Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Functional imaging of time on task and the involvement of dopaminergic and cholinergic substrates in cognitive effort and reward
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 February 2026

Functional imaging of time on task and the involvement of dopaminergic and cholinergic substrates in cognitive effort and reward

  • Chiara Orsini1,
  • Julia E. Bosch2,
  • Karin Labek1 &
  • …
  • Roberto Viviani1,2 

Scientific Reports , Article number:  (2026) Cite this article

  • 358 Accesses

  • 1 Citations

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Attention
  • Reward

Abstract

Neuroimaging studies have identified the neural substrates associated with sustained cognitive efforts and control and their modulation by rewards. Different lines of evidence implicate the prefrontal cortex (especially the anterior cingulate cortex, ACC), dopaminergic, and cholinergic substrates in this modulation. We studied here the activity of these substrates at increasing time on task (requiring increasing levels of cognitive effort) in trials within blocks with differing reward levels. In the cortex, while peaking in the ACC, activity associated with time on task was extensive, also including activity decrements outside the default mode network, primarily involving motor and somatosensory regions. Information about reward levels was carried in the ventral striatum, consistent with its motivational role, but did not reflect trade-offs with increasing efforts during time on task. Instead, the ventral tegmental area and parts of the basal forebrain (BF) corresponding to the cholinergic Ch4 nuclei increased in activity with time on task and were sensitive to reward levels. This BF activity is consistent with a cholinergic role in driving compensatory efforts modulated by reward levels. These findings identify the BF as a neuroimaging phenotype associated with sustaining task sets and cognitive efforts.

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author (R.V.) on reasonable request and after verifying that the proposed use is consistent with the research purposes participants agreed to in the written informed consent.

References

  1. Davies, D. R. & Parasuraman, R. The Psychology of Vigilance (Academic Press, 1982).

    Google Scholar 

  2. Mackworth, N. H. The Breakdown of Vigilance during Prolonged Visual Search. Quarterly Journal of Experimental Psychology 1, 6–21. https://doi.org/10.1080/17470214808416738 (1948).

    Google Scholar 

  3. Mackworth, N. H. Researches on the measurement of human performance. (Med. Res. Council, Special Rep. Ser. No. 268.). (His Majesty’s Stationery Office, 1950).

  4. Parasuraman, R. & Davies, D. R. Varieties of attention. (Academic Press, 1984).

  5. Coull, J. T. Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog. Neurobiol. 55, 343–361. https://doi.org/10.1016/S0301-0082(98)00011-2 (1998).

    Google Scholar 

  6. Oken, B. S., Salinsky, M. C. & Elsas, S. M. Vigilance, alertness, or sustained attention: physiological basis and measurement. Clin. Neurophysiol. 117, 1885–1901. https://doi.org/10.1016/j.clinph.2006.01.017 (2006).

    Google Scholar 

  7. Timmers, D.Chapter Six - Treating Attention Deficits and Impulse Control in Clinical Neurotherapy (eds David S. Cantor & James R. Evans) 139–169 (Academic Press, 2014).

  8. Warm, J. S., Parasuraman, R. & Matthews, G. Vigilance Requires Hard Mental Work and Is Stressful. Hum. Factors 50, 433–441. https://doi.org/10.1518/001872008x312152 (2008).

    Google Scholar 

  9. Kahneman, D. Attention and effort Vol. 1063 (Prentice-Hall, 1973).

    Google Scholar 

  10. Posner, M. I. & Boies, S. J. Components of attention. Psychol. Rev. 78, 391–408. https://doi.org/10.1037/h0031333 (1971).

    Google Scholar 

  11. Langner, R. & Eickhoff, S. B. Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychol. Bull. 139, 870–900. https://doi.org/10.1037/a0030694 (2013).

    Google Scholar 

  12. Robertson, I. H. & O'Connell, R.Vigilant attention in Attention and Time (eds Anna C. Nobre & Jennifer T. Coull) Ch. 6, 79–88 (Oxford University Press, 2010).

  13. Viviani, R. et al. Signals of anticipation of reward and of mean reward rates in the human brain. Sci. Reports https://doi.org/10.1038/s41598-020-61257-y (2020).

    Google Scholar 

  14. Montague, P., Dayan, P. & Sejnowski, T. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947. https://doi.org/10.1523/jneurosci.16-05-01936.1996 (1996).

    Google Scholar 

  15. Schultz, W. Predictive Reward Signal of Dopamine Neurons. J. Neurophysiol. 80, 1–27. https://doi.org/10.1152/jn.1998.80.1.1 (1998).

    Google Scholar 

  16. Abler, B., Walter, H., Erk, S., Kammerer, H. & Spitzer, M. Prediction error as a linear function of reward probability is coded in human nucleus accumbens. Neuroimage 31, 790–795. https://doi.org/10.1016/j.neuroimage.2006.01.001 (2006).

    Google Scholar 

  17. Berns, G. S., McClure, S. M., Pagnoni, G. & Montague, P. R. Predictability Modulates Human Brain Response to Reward. J. Neurosci. 21, 2793–2798. https://doi.org/10.1523/jneurosci.21-08-02793.2001 (2001).

    Google Scholar 

  18. Li, J., McClure, S. M., King-Casas, B. & Read Montague, P. Policy Adjustment in a Dynamic Economic Game. PLoS ONE 1, e103. https://doi.org/10.1371/journal.pone.0000103 (2006).

    Google Scholar 

  19. McClure, S. M., Berns, G. S. & Montague, P. R. Temporal Prediction Errors in a Passive Learning Task Activate Human Striatum. Neuron 38, 339–346. https://doi.org/10.1016/S0896-6273(03)00154-5 (2003).

    Google Scholar 

  20. O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H. & Dolan, R. J. Temporal difference models and reward-related learning in the human brain. Neuron 38, 329–337. https://doi.org/10.1016/s0896-6273(03)00169-7 (2003).

    Google Scholar 

  21. Rutledge, R. B., Dean, M., Caplin, A. & Glimcher, P. W. Testing the Reward Prediction Error Hypothesis with an Axiomatic Model. J. Neurosci. 30, 13525–13536. https://doi.org/10.1523/jneurosci.1747-10.2010 (2010).

    Google Scholar 

  22. Seymour, B., Daw, N., Dayan, P., Singer, T. & Dolan, R. Differential Encoding of Losses and Gains in the Human Striatum. J. Neurosci. 27, 4826–4831. https://doi.org/10.1523/jneurosci.0400-07.2007 (2007).

    Google Scholar 

  23. Tobler, P. N., O’Doherty, J. P., Dolan, R. J. & Schultz, W. Human Neural Learning Depends on Reward Prediction Errors in the Blocking Paradigm. J. Neurophysiol. 95, 301–310. https://doi.org/10.1152/jn.00762.2005 (2006).

    Google Scholar 

  24. Viviani, R. et al. Effects of genetic variability of CYP2D6 on neural substrates of sustained attention during on-task activity. Trans Psychiatry 10, 34. https://doi.org/10.1038/s41398-020-01020-z (2020).

    Google Scholar 

  25. Sarter, M., Gehring, W. J. & Kozak, R. More attention must be paid: The neurobiology of attentional effort. Brain Res. Rev. 51, 145–160. https://doi.org/10.1016/j.brainresrev.2005.11.002 (2006).

    Google Scholar 

  26. Shenhav, A. et al. Toward a Rational and Mechanistic Account of Mental Effort. Annu. Rev. Neurosci. 40, 99–124. https://doi.org/10.1146/annurev-neuro-072116-031526 (2017).

    Google Scholar 

  27. Kool, W., McGuire, J. T., Rosen, Z. B. & Botvinick, M. M. Decision making and the avoidance of cognitive demand. J Exp Psychol Gen 139, 665–682. https://doi.org/10.1037/a0020198 (2010).

    Google Scholar 

  28. Mcguire, J. T. & Botvinick, M. M. Prefrontal cortex, cognitive control, and the registration of decision costs. Proc. Natl. Acad. Sci. 107, 7922–7926. https://doi.org/10.1073/pnas.0910662107 (2010).

    Google Scholar 

  29. Botvinick, M. & Braver, T. Motivation and Cognitive Control: From Behavior to Neural Mechanism. Annu. Rev. Psychol. 66, 83–113. https://doi.org/10.1146/annurev-psych-010814-015044 (2015).

    Google Scholar 

  30. Boksem, M. A. S. & Tops, M. Mental fatigue: Costs and benefits. Brain Res. Rev. 59, 125–139. https://doi.org/10.1016/j.brainresrev.2008.07.001 (2008).

    Google Scholar 

  31. Walton, M. E., Kennerley, S. W., Bannerman, D. M., Phillips, P. E. M. & Rushworth, M. F. S. Weighing up the benefits of work: Behavioral and neural analyses of effort-related decision making. Neural Netw. 19, 1302–1314. https://doi.org/10.1016/j.neunet.2006.03.005 (2006).

    Google Scholar 

  32. Shenhav, A., Cohen, J. D. & Botvinick, M. M. Dorsal anterior cingulate cortex and the value of control. Nat. Neurosci. 19, 1286–1291. https://doi.org/10.1038/nn.4384 (2016).

    Google Scholar 

  33. Salamone, J. D., Correa, M., Farrar, A. & Mingote, S. M. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191, 461–482. https://doi.org/10.1007/s00213-006-0668-9 (2007).

    Google Scholar 

  34. Kurzban, R., Duckworth, A., Kable, J. W. & Myers, J. An opportunity cost model of subjective effort and task performance. Behav. Brain Sci 36, 661–679. https://doi.org/10.1017/s0140525x12003196 (2013).

    Google Scholar 

  35. Kurzban, R. The sense of effort. Curr. Opin. Psychol. 7, 67–70. https://doi.org/10.1016/j.copsyc.2015.08.003 (2016).

    Google Scholar 

  36. Botvinick, M. M., Huffstetler, S. & McGuire, J. T. Effort discounting in human nucleus accumbens. Cogn. Affect. Behav. Neurosci. 9, 16–27. https://doi.org/10.3758/CABN.9.1.16 (2009).

    Google Scholar 

  37. Kurniawan, I. T., Guitart-Masip, M., Dayan, P. & Dolan, R. J. Effort and Valuation in the Brain: The Effects of Anticipation and Execution. J. Neurosci. 33, 6160–6169. https://doi.org/10.1523/jneurosci.4777-12.2013 (2013).

    Google Scholar 

  38. Walton, M. E. & Bouret, S. What Is the Relationship between Dopamine and Effort?. Trends Neurosci. 42, 79–91. https://doi.org/10.1016/j.tins.2018.10.001 (2019).

    Google Scholar 

  39. Aston-Jones, G., Rajkowski, J., Kubiak, P. & Alexinsky, T. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J. Neurosci. 14, 4467–4480 (1994).

    Google Scholar 

  40. Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J. & Aston-Jones, G. The Role of Locus Coeruleus in the Regulation of Cognitive Performance. Science 283, 549–554. https://doi.org/10.1126/science.283.5401.549 (1999).

    Google Scholar 

  41. Mesulam, M. M. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J. Compar. Neurol. 521, 4124–4144. https://doi.org/10.1002/cne.23415 (2013).

    Google Scholar 

  42. Mesulam, M. M., Mufson, E. J., Levey, A. I. & Wainer, B. H. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214, 170–197. https://doi.org/10.1002/cne.902140206 (1983).

    Google Scholar 

  43. Mesulam, M. M.The cholinergic innervation of the human cerebral cortex in Progress in Brain Research Vol. 145 67–78 (Elsevier, 2004).

  44. Broussard, J. I. Posterior parietal cortex dynamically ranks topographic signals via cholinergic influence. Front Integr Neurosci 6, 32. https://doi.org/10.3389/fnint.2012.00032 (2012).

    Google Scholar 

  45. Sarter, M. & Bruno, J. P.Vigilance in Encyclopedia of the Human Brain (ed V. S. Ramachandran) 687–699 (Academic Press, 2002).

  46. Sarter, M., Givens, B. & Bruno, J. P. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res. Rev. 35, 146–160. https://doi.org/10.1016/S0165-0173(01)00044-3 (2001).

    Google Scholar 

  47. Hangya, B., Ranade, P., Sachin, Lorenc, M. & Kepecs, A. Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162, 1155–1168. https://doi.org/10.1016/j.cell.2015.07.057 (2015).

    Google Scholar 

  48. Richardson, R. T. & DeLong, M. R. Nucleus basalis of Meynert neuronal activity during a delayed response task in monkey. Brain Res. 399, 364–368. https://doi.org/10.1016/0006-8993(86)91529-5 (1986).

    Google Scholar 

  49. Paus, T. et al. Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. J. Cogn. Neurosci. 9, 392–408. https://doi.org/10.1162/jocn.1997.9.3.392 (1997).

    Google Scholar 

  50. Coull, J. T., Frackowiak, R. S. J. & Frith, C. D. Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia 36, 1325–1334. https://doi.org/10.1016/S0028-3932(98)00035-9 (1998).

    Google Scholar 

  51. Massar, S. A., Lim, J., Sasmita, K. & Chee, M. W. Rewards boost sustained attention through higher effort: A value-based decision making approach. Biol. Psychol. 120, 21–27. https://doi.org/10.1016/j.biopsycho.2016.07.019 (2016).

    Google Scholar 

  52. Esterman, M., Reagan, A., Liu, G., Turner, C. & DeGutis, J. Reward reveals dissociable aspects of sustained attention. J. Exp. Psychol. Gen. 143, 2287–2295. https://doi.org/10.1037/xge0000019 (2014).

    Google Scholar 

  53. Norman, D. A. & Shallice, T.Attention to Action: Willed and automatic control of behavior in Consciousness and Self-Regulation: Advances in Research and Theory Volume 4 (eds Richard J. Davidson, Gary E. Schwartz, & David Shapiro) 1–18 (Springer US, 1986).

  54. Shallice, T. & Burgess, P. The domain of supervisory processes and temporal organization of behaviour. Philos Trans R Soc. Lond B Biol. Sci. 351, 1405–1411. https://doi.org/10.1098/rstb.1996.0124 (1996).

    Google Scholar 

  55. Riccio, C. A., Reynolds, C. R., Lowe, P. & Moore, J. J. The continuous performance test: a window on the neural substrates for attention?. Arch. Clin. Neuropsychol. 17, 235–272. https://doi.org/10.1016/S0887-6177(01)00111-1 (2002).

    Google Scholar 

  56. Dutra, S. J., Marx, B. P., Mcglinchey, R., Degutis, J. & Esterman, M. Reward Ameliorates Posttraumatic Stress Disorder-Related Impairment in Sustained Attention. Chronic Stress 2, 247054701881240. https://doi.org/10.1177/2470547018812400 (2018).

    Google Scholar 

  57. Esterman, M., Poole, V., Liu, G. & Degutis, J. Modulating Reward Induces Differential Neurocognitive Approaches to Sustained Attention. Cereb. Cortex 27, 4022–4032. https://doi.org/10.1093/cercor/bhw214 (2017).

    Google Scholar 

  58. Tomporowski, P. D. & Tinsley, V. F. Effects of memory demand and motivation on sustained attention in young and older adults. Am. J. Psychol. 109, 187–204 (1996).

    Google Scholar 

  59. Shenhav, A., Botvinick, M., Matthew, Cohen, D. & Jonathan,. The Expected Value of Control: An Integrative Theory of Anterior Cingulate Cortex Function. Neuron 79, 217–240. https://doi.org/10.1016/j.neuron.2013.07.007 (2013).

    Google Scholar 

  60. Barron, H. C., Garvert, M. M. & Behrens, T. E. J. Repetition suppression: a means to index neural representations using BOLD?. Philos. Trans. Royal Soc. B: Biol. Sci. 371, 20150355. https://doi.org/10.1098/rstb.2015.0355 (2016).

    Google Scholar 

  61. Henson, R. N. A. Neuroimaging studies of priming. Prog. Neurobiol. 70, 53–81. https://doi.org/10.1016/S0301-0082(03)00086-8 (2003).

    Google Scholar 

  62. Schacter, D. L. & Buckner, R. L. Priming and the Brain. Neuron 20, 185–195. https://doi.org/10.1016/s0896-6273(00)80448-1 (1998).

    Google Scholar 

  63. Grill-Spector, K., Henson, R. & Martin, A. Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10, 14–23. https://doi.org/10.1016/j.tics.2005.11.006 (2006).

    Google Scholar 

  64. Wiggs, C. L. & Martin, A. Properties and mechanisms of perceptual priming. Curr. Opin. Neurobiol. 8, 227–233. https://doi.org/10.1016/s0959-4388(98)80144-x (1998).

    Google Scholar 

  65. Race, E. A., Shanker, S. & Wagner, A. D. Neural priming in human frontal cortex: multiple forms of learning reduce demands on the prefrontal executive system. J. Cogn. Neurosci. 21, 1766–1781. https://doi.org/10.1162/jocn.2009.21132 (2009).

    Google Scholar 

  66. Schacter, D. L., Dobbins, I. G. & Schnyer, D. M. Specificity of priming: a cognitive neuroscience perspective. Nat. Rev. Neurosci. 5, 853–862. https://doi.org/10.1038/nrn1534 (2004).

    Google Scholar 

  67. Viviani, R., Dommes, L., Bosch, J. E. & Labek, K. Segregation, connectivity, and gradients of deactivation in neural correlates of evidence in social decision making. Neuroimage 223, 117339. https://doi.org/10.1016/j.neuroimage.2020.117339 (2020).

    Google Scholar 

  68. Labek, K. & Viviani, R. Functional imaging of time on task and habituation in passive exposure to faces with emotional expression. NeuroReport 36, 135–139. https://doi.org/10.1097/wnr.0000000000002130 (2025).

    Google Scholar 

  69. Salamone, D., John, & Correa, M. The Mysterious Motivational Functions of Mesolimbic Dopamine. Neuron 76, 470–485. https://doi.org/10.1016/j.neuron.2012.10.021 (2012).

    Google Scholar 

  70. Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85. https://doi.org/10.1038/nrn.2016.165 (2017).

    Google Scholar 

  71. Bouarab, C., Thompson, B. & Polter, A. M. VTA GABA Neurons at the Interface of Stress and Reward. Front. Neural Circuits https://doi.org/10.3389/fncir.2019.00078 (2019).

    Google Scholar 

  72. Creed, M. C., Ntamati, N. R. & Tan, K. R. VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front. Behav. Neurosci. https://doi.org/10.3389/fnbeh.2014.00008 (2014).

    Google Scholar 

  73. Eshel, N. et al. Arithmetic and local circuitry underlying dopamine prediction errors. Nature 525, 243–246. https://doi.org/10.1038/nature14855 (2015).

    Google Scholar 

  74. Zhou, W.-L. et al. Activity of a direct VTA to ventral pallidum GABA pathway encodes unconditioned reward value and sustains motivation for reward. Sci. Adv. 8, 5217. https://doi.org/10.1126/sciadv.abm5217 (2022).

    Google Scholar 

  75. Brown, M. T. C. et al. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492, 452–456. https://doi.org/10.1038/nature11657 (2012).

    Google Scholar 

  76. Al-Hasani, R. et al. Ventral tegmental area GABAergic inhibition of cholinergic interneurons in the ventral nucleus accumbens shell promotes reward reinforcement. Nat. Neurosci. 24, 1414–1428. https://doi.org/10.1038/s41593-021-00898-2 (2021).

    Google Scholar 

  77. Bakhurin, K. et al. Dopamine dynamics during stimulus-reward learning in mice can be explained by performance rather than learning. Nat Commun 16, 9081. https://doi.org/10.1038/s41467-025-64132-4 (2025).

    Google Scholar 

  78. Sara, S. J. & Bouret, S. Orienting and Reorienting: The Locus Coeruleus Mediates Cognition through Arousal. Neuron 76, 130–141. https://doi.org/10.1016/j.neuron.2012.09.011 (2012).

    Google Scholar 

  79. Gritton, H. J. et al. Cortical cholinergic signaling controls the detection of cues. Proc. Natl. Acad. Sci. 113, E1089–E1097. https://doi.org/10.1073/pnas.1516134113 (2016).

    Google Scholar 

  80. Harati, H., Barbelivien, A., Cosquer, B., Majchrzak, M. & Cassel, J. C. Selective cholinergic lesions in the rat nucleus basalis magnocellularis with limited damage in the medial septum specifically alter attention performance in the five-choice serial reaction time task. Neuroscience 153, 72–83. https://doi.org/10.1016/j.neuroscience.2008.01.031 (2008).

    Google Scholar 

  81. Liu, R. et al. Intermittent stimulation in the nucleus basalis of meynert improves sustained attention in rhesus monkeys. Neuropharmacology 137, 202–210. https://doi.org/10.1016/j.neuropharm.2018.04.026 (2018).

    Google Scholar 

  82. Martinez, V. & Sarter, M. Lateralized attentional functions of cortical cholinergic inputs. Behav Neurosci 118, 984–991. https://doi.org/10.1037/0735-7044.118.5.984 (2004).

    Google Scholar 

  83. McGaughy, J., Dalley, J. W., Morrison, C. H., Everitt, B. J. & Robbins, T. W. Selective Behavioral and Neurochemical Effects of Cholinergic Lesions Produced by Intrabasalis Infusions of 192 IgG-Saporin on Attentional Performance in a Five-Choice Serial Reaction Time Task. J. Neurosci. 22, 1905–1913. https://doi.org/10.1523/jneurosci.22-05-01905.2002 (2002).

    Google Scholar 

  84. McGaughy, J., Decker, M. W. & Sarter, M. Enhancement of sustained attention performance by the nicotinic acetylcholine receptor agonist ABT-418 in intact but not basal forebrain-lesioned rats. Psychopharmacology 144, 175–182. https://doi.org/10.1007/s002130050991 (1999).

    Google Scholar 

  85. Koulousakis, P., Andrade, P., Visser-Vandewalle, V. & Sesia, T. The Nucleus Basalis of Meynert and Its Role in Deep Brain Stimulation for Cognitive Disorders: A Historical Perspective. J. Alzheimers Dis. 69, 905–919. https://doi.org/10.3233/JAD-180133 (2019).

    Google Scholar 

  86. Howe, W. M. et al. Prefrontal Cholinergic Mechanisms Instigating Shifts from Monitoring for Cues to Cue-Guided Performance: Converging Electrochemical and fMRI Evidence from Rats and Humans. J. Neurosci. 33, 8742–8752. https://doi.org/10.1523/jneurosci.5809-12.2013 (2013).

    Google Scholar 

  87. Martinez-Rubio, C., Paulk, A. C., Mcdonald, E. J., Widge, A. S. & Eskandar, E. N. Multimodal Encoding of Novelty, Reward, and Learning in the Primate Nucleus Basalis of Meynert. J. Neurosci. 38, 1942–1958. https://doi.org/10.1523/jneurosci.2021-17.2017 (2018).

    Google Scholar 

  88. Crouse, R. B. et al. Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances the learning of cue-reward contingency. Life 9, 57335. https://doi.org/10.7554/eLife.57335 (2020).

    Google Scholar 

  89. Tashakori-Sabzevar, F. & Ward, R. D. Basal Forebrain Mediates Motivational Recruitment of Attention by Reward-Associated Cues. Front. Neurosci. https://doi.org/10.3389/fnins.2018.00786 (2018).

    Google Scholar 

  90. Wolpe, N., Holton, R. & Fletcher, P. C. What Is Mental Effort: A Clinical Perspective. Biol. Psychiat. 95, 1030–1037. https://doi.org/10.1016/j.biopsych.2024.01.022 (2024).

    Google Scholar 

  91. Orsini, C., Huber, D. A., Bosch, J. E. & Viviani, R. Basal forebrain and neural correlates of self-regulation traits in sustained attention. Biorxiv https://doi.org/10.1101/2025.08.05.668456 (2025).

    Google Scholar 

  92. Stöcker, T. et al. Dependence of amygdala activation on echo time: Results from olfactory fMRI experiments. Neuroimage 30, 151–159. https://doi.org/10.1016/j.neuroimage.2005.09.050 (2006).

    Google Scholar 

  93. Eickhoff, S. B., Heim, S., Zilles, K. & Amunts, K. Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage 32, 570–582. https://doi.org/10.1016/j.neuroimage.2006.04.204 (2006).

    Google Scholar 

  94. Eickhoff, S. B. et al. Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36, 511–521. https://doi.org/10.1016/j.neuroimage.2007.03.060 (2007).

    Google Scholar 

  95. Eickhoff, S. B. et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335. https://doi.org/10.1016/j.neuroimage.2004.12.034 (2005).

    Google Scholar 

  96. Zaborszky, L. et al. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage 42, 1127–1141. https://doi.org/10.1016/j.neuroimage.2008.05.055 (2008).

    Google Scholar 

  97. Amunts, K. et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat. Embryol. 210, 343–352. https://doi.org/10.1007/s00429-005-0025-5 (2005).

    Google Scholar 

  98. Kedo, O. et al. Receptor-driven, multimodal mapping of the human amygdala. Brain Struct. Funct. 223, 1637–1666. https://doi.org/10.1007/s00429-017-1577-x (2018).

    Google Scholar 

  99. Ballard, I. C. et al. Dorsolateral Prefrontal Cortex Drives Mesolimbic Dopaminergic Regions to Initiate Motivated Behavior. J. Neurosci. 31, 10340–10346. https://doi.org/10.1523/jneurosci.0895-11.2011 (2011).

    Google Scholar 

  100. Murty, V. P. et al. Resting state networks distinguish human ventral tegmental area from substantia nigra. Neuroimage 100, 580–589. https://doi.org/10.1016/j.neuroimage.2014.06.047 (2014).

    Google Scholar 

  101. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021 (2006).

    Google Scholar 

  102. Frazier, J. A. et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am J Psychiatry 162, 1256–1265. https://doi.org/10.1176/appi.ajp.162.7.1256 (2005).

    Google Scholar 

  103. Goldstein, J. M. et al. Hypothalamic Abnormalities in Schizophrenia: Sex Effects and Genetic Vulnerability. Biol. Psychiat. 61, 935–945. https://doi.org/10.1016/j.biopsych.2006.06.027 (2007).

    Google Scholar 

  104. Makris, N. et al. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr. Res. 83, 155–171. https://doi.org/10.1016/j.schres.2005.11.020 (2006).

    Google Scholar 

  105. Keren, N. I., Lozar, C. T., Harris, K. C., Morgan, P. S. & Eckert, M. A. In vivo mapping of the human locus coeruleus. Neuroimage 47, 1261–1267. https://doi.org/10.1016/j.neuroimage.2009.06.012 (2009).

    Google Scholar 

  106. Huber, D., Rabl, L., Orsini, C., Labek, K. & Viviani, R. The fMRI global signal and its association with the signal from cranial bone. Neuroimage 297, 120754. https://doi.org/10.1016/j.neuroimage.2024.120754 (2024).

    Google Scholar 

  107. Ramsay, J. & Silverman, B. Functional Data Analysis. (Springer, 1997).

  108. dplyr: A Grammar of Data Manipulation v. 1.1.4 (2023).

  109. tidyr: Tidy Messy Data v. 1.3.0 (2023).

  110. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67, 1–48 (2015). https://doi.org/10.18637/jss.v067.i01

  111. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    Google Scholar 

Download references

Acknowledgements

A preliminary version of this work was presented at the CogBases workshop (Paris, Institut Pasteur, 10-11 October 2023). This work was supported in whole by an ERA-PERMED grant (project ArtiPro) of the FWF Austrian Science Fund (grant number I 5903) [Grant-https://doi.org/10.55776/I5903] to Roberto Viviani. The authors declare no competing interests. For open access purposes, the author has applied a CC BY public copyright license to any manuscript version arising from this submission.

Funding

Austrian Science Fund, grant number I 5903 [Grant-Doi: https://doi.org/10.55776/I5903].

Author information

Authors and Affiliations

  1. Institute of Psychology, University of Innsbruck, 6020, Innsbruck, Austria

    Chiara Orsini, Karin Labek & Roberto Viviani

  2. Department of Psychiatry and Psychotherapy III, University of Ulm, 89075, Ulm, Germany

    Julia E. Bosch & Roberto Viviani

Authors
  1. Chiara Orsini
    View author publications

    Search author on:PubMed Google Scholar

  2. Julia E. Bosch
    View author publications

    Search author on:PubMed Google Scholar

  3. Karin Labek
    View author publications

    Search author on:PubMed Google Scholar

  4. Roberto Viviani
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Author contributions statement (CRediT) C. O.: Data curation, Formal analysis, Project administration, Validation, Visualization, Writing—original draft, Writing—review & editing. J. E. B.: Investigation, Project administration, Validation. K. L.: Data curation, Project administration, Validation. R. V.: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing—original draft, Writing—review & editing.

Corresponding authors

Correspondence to Chiara Orsini or Roberto Viviani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orsini, C., Bosch, J.E., Labek, K. et al. Functional imaging of time on task and the involvement of dopaminergic and cholinergic substrates in cognitive effort and reward. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37370-9

Download citation

  • Received: 07 February 2025

  • Accepted: 21 January 2026

  • Published: 09 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-37370-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Sustained attention
  • Time on task
  • Cognitive effort
  • Reward
  • Basal forebrain
  • Ventral tegmental area
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing