Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Biointegration of a partially decellularized tracheal scaffold in a porcine model - preliminary results
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 February 2026

Biointegration of a partially decellularized tracheal scaffold in a porcine model - preliminary results

  • Augustin Vigouroux1,
  • Yannis Bonnin1,
  • Nicolas Gendron2,3,
  • Sabrina Kellouche4,
  • Rémy Agniel4,
  • Patrick Bruneval5,
  • Daniel Balvay6,
  • Jean-Marc Allain7,8,
  • Stéphanie Chhun9,10,
  • Hervé Kempf11,
  • Romain Hugon11,
  • Magali Devriese1,12,
  • Caroline Sansac13,
  • Jérôme Larghero1,14,
  • Lousineh Arakelian1,14 &
  • …
  • Briac Thierry1,15 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Diseases
  • Medical research

Abstract

Some pediatric tracheal pathologies remain therapeutic dead ends for which current palliative strategies are fraught with serious complications. With the aim of a tracheal replacement, our team has previously developed and patented a clinical grade partially decellularized trachea (PDT) from porcine tracheas. The aim of this work was to study and compare the biointegration mechanisms of this PDT in vivo, in a pig cervical muscle, with or without immunosuppressant. The secondary objective was to evaluate the optimal maturation time of the PDT in this heterotopic position. In total, 11 female Large White/Landrace pigs, weighing between 50 and 70 kg were included in this study. The mean age of the animals at the implantation was 4.8 months. The PDTs were implanted in a cervical muscle of pigs for either 28 days, with or without cyclosporin A treatment, or for 56 days without immunosuppression. Histological evaluation showed very good PDT biointegration, characterized by neovascularization and fibroblast colonization, and no detectabale infection. Additionally, tissue and blood analyses showed no signs of graft rejection or surrounding tissue necrosis. Immunosuppression did not show any superiority in terms of biointegration after 28 days of treatment. After 56 days of implantation, a more significant degradation of the cartilage. Therefore, the optimal condition for PDT maturation proved to be 28 days, without immunosuppression.

Data availability

Data will be made available upon request from Augustin Vigouroux augustin.vigouroux@free.fr; Lousineh Arakelian lousineh.arakelian@aphp.fr; or Briac Thierry (briac.thierry@aphp.fr).

References

  1. Varela, P., Torre, M., Schweiger, C. & Nakamura, H. Congenital tracheal malformations. Pediatr. Surg. Int. 34(7), 701–713. https://doi.org/10.1007/s00383-018-4291-8 (2018).

    Google Scholar 

  2. Belsey, R. Resection and reconstruction of the intrathoracic trachea, J. Br. Surg., 38,(150), 200–205 (1950). https://doi.org/10.1002/bjs.18003815008

  3. Thierry, B., Arakelian, L., Denoyelle, F., Larghero, J. & Wurtz, A. Full circumferential human tracheal replacement: a systematic review. Eur. J. Cardiothorac. Surg. 66 (1). https://doi.org/10.1093/ejcts/ezae269 (Jul. 2024).

  4. Crapo, P. M., Gilbert, T. W. & Badylak, D. V. M. An overview of tissue and whole organ decellularization processes. Biomaterials 32 (12), 3233–3243. https://doi.org/10.1016/j.biomaterials.2011.01.057.An (2011).

    Google Scholar 

  5. Lei, C., Mei, S., Zhou, C. & Xia, C. Decellularized tracheal scaffolds in tracheal reconstruction: An evaluation of different techniques, .J Appl. Biomater Funct. Mater., 19, (2021). https://doi.org/10.1177/22808000211064948

  6. Tan, Z. H. et al. Partial decellularization eliminates immunogenicity in tracheal allografts. Bioeng. Transl Med. 8(5). https://doi.org/10.1002/btm2.10525 (Sep. 2023).

  7. Lin, A. et al. Sep., Partial Decellularization Retains Cartilage Immune Privilege in Tissue Engineered Tracheal Grafts, Laryngoscope, 135(9), 3232–3239 (2025). https://doi.org/10.1002/lary.32227

  8. Rana, D., Zreiqat, H., Benkirane-Jessel, N., Ramakrishna, S. & Ramalingam, M. Development of decellularized scaffolds for stem cell-driven tissue engineering. J. Tissue Eng. Regen Med. 11(4), 942–965. https://doi.org/10.1002/term.2061 (2017).

    Google Scholar 

  9. Pabst, R. The pig as a model for immunology research. Cell. Tissue Res. 380(2), 287–304. https://doi.org/10.1007/s00441-020-03206-9 (2020).

    Google Scholar 

  10. Arakelian, L. et al. Aug., A Clinical-Grade Partially Decellularized Matrix for Tracheal Replacement: Validation In Vitro and In Vivo in a Porcine Model. Adv Biol, (2024). https://doi.org/10.1002/adbi.202400208

  11. Y. B. L. Q. Z. Y. Z. M. S. L. C. H. Zhang Shuo. Assessment of Hematologic and Biochemical Parameters for Healthy Commercial Pigs in China, Animals (Basel), 12(18): 2464 (2022).

  12. Juul-Madsen Helle, J. K. H. N. J. D. B. M. Ontogeny and characterization of blood leukocyte subsets and serum proteins in piglets before and after weaning. Vet Immunol. Immunopathol. No Feb. 15 (2–4), 95–108 (2010).

    Google Scholar 

  13. McTaggart, H. S. Lymphocytosis in normal young pigs. Br. Vet. J. no. Sep-Oct;131 (5), 574–579 (1975).

    Google Scholar 

  14. Velik-Salchner, C. et al. Normal values for thrombelastography (ROTEM®) and selected coagulation parameters in porcine blood. Thromb. Res. 117(5), 597–602. https://doi.org/10.1016/j.thromres.2005.05.015 (2006).

    Google Scholar 

  15. van Hengel, E. V. A., van der Laan, L. J. W., de Jonge, J. & Verstegen, M. M. A. Towards Safety and Regulation Criteria for Clinical Applications of Decellularized Organ-Derived Matrices. Bioengineering 12(2), 136. https://doi.org/10.3390/bioengineering12020136 (2025).

    Google Scholar 

  16. Matsuda, S. & Koyasu, S. Mechanisms of action of cyclosporine. Immunopharmacology. 47(2–3), 119-125 https://doi.org/10.1016/S0162-3109(00)00192-2 (2000).

  17. Cibulskyte, D. et al. The pharmacokinetics and acute renal effects of oral microemulsion ciclosporin A in normal pigs, Int. Immunopharmacol, 6(4), 627–634 (2006). https://doi.org/10.1016/j.intimp.2005.09.013

  18. Flores, C., Fouquet, G., Moura, I. C., Maciel, T. T. & Hermine, O. Lessons to Learn From Low-Dose Cyclosporin-A: A New Approach for Unexpected Clinical Applications, Front Immunol, 10, (2019). https://doi.org/10.3389/fimmu.2019.00588

  19. Pan, H. et al. Oral cyclosporine A in neonatal swines for transplantation studies. Immunopharmacol. Immunotoxicol 37(1), 19–25. https://doi.org/10.3109/08923973.2014.975818 (2015).

    Google Scholar 

  20. Frey, B. M., Sieber, M., Mettler, D., Gänger, H. & Frey, F. J. Marked interspecies differences between humans and pigs in cyclosporine and prednisolone disposition., Drug Metabolism and Disposition, 16(2), 285–289 (1988). https://doi.org/10.1016/S0090-9556(25)06930-2

  21. Monchaud, C., Bonneau, A. & Lemaître, F. Le suivi des patients greffés. Actualités Pharmaceutiques 60(605), 26–30. https://doi.org/10.1016/j.actpha.2021.02.007 (2021).

    Google Scholar 

  22. Akkiraju, H. & Nohe, A. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration, J. Dev. Biol., 3(4), 177–192 (2015). https://doi.org/10.3390/jdb3040177

  23. Abazari, A., Jomha, N. M., Elliott, J. A. W. & McGann, L. E. Cryopreservation of articular cartilage. Cryobiology 66(3), 201–209. https://doi.org/10.1016/j.cryobiol.2013.03.001 (2013).

    Google Scholar 

  24. Mabrut, J. Y. et al. Mechanical and histological characteristics of human trachea before and after cryopreservation: an opportunity for tracheal tissue banking. Transpl. Proc. 33, 1–2. https://doi.org/10.1016/S0041-1345(00)02166-7 (2001).

    Google Scholar 

  25. Forman, J. L. & Kent, R. W. The effect of calcification on the structural mechanics of the costal cartilage. Comput. Methods Biomech. Biomed. Engin 17(2), 94–107. https://doi.org/10.1080/10255842.2012.671307 (2014).

    Google Scholar 

  26. Mitsuyama, H., Healey, R. M., Terkeltaub, R. A., Coutts, R. D. & Amiel, D. Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis. Osteoarthr. Cartil. 15(5), 559–565. https://doi.org/10.1016/j.joca.2006.10.017 (2007).

    Google Scholar 

  27. B. Á. S. E. C. C. C. A. B. V. A. J. M. Rueda Ignacio Alcalá, everything but the squeal: a guide for head and neck surgery training on the live Porcine model. Eur Arch. Otorhinolaryngol. 280(6), 2927–2936 (2023).

  28. Facchin, C. et al. FIBER-ML, an Open-Source Supervised Machine Learning Tool for Quantification of Fibrosis in Tissue Sections. Am. J. Pathol. 192(5), 783–793. https://doi.org/10.1016/j.ajpath.2022.01.013 (2022).

    Google Scholar 

Download references

Acknowledgements

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: the authors acknowledge technical support from animal care and veterinary staff and Julie Piquet at the Biosurgical research laboratory of Fondation Carpentier. The authors also thank INRAe (French National Research Institute for Agriculture, Food and the Environment) and Sylvain Bourgeais for their technical support and supply. We would like to gratefully acknowledge Novatech SA for kindly supplying us with Boston Medical Products’ endotracheal stents, known as “Rutter stents”.Confocal and SEM images were acquired using the facilities of the Plateforme Microscopies & Analyses, Federation I-Mat (FR4122) of CY Cergy Paris University (France).

Funding

This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM, grant EN_2020CINT05), l’Assistance publique – Hôpitaux de Paris (APHP), Fondation de l’Avenir pour la Recherche Médicale Appliquée (Grant MLHR2023-89), Agence de la Biomédecine (Grant 20Greffe011), Société Française d’ORL et Cervico-Faciale (SFORL), and Association Française de l’Atrésie de l’Œsophage. None of the funders were involved in carrying out the research or writing the results.

Author information

Authors and Affiliations

  1. Université Paris Cité, Inserm, IRSL, U1342, CIC-BT CBT501, Paris, F-75475, France

    Augustin Vigouroux, Yannis Bonnin, Magali Devriese, Jérôme Larghero, Lousineh Arakelian & Briac Thierry

  2. Department of Hematology, Assistance Publique Hôpitaux de Paris-Centre Université de Paris (APHP-CUP), Hôpital européen Georges Pompidou, Paris, F-75015, France

    Nicolas Gendron

  3. Université Paris Cité, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France

    Nicolas Gendron

  4. CY Cergy Paris Université, Institut des Matériaux, I‐MAT FD4122, Equipe de Recherche sur les Relations Matrice Extracellulaire‐Cellules, ERRMECe EA1391, Cergy, F-95000, France

    Sabrina Kellouche & Rémy Agniel

  5. Department of Pathology, AP-HP, Georges Pompidou European Hospital, Paris, F-75015, France

    Patrick Bruneval

  6. Université Paris Cité, Inserm, PARCC, U970, Paris, F-75015, France

    Daniel Balvay

  7. Laboratoire de mécanique des solides, CNRS, École polytechnique, Institut Polytechnique de Paris, Palaiseau, France

    Jean-Marc Allain

  8. Inria, Palaiseau, F-91120, France

    Jean-Marc Allain

  9. Institut Necker Enfants-Malades (INEM), INSERM U1151, Paris, F-75015, France

    Stéphanie Chhun

  10. Laboratoire D’Immunologie Biologique, Hôpital Universitaire Necker-Enfants Malades, AP-HP, Paris, F-75015, France

    Stéphanie Chhun

  11. IMoPA, UMR 7365 CNRS-Université de Lorraine, Vandœuvre-lès-Nancy, France

    Hervé Kempf & Romain Hugon

  12. Laboratoire d’Immunologie et Histocompatibilité, Hôpital St‐Louis, AP‐HP, Paris, F-75010, France

    Magali Devriese

  13. Banque de Tissus Humains, Hôpital St‐Louis, AP‐HP, Paris, F-75010, France

    Caroline Sansac

  14. Unité de Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Paris, France

    Jérôme Larghero & Lousineh Arakelian

  15. Department of Pediatric Otolaryngology-Head and Neck Surgery, AP-HP, Hôpital Universitaire Necker – Enfants Malades, 149, rue de Sèvres, Paris, F-75015, France

    Briac Thierry

Authors
  1. Augustin Vigouroux
    View author publications

    Search author on:PubMed Google Scholar

  2. Yannis Bonnin
    View author publications

    Search author on:PubMed Google Scholar

  3. Nicolas Gendron
    View author publications

    Search author on:PubMed Google Scholar

  4. Sabrina Kellouche
    View author publications

    Search author on:PubMed Google Scholar

  5. Rémy Agniel
    View author publications

    Search author on:PubMed Google Scholar

  6. Patrick Bruneval
    View author publications

    Search author on:PubMed Google Scholar

  7. Daniel Balvay
    View author publications

    Search author on:PubMed Google Scholar

  8. Jean-Marc Allain
    View author publications

    Search author on:PubMed Google Scholar

  9. Stéphanie Chhun
    View author publications

    Search author on:PubMed Google Scholar

  10. Hervé Kempf
    View author publications

    Search author on:PubMed Google Scholar

  11. Romain Hugon
    View author publications

    Search author on:PubMed Google Scholar

  12. Magali Devriese
    View author publications

    Search author on:PubMed Google Scholar

  13. Caroline Sansac
    View author publications

    Search author on:PubMed Google Scholar

  14. Jérôme Larghero
    View author publications

    Search author on:PubMed Google Scholar

  15. Lousineh Arakelian
    View author publications

    Search author on:PubMed Google Scholar

  16. Briac Thierry
    View author publications

    Search author on:PubMed Google Scholar

Contributions

B.T., L.A. Conceptualization; B.T., L.A. Methodology; B.T. J.M.A Software; B.T., L.A. Validation; B.T., J.M.A., D.B. Formal analysis; B.T., A.V. Investigation; all authors Resources; B.T. Data curation; A.V. Writing – original draft; all authors. Writing - Review & Editing; all authors Visualization; B.T., L.A., J.L. Supervision; B.T., L.A. Project administration; B.T., J.L. Funding acquisition.

Corresponding authors

Correspondence to Lousineh Arakelian or Briac Thierry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigouroux, A., Bonnin, Y., Gendron, N. et al. Biointegration of a partially decellularized tracheal scaffold in a porcine model - preliminary results. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37823-1

Download citation

  • Received: 13 August 2025

  • Accepted: 27 January 2026

  • Published: 21 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-37823-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Tracheal replacement
  • Decellularization
  • Biointegration
  • Immunosuppression
  • Vascularization
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing