Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Study the influence of the precipitation of metallic Ag on the phase transitions in AgNbO3−δ perovskite
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Study the influence of the precipitation of metallic Ag on the phase transitions in AgNbO3−δ perovskite

  • Abdullah Almohammedi1,
  • E. K. Abdel-Khalek2 &
  • Yasser A. M. Ismail1,3 

Scientific Reports , Article number:  (2026) Cite this article

  • 210 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Nanoscience and technology
  • Physics

Abstract

In this work, Ag/AgNbO3−δ composite was prepared by solid-state method. Rietveld refined X-ray diffraction pattern revealed that the sample crystallized in orthorhombic (Pbcm) perovskite structure with small impurities of metallic Ag and confirmed by transmission electron microscopy technique. Fourier transform infrared analysis of this composite indicated the formation of NbO6 octahedral structure. Raman spectroscopy of this composite revealed the suppression of the ferroelectric distortion compared with pure of AgNbO3. X-ray photoelectron spectroscopy results revealed the existence of the Ag1+, Ag0, Nb5+, and O2− states as well as oxygen vacancies in this composite. UV-Vis. analysis revealed that this composite has direct and indirect band gap energies of 3.75 and 1.70 eV, respectively. Differential scanning calorimetry and dielectric measurements of Ag/AgNbO3−δ composite revealed that the phase transitions shifted toward lower temperature compared to pure AgNbO3 perovskite. The polarization-field hysteresis loops of this composite exhibited weak ferroelectric behavior at low electric fields. These results indicated that the lead-free Ag/AgNbO3−δ composite is a promising material for dielectric applications, particularly in dielectric devices.

Similar content being viewed by others

Well-defined double hysteresis loop in NaNbO3 antiferroelectrics

Article Open access 30 March 2023

Mössbauer, optical, magnetic, electrochemical and antibacterial studies of the Ag/Sr0.85Ag0.15FeO3−δ composite

Article Open access 03 July 2025

Investigation of structural, optical, magnetic, and electrochemical properties of La1 − xAgxFe0.5Mn0.5O3−δ perovskites

Article Open access 08 July 2025

Data availability

All the data are available within this paper.

References

  1. Park, S. et al. A-/B-site engineering of AgNbO3-based ceramics for high-efficiency relaxor antiferroelectric energy storage. J. Adv. Ceram. 14, 9221174 (2025).

    Google Scholar 

  2. Moriwake, H., Fisher, C. A., Kuwabara, A. & Fu, D. First-Principles study of point defect formation in AgNbO3. Jpn. J. Appl. Phys. 52, 09KF08 (2013).

    Google Scholar 

  3. Tian, Y. et al. High energy density in silver niobate ceramics. J. Mater. Chem. A. 4, 17279–17287 (2016).

    Google Scholar 

  4. Farid, U., Gibbs, A. S. & Kennedy, B. J. Impact of Li doping on the structure and phase stability in AgNbO3. Inorg. Chem. 59, 12595–12607 (2020).

    Google Scholar 

  5. Zhang, X., Han, W., Shen, B. & Guo, S-Q. A review of advances in XNbO3 perovskite-type piezo-photocatalysts: structure, modification strategies and applications. J. Alloys Compd. 1014, 178714 (2025).

    Google Scholar 

  6. An, K. et al. Enhanced energy storage performance of AgNbO3:xCeO2 by synergistic strategies of tolerance factor and density regulations. Coatings 13, 534 (2023).

    Google Scholar 

  7. Du, J., Zhao, Y., Li, Y., Sun, N. & Hao, X. Positive and negative electrocaloric effect in lead-free silver niobate antiferroelectric ceramic depending on affluent phase transition. Crystals 13, 86 (2023).

    Google Scholar 

  8. Kania, A. et al. Silver deficiency and excess effects on quality, dielectric properties and phase transitions of AgNbO3 ceramics. J. Eur. Ceram. Soc. 34, 1761–1770 (2014).

    Google Scholar 

  9. Sciau, P., Kania, A., Dkhil, B., Suard, E. & Ratuszna, A. Structural investigation of AgNbO3 phases using x-ray and neutron diffraction. J. Phys. : Condens. Matter. 16, 2795–2810 (2004).

    Google Scholar 

  10. Tian, Y. et al. Silver niobate perovskites: structure, properties and multifunctional applications. J. Mater. Chem. A. 10, 14747–14787 (2022).

    Google Scholar 

  11. Li, S. et al. Significantly enhanced energy storage performance of rare-earth-modified silver niobate lead-free antiferroelectric ceramics via local chemical pressure tailoring. J. Mater. Chem. C. 7, 1551–1560 (2019).

    Google Scholar 

  12. Chen, G. et al. Disassembling and reassembling perovskites for oxygen electrocatalysis. EES Catal. 3, 1030–1043 (2025).

    Google Scholar 

  13. Zhou, J. et al. Enhanced the energy storage performance in AgNbO3-based antiferroelectric ceramics via manipulation of oxygen vacancy. J. Eur. Ceram. Soc. 43, 6059–6068 (2023).

    Google Scholar 

  14. Chao, W., Gao, J., Yang, T. & Li, Y. Excellent energy storage performance in La and Ta co-doped AgNbO3 antiferroelectric ceramics. J. Eur. Ceram. Soc. 41, 7670–7677 (2021).

    Google Scholar 

  15. Khan, A. et al. Lithium storage behaviour of AgNbO3 perovskite: Understanding electrochemical activation and charge storage mechanisms. Energy Storage Mater. 70, 103431 (2024).

    Google Scholar 

  16. Shu, H. et al. Structural characterization and photocatalytic activity of NiO/AgNbO3. J. Alloys Compd. 496, 633–637 (2010).

    Google Scholar 

  17. Abdel-Khalek, E. K., Mohamed, E. A. & Ismail, Y. A. M. Study the role of oxygen vacancies and Mn oxidation States in nonstoichiometric CaMnO3–δ perovskite nanoparticles. J. Sol-Gel Sci. Technol. 113, 461–472 (2025).

    Google Scholar 

  18. Nain, R. & Dwivedi, R. K. Studies on structural, optical and electrical behavior of La and cr modified NaNbO3 (x ≤ 0.15). J. Solid State Chem. 329, 124378 (2024).

    Google Scholar 

  19. Boukriba, M., Sediri, F. & Gharbi, N. Hydrothermal synthesis and electrical properties of NaNbO3. Mater. Res. Bull. 48, 574–580 (2013).

    Google Scholar 

  20. Yashima, M. et al. Structure of ferroelectric silver niobate AgNbO3. Chem. Mater. 23 1643–1645. (2011).

    Google Scholar 

  21. Mi, L. et al. A new silver metaniobate semiconductor of Ag0.5La0.5Nb2O6 with defect-perovskite structure. Spectrochim Acta Mol. Biomol. Spectrosc. 192, 59–66 (2018).

    Google Scholar 

  22. Yang, M. et al. Highly efficient Ag2O/AgNbO3 p-n heterojunction photocatalysts with enhanced visible-light responsive activity. J. Alloy Compd. 811, 151831 (2019).

    Google Scholar 

  23. Lu, Z. et al. Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics. Nano Energy. 79, 105423 (2021).

    Google Scholar 

  24. Wang, D., Kako, T. & Ye, J. New series of solid-solution semiconductors (AgNbO3)1-x(SrTiO3)x with modulated band structure and enhanced visible-light photocatalytic activity. J. Phys. Chem. C. 113, 3789 (2009).

    Google Scholar 

  25. Yu, Z. et al. Synthesis of high efficient and stable plasmonic photocatalyst Ag/AgNbO3 with specific exposed crystal-facets and intimate heterogeneous interface via combustion route. Appl. Surf. Sci. 488, 485–493 (2019).

    Google Scholar 

  26. Zhang, T. et al. Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes. Nanoscale 5, 8375 (2013).

    Google Scholar 

  27. Yang, D. et al. AgNbO3-based antiferroelectric ceramics with superior energy storage performance via Gd/Ta substitution at A/B sites. Ceram. Int. 49, 18143–18152 (2023).

    Google Scholar 

  28. Jesusa, K. F. S. et al. Structural evolution of La-modified AgNbO3 lead-free ceramics: perspective from octahedral tilting and tolerance factor. Ceram. Int. 48, 20506–20515 (2022).

    Google Scholar 

  29. Kruczek, M., Talik, E. & Kania, A. Electronic structure of AgNbO3 and NaNbO3 studied by X-ray photoelectron spectroscopy. Solid State Commun. 137, 469–473 (2006).

    Google Scholar 

  30. Li, Y. et al. Electrochemical exsolution of ag nanoparticles from agNbO3 sensing electrode for enhancing the performance of mixed potential type NH3 sensors. Sens. Actuator B-Chem. 344, 130296 (2021).

    Google Scholar 

  31. Lu, Y. et al. Photoinduced in situ growth of ag nanoparticles on agNbO3. J. Phys. Chem. C. 120, 28712–28716 (2016).

    Google Scholar 

  32. Xu, N., Takei, T., Miura, A. & Kumada, N. Preparation and phase transformation of ag or Bi ion-exchanged layered niobate perovskite and their photocatalytic properties. J. Ceram. Soc. Jpn. 123, 690–694 (2015). [8].

    Google Scholar 

  33. Sikdar, S., Pathak, S. & Ghorai, T. K. Aqueous phase photodegradation of rhodamine B and p-nitrophenol desctruction using titania based nanocomposites. Adv. Mater. Lett. 6(10), 867–873 (2015).

    Google Scholar 

  34. Liu, X. X. et al. A silver niobate photocatalyst AgNb7O18 with perovskite-like structure. J. Alloy Compd. 724, 381–388 (2017).

    Google Scholar 

  35. Zhang, D. et al. Photocatalytic degradation of ofloxacin by perovskite-type NaNbO3 nanorods modified g-C3N4 heterojunction under simulated solar light: theoretical calculation, ofloxacin degradation pathways and toxicity evolution. Chem. Eng. J. 400, 125918 (2020).

    Google Scholar 

  36. Nain, R. & Dwivedi, R. K. Photocatalytic activity in graded off-valent cations substituted NaNbO3. Heliyon 10, e29121 (2024).

    Google Scholar 

  37. Zhou, F., Zhu, J., Lai, Z., Liu, Y. & Zhao, X. Surface plasmon resonances behavior in visible light of non-metal perovskite oxides AgNbO3. Appl. Phys. Lett. 105, 231121 (2014).

    Google Scholar 

  38. Abdel-Khalek, E. K., Ibrahim, I., Salama, T. M., Elseman, A. M. & Mohamed, M. M. Structural, optical, dielectric and magnetic properties of Bi1 – xLaxFeO3 nanoparticles. J. Magn. Magn. Mater. 465, 309–315 (2018).

    Google Scholar 

  39. Xia, W., Wu, H., Xue, P. & Zhu, X. Microstructural, magnetic, and optical properties of Pr-doped perovskite manganite La0.67Ca0.33MnO3 nanoparticles synthesized via Sol-Gel process. Nanoscale Res. Lett. 13, 135 (2018).

    Google Scholar 

  40. Kania, A. An additional phase transition in silver niobate AgNbO3. Ferroelectrics 205, 19–28 (1998).

    Google Scholar 

  41. Gao, J. et al. Local structure heterogeneity in Sm-doped AgNbO3 for improved energy-storage performance. ACS Appl. Mater. Interfaces. 12, 6097–6104 (2020).

    Google Scholar 

  42. Lu, Z. et al. Mechanism of enhanced energy storage in AgNbO3-based lead-free antiferroelectrics. Nano Energy. 79, 105423 (2021).

    Google Scholar 

  43. Xie, Z. & Liu, H. A novel method of preparing antiferroelectric silver niobate AgNbO3 ceramics. Ceram. Int. 46, 6955–6957 (2020).

    Google Scholar 

  44. Li, J. et al. Silver deficiency effect on dielectric properties and energy storage performance of AgNbO3 ceramics. Ceram. Int. 47, 26178–22618 (2021).

    Google Scholar 

  45. Gao, J., Li, Q., Zhang, S. & Li, J-F. Lead-free antiferroelectric AgNbO3: phase transitions and structure engineering for dielectric energy storage applications. J. Appl. Phys. 128, 070903–070908 (2020).

    Google Scholar 

  46. Yoneda, Y., Yoshii, K. & Kohara, S. Structural investigations of AgNbO3 phases using high-energy X-ray diffraction. Trans. Mat. Res. Soc. Japan. 37[1], 73–76 (2012).

    Google Scholar 

  47. Ai, J., Chen, X., Luo, L., Zheng, R. & Yu, L. Novel transparent Eu and hf co-doped AgNbO3 antiferroelectric ceramic with high-quality energy-storage performance. Ceram. Int. 47, 26178–26184 (2021).

    Google Scholar 

  48. Kirana, K., Gangadhar, V. & Prasad, G. Synthesis and characterization of multi functional NaNbO3-KNbO3 mixed ceramics. Mater. Today Proc. 11, 971–979 (2019).

  49. Abdel–Khalek, E. K., El–Naser, A. A., Nabhan, E. & Gaafar, M. S. Abd El–Aal, the enhancement of the optical, magnetic, and ferroelectric properties of BaTiO3–δ by doping with SrFeO3–δ. Appl. Phys. A. 131, 338 (2025).

    Google Scholar 

  50. Xu, C. et al. La/Mn Co doped AgNbO3 lead-free antiferroelectric ceramics with large energy density and power density. CS Sustainable Chem. Eng. 12, 16151–16159 (2018).

    Google Scholar 

  51. Kania, A. & Miga, S. Preparation and dielectric properties of Ag1 – xLixNbO3 (ALN) solid solutions ceramics. Mater. Sci. Eng. B. 86, 128–133 (2001).

    Google Scholar 

  52. Fu, D., Endo, M., Taniguchi, H., Taniyama, T. & Itoh, M. AgNbO3: A lead-free material with large polarization and electromechanical response. Appl. Phys. Lett. 90, 252907 (2007).

    Google Scholar 

  53. Yan, Z. et al. Silver niobate based lead-free ceramics with high energy storage density. J. Mater. Chem. A. 7, 10702–10711 (2019).

    Google Scholar 

  54. Nautiyal, O. P., Bhatt, S. C., Pant, R. P. & Semwal, B. S. Dielectric properties of silver sodium niobate mixed ceramic system. Indian J. Pure Appl. Phys. 48, 357–362 (2010).

    Google Scholar 

  55. Cheng, H. et al. Sol-gel auto-combustion synthesis of KxNa1–xNbO3 nanopowders and ceramics: dielectric and piezoelectric properties. Trans. Nonferrous Met. Soc. China. 28, 1801–1807 (2018).

    Google Scholar 

  56. Luo, L. et al. Influence of conductivity on Raman scattering intensity in Li-modified AgNbO3 crystals. Ferroelectrics. 470, 212–220 (2014).

  57. Zhao, D., Chen, Z., Li, B., Feng, S. & Luo, N. Growth, Structure, and electrical properties of AgNbO3 antiferroelectric single crystal. Crystals 14(3), 235 (2024).

    Google Scholar 

  58. Muduli, R. et al. Dielectric, ferroelectric and impedance spectroscopic studies in TiO2-doped AgNbO3 ceramic. J. Alloys Compd. 664, 715–725 (2016).

    Google Scholar 

Download references

Acknowledgements

This article is derived from a research grant funded by the Research, Development, and Innovation Authority (RDIA) - Kingdom of Saudi Arabia - with grant number (20005-IUM-2023-R-2-1-EI-).

Funding

Research, Development, and Innovation Authority (RDIA) - Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

  1. Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia

    Abdullah Almohammedi & Yasser A. M. Ismail

  2. Department of Physics, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt

    E. K. Abdel-Khalek

  3. Department of Physics, Faculty of Science, Al-Azhar University, Asyut, 71452, Egypt

    Yasser A. M. Ismail

Authors
  1. Abdullah Almohammedi
    View author publications

    Search author on:PubMed Google Scholar

  2. E. K. Abdel-Khalek
    View author publications

    Search author on:PubMed Google Scholar

  3. Yasser A. M. Ismail
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Abdullah Almohammedi: Investigation, Methodology, Formal analysis, Writing-original draft. E. K. Abdel-Khalek: Investigation, Methodology, Formal analysis, Writing-original draft. Yasser A. M. Ismail: Investigation, Methodology, Writing-original draft.

Corresponding authors

Correspondence to Abdullah Almohammedi or E. K. Abdel-Khalek.

Ethics declarations

Consent for publication

All authors of this paper consent for publishing manuscript, tables, and figures in this journal.

Consent to participate

I, E. K. Abdel-Khalek, on behalf of all authors, hereby declare that we participated in this manuscript.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almohammedi, A., Abdel-Khalek, E.K. & Ismail, Y.A.M. Study the influence of the precipitation of metallic Ag on the phase transitions in AgNbO3−δ perovskite. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37405-1

Download citation

  • Received: 09 September 2025

  • Accepted: 21 January 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-37405-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Ag/AgNbO3−δ composite
  • Dielectric
  • Optical
  • Ferroelectric properties
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing