Abstract
Neuroimaging studies have identified the neural substrates associated with sustained cognitive efforts and control and their modulation by rewards. Different lines of evidence implicate the prefrontal cortex (especially the anterior cingulate cortex, ACC), dopaminergic, and cholinergic substrates in this modulation. We studied here the activity of these substrates at increasing time on task (requiring increasing levels of cognitive effort) in trials within blocks with differing reward levels. In the cortex, while peaking in the ACC, activity associated with time on task was extensive, also including activity decrements outside the default mode network, primarily involving motor and somatosensory regions. Information about reward levels was carried in the ventral striatum, consistent with its motivational role, but did not reflect trade-offs with increasing efforts during time on task. Instead, the ventral tegmental area and parts of the basal forebrain (BF) corresponding to the cholinergic Ch4 nuclei increased in activity with time on task and were sensitive to reward levels. This BF activity is consistent with a cholinergic role in driving compensatory efforts modulated by reward levels. These findings identify the BF as a neuroimaging phenotype associated with sustaining task sets and cognitive efforts.
Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author (R.V.) on reasonable request and after verifying that the proposed use is consistent with the research purposes participants agreed to in the written informed consent.
References
Davies, D. R. & Parasuraman, R. The Psychology of Vigilance (Academic Press, 1982).
Mackworth, N. H. The Breakdown of Vigilance during Prolonged Visual Search. Quarterly Journal of Experimental Psychology 1, 6–21. https://doi.org/10.1080/17470214808416738 (1948).
Mackworth, N. H. Researches on the measurement of human performance. (Med. Res. Council, Special Rep. Ser. No. 268.). (His Majesty’s Stationery Office, 1950).
Parasuraman, R. & Davies, D. R. Varieties of attention. (Academic Press, 1984).
Coull, J. T. Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog. Neurobiol. 55, 343–361. https://doi.org/10.1016/S0301-0082(98)00011-2 (1998).
Oken, B. S., Salinsky, M. C. & Elsas, S. M. Vigilance, alertness, or sustained attention: physiological basis and measurement. Clin. Neurophysiol. 117, 1885–1901. https://doi.org/10.1016/j.clinph.2006.01.017 (2006).
Timmers, D.Chapter Six - Treating Attention Deficits and Impulse Control in Clinical Neurotherapy (eds David S. Cantor & James R. Evans) 139–169 (Academic Press, 2014).
Warm, J. S., Parasuraman, R. & Matthews, G. Vigilance Requires Hard Mental Work and Is Stressful. Hum. Factors 50, 433–441. https://doi.org/10.1518/001872008x312152 (2008).
Kahneman, D. Attention and effort Vol. 1063 (Prentice-Hall, 1973).
Posner, M. I. & Boies, S. J. Components of attention. Psychol. Rev. 78, 391–408. https://doi.org/10.1037/h0031333 (1971).
Langner, R. & Eickhoff, S. B. Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychol. Bull. 139, 870–900. https://doi.org/10.1037/a0030694 (2013).
Robertson, I. H. & O'Connell, R.Vigilant attention in Attention and Time (eds Anna C. Nobre & Jennifer T. Coull) Ch. 6, 79–88 (Oxford University Press, 2010).
Viviani, R. et al. Signals of anticipation of reward and of mean reward rates in the human brain. Sci. Reports https://doi.org/10.1038/s41598-020-61257-y (2020).
Montague, P., Dayan, P. & Sejnowski, T. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947. https://doi.org/10.1523/jneurosci.16-05-01936.1996 (1996).
Schultz, W. Predictive Reward Signal of Dopamine Neurons. J. Neurophysiol. 80, 1–27. https://doi.org/10.1152/jn.1998.80.1.1 (1998).
Abler, B., Walter, H., Erk, S., Kammerer, H. & Spitzer, M. Prediction error as a linear function of reward probability is coded in human nucleus accumbens. Neuroimage 31, 790–795. https://doi.org/10.1016/j.neuroimage.2006.01.001 (2006).
Berns, G. S., McClure, S. M., Pagnoni, G. & Montague, P. R. Predictability Modulates Human Brain Response to Reward. J. Neurosci. 21, 2793–2798. https://doi.org/10.1523/jneurosci.21-08-02793.2001 (2001).
Li, J., McClure, S. M., King-Casas, B. & Read Montague, P. Policy Adjustment in a Dynamic Economic Game. PLoS ONE 1, e103. https://doi.org/10.1371/journal.pone.0000103 (2006).
McClure, S. M., Berns, G. S. & Montague, P. R. Temporal Prediction Errors in a Passive Learning Task Activate Human Striatum. Neuron 38, 339–346. https://doi.org/10.1016/S0896-6273(03)00154-5 (2003).
O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H. & Dolan, R. J. Temporal difference models and reward-related learning in the human brain. Neuron 38, 329–337. https://doi.org/10.1016/s0896-6273(03)00169-7 (2003).
Rutledge, R. B., Dean, M., Caplin, A. & Glimcher, P. W. Testing the Reward Prediction Error Hypothesis with an Axiomatic Model. J. Neurosci. 30, 13525–13536. https://doi.org/10.1523/jneurosci.1747-10.2010 (2010).
Seymour, B., Daw, N., Dayan, P., Singer, T. & Dolan, R. Differential Encoding of Losses and Gains in the Human Striatum. J. Neurosci. 27, 4826–4831. https://doi.org/10.1523/jneurosci.0400-07.2007 (2007).
Tobler, P. N., O’Doherty, J. P., Dolan, R. J. & Schultz, W. Human Neural Learning Depends on Reward Prediction Errors in the Blocking Paradigm. J. Neurophysiol. 95, 301–310. https://doi.org/10.1152/jn.00762.2005 (2006).
Viviani, R. et al. Effects of genetic variability of CYP2D6 on neural substrates of sustained attention during on-task activity. Trans Psychiatry 10, 34. https://doi.org/10.1038/s41398-020-01020-z (2020).
Sarter, M., Gehring, W. J. & Kozak, R. More attention must be paid: The neurobiology of attentional effort. Brain Res. Rev. 51, 145–160. https://doi.org/10.1016/j.brainresrev.2005.11.002 (2006).
Shenhav, A. et al. Toward a Rational and Mechanistic Account of Mental Effort. Annu. Rev. Neurosci. 40, 99–124. https://doi.org/10.1146/annurev-neuro-072116-031526 (2017).
Kool, W., McGuire, J. T., Rosen, Z. B. & Botvinick, M. M. Decision making and the avoidance of cognitive demand. J Exp Psychol Gen 139, 665–682. https://doi.org/10.1037/a0020198 (2010).
Mcguire, J. T. & Botvinick, M. M. Prefrontal cortex, cognitive control, and the registration of decision costs. Proc. Natl. Acad. Sci. 107, 7922–7926. https://doi.org/10.1073/pnas.0910662107 (2010).
Botvinick, M. & Braver, T. Motivation and Cognitive Control: From Behavior to Neural Mechanism. Annu. Rev. Psychol. 66, 83–113. https://doi.org/10.1146/annurev-psych-010814-015044 (2015).
Boksem, M. A. S. & Tops, M. Mental fatigue: Costs and benefits. Brain Res. Rev. 59, 125–139. https://doi.org/10.1016/j.brainresrev.2008.07.001 (2008).
Walton, M. E., Kennerley, S. W., Bannerman, D. M., Phillips, P. E. M. & Rushworth, M. F. S. Weighing up the benefits of work: Behavioral and neural analyses of effort-related decision making. Neural Netw. 19, 1302–1314. https://doi.org/10.1016/j.neunet.2006.03.005 (2006).
Shenhav, A., Cohen, J. D. & Botvinick, M. M. Dorsal anterior cingulate cortex and the value of control. Nat. Neurosci. 19, 1286–1291. https://doi.org/10.1038/nn.4384 (2016).
Salamone, J. D., Correa, M., Farrar, A. & Mingote, S. M. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191, 461–482. https://doi.org/10.1007/s00213-006-0668-9 (2007).
Kurzban, R., Duckworth, A., Kable, J. W. & Myers, J. An opportunity cost model of subjective effort and task performance. Behav. Brain Sci 36, 661–679. https://doi.org/10.1017/s0140525x12003196 (2013).
Kurzban, R. The sense of effort. Curr. Opin. Psychol. 7, 67–70. https://doi.org/10.1016/j.copsyc.2015.08.003 (2016).
Botvinick, M. M., Huffstetler, S. & McGuire, J. T. Effort discounting in human nucleus accumbens. Cogn. Affect. Behav. Neurosci. 9, 16–27. https://doi.org/10.3758/CABN.9.1.16 (2009).
Kurniawan, I. T., Guitart-Masip, M., Dayan, P. & Dolan, R. J. Effort and Valuation in the Brain: The Effects of Anticipation and Execution. J. Neurosci. 33, 6160–6169. https://doi.org/10.1523/jneurosci.4777-12.2013 (2013).
Walton, M. E. & Bouret, S. What Is the Relationship between Dopamine and Effort?. Trends Neurosci. 42, 79–91. https://doi.org/10.1016/j.tins.2018.10.001 (2019).
Aston-Jones, G., Rajkowski, J., Kubiak, P. & Alexinsky, T. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J. Neurosci. 14, 4467–4480 (1994).
Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J. & Aston-Jones, G. The Role of Locus Coeruleus in the Regulation of Cognitive Performance. Science 283, 549–554. https://doi.org/10.1126/science.283.5401.549 (1999).
Mesulam, M. M. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J. Compar. Neurol. 521, 4124–4144. https://doi.org/10.1002/cne.23415 (2013).
Mesulam, M. M., Mufson, E. J., Levey, A. I. & Wainer, B. H. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214, 170–197. https://doi.org/10.1002/cne.902140206 (1983).
Mesulam, M. M.The cholinergic innervation of the human cerebral cortex in Progress in Brain Research Vol. 145 67–78 (Elsevier, 2004).
Broussard, J. I. Posterior parietal cortex dynamically ranks topographic signals via cholinergic influence. Front Integr Neurosci 6, 32. https://doi.org/10.3389/fnint.2012.00032 (2012).
Sarter, M. & Bruno, J. P.Vigilance in Encyclopedia of the Human Brain (ed V. S. Ramachandran) 687–699 (Academic Press, 2002).
Sarter, M., Givens, B. & Bruno, J. P. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res. Rev. 35, 146–160. https://doi.org/10.1016/S0165-0173(01)00044-3 (2001).
Hangya, B., Ranade, P., Sachin, Lorenc, M. & Kepecs, A. Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162, 1155–1168. https://doi.org/10.1016/j.cell.2015.07.057 (2015).
Richardson, R. T. & DeLong, M. R. Nucleus basalis of Meynert neuronal activity during a delayed response task in monkey. Brain Res. 399, 364–368. https://doi.org/10.1016/0006-8993(86)91529-5 (1986).
Paus, T. et al. Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. J. Cogn. Neurosci. 9, 392–408. https://doi.org/10.1162/jocn.1997.9.3.392 (1997).
Coull, J. T., Frackowiak, R. S. J. & Frith, C. D. Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia 36, 1325–1334. https://doi.org/10.1016/S0028-3932(98)00035-9 (1998).
Massar, S. A., Lim, J., Sasmita, K. & Chee, M. W. Rewards boost sustained attention through higher effort: A value-based decision making approach. Biol. Psychol. 120, 21–27. https://doi.org/10.1016/j.biopsycho.2016.07.019 (2016).
Esterman, M., Reagan, A., Liu, G., Turner, C. & DeGutis, J. Reward reveals dissociable aspects of sustained attention. J. Exp. Psychol. Gen. 143, 2287–2295. https://doi.org/10.1037/xge0000019 (2014).
Norman, D. A. & Shallice, T.Attention to Action: Willed and automatic control of behavior in Consciousness and Self-Regulation: Advances in Research and Theory Volume 4 (eds Richard J. Davidson, Gary E. Schwartz, & David Shapiro) 1–18 (Springer US, 1986).
Shallice, T. & Burgess, P. The domain of supervisory processes and temporal organization of behaviour. Philos Trans R Soc. Lond B Biol. Sci. 351, 1405–1411. https://doi.org/10.1098/rstb.1996.0124 (1996).
Riccio, C. A., Reynolds, C. R., Lowe, P. & Moore, J. J. The continuous performance test: a window on the neural substrates for attention?. Arch. Clin. Neuropsychol. 17, 235–272. https://doi.org/10.1016/S0887-6177(01)00111-1 (2002).
Dutra, S. J., Marx, B. P., Mcglinchey, R., Degutis, J. & Esterman, M. Reward Ameliorates Posttraumatic Stress Disorder-Related Impairment in Sustained Attention. Chronic Stress 2, 247054701881240. https://doi.org/10.1177/2470547018812400 (2018).
Esterman, M., Poole, V., Liu, G. & Degutis, J. Modulating Reward Induces Differential Neurocognitive Approaches to Sustained Attention. Cereb. Cortex 27, 4022–4032. https://doi.org/10.1093/cercor/bhw214 (2017).
Tomporowski, P. D. & Tinsley, V. F. Effects of memory demand and motivation on sustained attention in young and older adults. Am. J. Psychol. 109, 187–204 (1996).
Shenhav, A., Botvinick, M., Matthew, Cohen, D. & Jonathan,. The Expected Value of Control: An Integrative Theory of Anterior Cingulate Cortex Function. Neuron 79, 217–240. https://doi.org/10.1016/j.neuron.2013.07.007 (2013).
Barron, H. C., Garvert, M. M. & Behrens, T. E. J. Repetition suppression: a means to index neural representations using BOLD?. Philos. Trans. Royal Soc. B: Biol. Sci. 371, 20150355. https://doi.org/10.1098/rstb.2015.0355 (2016).
Henson, R. N. A. Neuroimaging studies of priming. Prog. Neurobiol. 70, 53–81. https://doi.org/10.1016/S0301-0082(03)00086-8 (2003).
Schacter, D. L. & Buckner, R. L. Priming and the Brain. Neuron 20, 185–195. https://doi.org/10.1016/s0896-6273(00)80448-1 (1998).
Grill-Spector, K., Henson, R. & Martin, A. Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10, 14–23. https://doi.org/10.1016/j.tics.2005.11.006 (2006).
Wiggs, C. L. & Martin, A. Properties and mechanisms of perceptual priming. Curr. Opin. Neurobiol. 8, 227–233. https://doi.org/10.1016/s0959-4388(98)80144-x (1998).
Race, E. A., Shanker, S. & Wagner, A. D. Neural priming in human frontal cortex: multiple forms of learning reduce demands on the prefrontal executive system. J. Cogn. Neurosci. 21, 1766–1781. https://doi.org/10.1162/jocn.2009.21132 (2009).
Schacter, D. L., Dobbins, I. G. & Schnyer, D. M. Specificity of priming: a cognitive neuroscience perspective. Nat. Rev. Neurosci. 5, 853–862. https://doi.org/10.1038/nrn1534 (2004).
Viviani, R., Dommes, L., Bosch, J. E. & Labek, K. Segregation, connectivity, and gradients of deactivation in neural correlates of evidence in social decision making. Neuroimage 223, 117339. https://doi.org/10.1016/j.neuroimage.2020.117339 (2020).
Labek, K. & Viviani, R. Functional imaging of time on task and habituation in passive exposure to faces with emotional expression. NeuroReport 36, 135–139. https://doi.org/10.1097/wnr.0000000000002130 (2025).
Salamone, D., John, & Correa, M. The Mysterious Motivational Functions of Mesolimbic Dopamine. Neuron 76, 470–485. https://doi.org/10.1016/j.neuron.2012.10.021 (2012).
Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85. https://doi.org/10.1038/nrn.2016.165 (2017).
Bouarab, C., Thompson, B. & Polter, A. M. VTA GABA Neurons at the Interface of Stress and Reward. Front. Neural Circuits https://doi.org/10.3389/fncir.2019.00078 (2019).
Creed, M. C., Ntamati, N. R. & Tan, K. R. VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front. Behav. Neurosci. https://doi.org/10.3389/fnbeh.2014.00008 (2014).
Eshel, N. et al. Arithmetic and local circuitry underlying dopamine prediction errors. Nature 525, 243–246. https://doi.org/10.1038/nature14855 (2015).
Zhou, W.-L. et al. Activity of a direct VTA to ventral pallidum GABA pathway encodes unconditioned reward value and sustains motivation for reward. Sci. Adv. 8, 5217. https://doi.org/10.1126/sciadv.abm5217 (2022).
Brown, M. T. C. et al. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492, 452–456. https://doi.org/10.1038/nature11657 (2012).
Al-Hasani, R. et al. Ventral tegmental area GABAergic inhibition of cholinergic interneurons in the ventral nucleus accumbens shell promotes reward reinforcement. Nat. Neurosci. 24, 1414–1428. https://doi.org/10.1038/s41593-021-00898-2 (2021).
Bakhurin, K. et al. Dopamine dynamics during stimulus-reward learning in mice can be explained by performance rather than learning. Nat Commun 16, 9081. https://doi.org/10.1038/s41467-025-64132-4 (2025).
Sara, S. J. & Bouret, S. Orienting and Reorienting: The Locus Coeruleus Mediates Cognition through Arousal. Neuron 76, 130–141. https://doi.org/10.1016/j.neuron.2012.09.011 (2012).
Gritton, H. J. et al. Cortical cholinergic signaling controls the detection of cues. Proc. Natl. Acad. Sci. 113, E1089–E1097. https://doi.org/10.1073/pnas.1516134113 (2016).
Harati, H., Barbelivien, A., Cosquer, B., Majchrzak, M. & Cassel, J. C. Selective cholinergic lesions in the rat nucleus basalis magnocellularis with limited damage in the medial septum specifically alter attention performance in the five-choice serial reaction time task. Neuroscience 153, 72–83. https://doi.org/10.1016/j.neuroscience.2008.01.031 (2008).
Liu, R. et al. Intermittent stimulation in the nucleus basalis of meynert improves sustained attention in rhesus monkeys. Neuropharmacology 137, 202–210. https://doi.org/10.1016/j.neuropharm.2018.04.026 (2018).
Martinez, V. & Sarter, M. Lateralized attentional functions of cortical cholinergic inputs. Behav Neurosci 118, 984–991. https://doi.org/10.1037/0735-7044.118.5.984 (2004).
McGaughy, J., Dalley, J. W., Morrison, C. H., Everitt, B. J. & Robbins, T. W. Selective Behavioral and Neurochemical Effects of Cholinergic Lesions Produced by Intrabasalis Infusions of 192 IgG-Saporin on Attentional Performance in a Five-Choice Serial Reaction Time Task. J. Neurosci. 22, 1905–1913. https://doi.org/10.1523/jneurosci.22-05-01905.2002 (2002).
McGaughy, J., Decker, M. W. & Sarter, M. Enhancement of sustained attention performance by the nicotinic acetylcholine receptor agonist ABT-418 in intact but not basal forebrain-lesioned rats. Psychopharmacology 144, 175–182. https://doi.org/10.1007/s002130050991 (1999).
Koulousakis, P., Andrade, P., Visser-Vandewalle, V. & Sesia, T. The Nucleus Basalis of Meynert and Its Role in Deep Brain Stimulation for Cognitive Disorders: A Historical Perspective. J. Alzheimers Dis. 69, 905–919. https://doi.org/10.3233/JAD-180133 (2019).
Howe, W. M. et al. Prefrontal Cholinergic Mechanisms Instigating Shifts from Monitoring for Cues to Cue-Guided Performance: Converging Electrochemical and fMRI Evidence from Rats and Humans. J. Neurosci. 33, 8742–8752. https://doi.org/10.1523/jneurosci.5809-12.2013 (2013).
Martinez-Rubio, C., Paulk, A. C., Mcdonald, E. J., Widge, A. S. & Eskandar, E. N. Multimodal Encoding of Novelty, Reward, and Learning in the Primate Nucleus Basalis of Meynert. J. Neurosci. 38, 1942–1958. https://doi.org/10.1523/jneurosci.2021-17.2017 (2018).
Crouse, R. B. et al. Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances the learning of cue-reward contingency. Life 9, 57335. https://doi.org/10.7554/eLife.57335 (2020).
Tashakori-Sabzevar, F. & Ward, R. D. Basal Forebrain Mediates Motivational Recruitment of Attention by Reward-Associated Cues. Front. Neurosci. https://doi.org/10.3389/fnins.2018.00786 (2018).
Wolpe, N., Holton, R. & Fletcher, P. C. What Is Mental Effort: A Clinical Perspective. Biol. Psychiat. 95, 1030–1037. https://doi.org/10.1016/j.biopsych.2024.01.022 (2024).
Orsini, C., Huber, D. A., Bosch, J. E. & Viviani, R. Basal forebrain and neural correlates of self-regulation traits in sustained attention. Biorxiv https://doi.org/10.1101/2025.08.05.668456 (2025).
Stöcker, T. et al. Dependence of amygdala activation on echo time: Results from olfactory fMRI experiments. Neuroimage 30, 151–159. https://doi.org/10.1016/j.neuroimage.2005.09.050 (2006).
Eickhoff, S. B., Heim, S., Zilles, K. & Amunts, K. Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 32, 570–582. https://doi.org/10.1016/j.neuroimage.2006.04.204 (2006).
Eickhoff, S. B. et al. Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36, 511–521. https://doi.org/10.1016/j.neuroimage.2007.03.060 (2007).
Eickhoff, S. B. et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335. https://doi.org/10.1016/j.neuroimage.2004.12.034 (2005).
Zaborszky, L. et al. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage 42, 1127–1141. https://doi.org/10.1016/j.neuroimage.2008.05.055 (2008).
Amunts, K. et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat. Embryol. 210, 343–352. https://doi.org/10.1007/s00429-005-0025-5 (2005).
Kedo, O. et al. Receptor-driven, multimodal mapping of the human amygdala. Brain Struct. Funct. 223, 1637–1666. https://doi.org/10.1007/s00429-017-1577-x (2018).
Ballard, I. C. et al. Dorsolateral Prefrontal Cortex Drives Mesolimbic Dopaminergic Regions to Initiate Motivated Behavior. J. Neurosci. 31, 10340–10346. https://doi.org/10.1523/jneurosci.0895-11.2011 (2011).
Murty, V. P. et al. Resting state networks distinguish human ventral tegmental area from substantia nigra. Neuroimage 100, 580–589. https://doi.org/10.1016/j.neuroimage.2014.06.047 (2014).
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021 (2006).
Frazier, J. A. et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am J Psychiatry 162, 1256–1265. https://doi.org/10.1176/appi.ajp.162.7.1256 (2005).
Goldstein, J. M. et al. Hypothalamic Abnormalities in Schizophrenia: Sex Effects and Genetic Vulnerability. Biol. Psychiat. 61, 935–945. https://doi.org/10.1016/j.biopsych.2006.06.027 (2007).
Makris, N. et al. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr. Res. 83, 155–171. https://doi.org/10.1016/j.schres.2005.11.020 (2006).
Keren, N. I., Lozar, C. T., Harris, K. C., Morgan, P. S. & Eckert, M. A. In vivo mapping of the human locus coeruleus. Neuroimage 47, 1261–1267. https://doi.org/10.1016/j.neuroimage.2009.06.012 (2009).
Huber, D., Rabl, L., Orsini, C., Labek, K. & Viviani, R. The fMRI global signal and its association with the signal from cranial bone. Neuroimage 297, 120754. https://doi.org/10.1016/j.neuroimage.2024.120754 (2024).
Ramsay, J. & Silverman, B. Functional Data Analysis. (Springer, 1997).
dplyr: A Grammar of Data Manipulation v. 1.1.4 (2023).
tidyr: Tidy Messy Data v. 1.3.0 (2023).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1–48 (2015). https://doi.org/10.18637/jss.v067.i01
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Acknowledgements
A preliminary version of this work was presented at the CogBases workshop (Paris, Institut Pasteur, 10-11 October 2023). This work was supported in whole by an ERA-PERMED grant (project ArtiPro) of the FWF Austrian Science Fund (grant number I 5903) [Grant-https://doi.org/10.55776/I5903] to Roberto Viviani. The authors declare no competing interests. For open access purposes, the author has applied a CC BY public copyright license to any manuscript version arising from this submission.
Funding
Austrian Science Fund, grant number I 5903 [Grant-Doi: https://doi.org/10.55776/I5903].
Author information
Authors and Affiliations
Contributions
Author contributions statement (CRediT) C. O.: Data curation, Formal analysis, Project administration, Validation, Visualization, Writing—original draft, Writing—review & editing. J. E. B.: Investigation, Project administration, Validation. K. L.: Data curation, Project administration, Validation. R. V.: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing—original draft, Writing—review & editing.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Orsini, C., Bosch, J.E., Labek, K. et al. Functional imaging of time on task and the involvement of dopaminergic and cholinergic substrates in cognitive effort and reward. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37370-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-37370-9