholar 

  79. Rozanov, E., Calisto, M., Egorova, T. & Schmutz, W. Energetic particles, atmospheric chemistry, dynamics, climate, modeling. Surv. Geophys. 33 (Issue 3–4), 483–501 (2012).

    Google Scholar 

  80. Baumgaertner, A. J. G., Seppala, A., Jockel, P. & Clilverd, M. A. Geomagnetic activity related nox enhancements and Polar surface air temperature variability in a chemistry climate model: modulation of the NAM index. Atmos. Chem. Phys. 11, 4521–4531 (2011).

    Google Scholar 

  81. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the earth’s orbit: pacemaker of the ice ages: for 500,000 years, major Climatic changes have followed variations in obliquity and precession. Science 194, 1121–1132 (1976).

    Google Scholar 

  82. Gettelman, A. et al. The whole atmosphere community climate model version 6 (WACCM6). JGR 124, 12380–12403 (2019).

    Google Scholar 

  83. Hutchinson, F. Chemical changes induced in DNA by ionizing radiation. Prog. Nucl. Acid Res. Mol. Biol. 32, 115–154 (1985).

    Google Scholar 

  84. Cucinotta, F. & Durante, A. M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol. The. 7, 431–435 (2006).

    Google Scholar 

  85. Richardson, R. B. Ionizing radiation and aging: rejuvenating an old Idea. Aging 1, 887–902 (2009).

    Google Scholar 

  86. Edenhofer, G. et al. A parsec-scale galactic 3D dust map out to 1.25 Kpc from the sun. Astron. Astrophys. 685 (A82), 23pp (2024).

    Google Scholar 

Download references

Acknowledgements

This work is supported by NASA grant 80NSSC22M0164, 18-DRIVE18_2-0029 as part of the NASA/DRIVE program titled “Our Heliospheric Shield”. For more information about this center please visit: https://shielddrivecenter.com/. EPE was supported by JSPS KAKENHI (24K01785).

Funding

This work is supported by NASA grant 80NSSC22M0164, 18-DRIVE18_2–0029 as part of the NASA/DRIVE program titled “Our Heliospheric Shield”. For more information about this center please visit: https://shielddrivecenter.com/. EPE was supported by JSPS KAKENHI (24K01785).

Author information

Authors and Affiliations

  1. Astronomy Department, Boston University, Boston, MA, 02215, USA

    Merav Opher, Jesse A. Miller & Anna Nica

  2. Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA

    Joe Giacalone

  3. Astronomy Department, Harvard University, 60 Garden Street, Cambridge, MA, USA

    Abraham Loeb

  4. Department of Entomology, University of Maryland, College Park, MD, USA

    Evan P. Economo

  5. Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan

    Evan P. Economo

  6. California institute of Technology, California, USA

    Alan Cummings

  7. Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA

    Jennifer Middleton

  8. Smithsonian Astrophysical Observatory, Cambridge, MA, USA

    Catherine Zucker

  9. National and Kapodistrian University of Athens, Athens, Greece

    Maria Hatzaki

Authors
  1. Merav Opher
    View author publications

    Search author on:PubMed Google Scholar

  2. Joe Giacalone
    View author publications

    Search author on:PubMed Google Scholar

  3. Abraham Loeb
    View author publications

    Search author on:PubMed Google Scholar

  4. Evan P. Economo
    View author publications

    Search author on:PubMed Google Scholar

  5. Alan Cummings
    View author publications

    Search author on:PubMed Google Scholar

  6. Jennifer Middleton
    View author publications

    Search author on:PubMed Google Scholar

  7. Catherine Zucker
    View author publications

    Search author on:PubMed Google Scholar

  8. Jesse A. Miller
    View author publications

    Search author on:PubMed Google Scholar

  9. Anna Nica
    View author publications

    Search author on:PubMed Google Scholar

  10. Maria Hatzaki
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: M.O., E.P.E. and A.L; Methodology: M. O. MHD code results; J.G. and A.C. estimation of the radiation; Interpretation and Conclusions, Writing: All authors were involved.

Corresponding author

Correspondence to Merav Opher.

Ethics declarations

Competing interests

The author(s) declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opher, M., Giacalone, J., Loeb, A. et al. Increased and varied radiation during the Sun’s encounters with cold clouds in the last 10 million years. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36926-z

Download citation

  • Received: 04 August 2025

  • Accepted: 18 January 2026

  • Published: 11 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-36926-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene