Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
30,000 years of fire history in the Cerrado
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 07 February 2026

30,000 years of fire history in the Cerrado

  • Marie-Pierre Ledru1,
  • Raquel Franco Cassino  ORCID: orcid.org/0000-0002-9974-57442,
  • Katerine Escobar-Torrez  ORCID: orcid.org/0000-0001-5941-70791,
  • Ingrid Horák-Terra  ORCID: orcid.org/0000-0002-5078-53663 &
  • …
  • Vânia Pivello  ORCID: orcid.org/0000-0001-8063-772X4 

Scientific Reports , Article number:  (2026) Cite this article

  • 1265 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Environmental sciences

Abstract

The Cerrado, or Brazilian savanna, is a fire-prone ecosystem whose fire adaptations likely originated in the Miocene, with many plants retaining fire-adapted traits of fire up to the present. It is nowadays one of the most frequently and intensely burned ecosystem on Earth, but little is known about its fire history, from the Miocene to more recent times. We compiled a unique dataset of 12 macro-charcoal records from lacustrine or swamp sediments, covering the last 30,000 years in northern, central, and southeastern Cerrado. Our aim was to examine the relationships between charcoal abundance, vegetation structure, and climate variability. We analyzed charcoal abundance, fuel sources and fire return intervals as a function of vegetation cover (Poaceae frequencies), human activities and climate changes. Results indicate that different fire regimes have occurred over the past 30,000 years, with enhanced biomass burning during maxima of solar radiation and high atmospheric CO2 levels. Under natural fire drivers, overall savanna structure persisted across different fire regimes, although with significant local and regional variability. By linking insolation cycles and atmospheric CO2 to fire dynamics, we show that the Cerrado fire regime has shifted from being primarily climate-driven to increasingly human-driven.

Data availability

All macro-charcoal records presented in this study are deposited in the Global Paleofire Database (https://www.paleofire.org/about) and will be available after publication.

References

  1. Armenteras, D. et al. Fire induced loss of the world’s most diverse forests in Latin America. Sci. Adv. 7, eabd3357 (2021).

    Google Scholar 

  2. Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–448 (2009).

    Google Scholar 

  3. Li, P., Xiao, C., Feng., Z., Li, W. & Zhang, X. Occurrence frequencies and regional variations in visible infrared imaging radiometer suite (VIIRS) global active fires. Glob. Change Biol. 26, 2970–2987 (2020).

    Google Scholar 

  4. Pompeu, J., Assis, T. A. & Ometto, J. P. Landscape changes in the Cerrado: challenges of land clearing, fragmentation and land tenure for biological conservation. Sci. Total Environ. 906, 167581 (2024).

    Google Scholar 

  5. Oliveira, P. S. & Marquis, R. J. The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna (Columbia University, 2002).

  6. Pivello, V. R. The use of fire in the Cerrado and Amazonian rainforests of Brazil: past and present. Fire Ecol. 7, 24–39 (2011).

    Google Scholar 

  7. Eloy, L., Schmidt, I. B., Borges, S. L., Ferreira, M. C. & Santos, T. A. Seasonal fire management by traditional cattle ranchers prevents the spread of wildfire in the Brazilian Cerrado. Ambio 48, 890–899 (2018).

    Google Scholar 

  8. Ramos-Neto, M. B. & Pivello, V. R. Lightning fires in a Brazilian savanna National park: rethinking management strategies. Environ. Manage. 26, 675–684 (2000).

    Google Scholar 

  9. Arruda, V. L. S. et al. Assessing four decades of fire behavior dynamics in the Cerrado biome (1985 to 2022). Fire Ecol. 20, 64 (2024).

    Google Scholar 

  10. Pivello, V. R., Shida, C. N. & Meirelles, S. T. Alien grasses in Brazilian savannas: a threat to the biodiversity. Biodivers. Conserv. 8, 1281–1294 (1999).

    Google Scholar 

  11. Damasceno, G. et al. Impact of invasive grasses on Cerrado under natural regeneration. Biol. Invasions. 20, 3621–3629 (2018).

    Google Scholar 

  12. Durigan, G. & Ratter, J. A. The need for a consistent fire policy for Cerrado conservation. J. Appl. Ecol. 53 https://doi.org/10.1111/1365-2664.12559 (2016).

  13. Schmidt, I. B. & Eloy, L. Fire regime in the Brazilian savanna: recent changes, policy and management. Flora 268, 151613 (2020).

    Google Scholar 

  14. Requia, W. J. Fires in Brazil: health crises and the failure of government action. Lancet Reg. Health – Americas. 39, 100913 (2024).

    Google Scholar 

  15. de Abreu, R. C. R. & Durigan, G. Changes in the plant community of a Brazilian grassland savannah after 22 years of invasion by Pinus elliottii Engelm. Plant. Ecol. Divers. 4, 269–278 (2011).

    Google Scholar 

  16. Rosan, T. M. et al. Extensive 21st-century woody encroachment in South America’s savanna. Geophys. Res. Lett. 46, 6594–6603 (2019).

    Google Scholar 

  17. Pivello, V. R. et al. Understanding Brazil’s catastrophic fires: causes, consequences and policy needed to prevent future tragedies. Perspect. Ecol. Conserv. 19, 233–255 (2021).

    Google Scholar 

  18. Simon, M. F. et al. Recent assembly of the Cerrado, a Neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl. Acad. Sci. 106, 20359–20364 (2009).

    Google Scholar 

  19. Bond, W. J., Woodward, E. I. & Midgley, G. E. The global distribution of ecosystems in a world without fire. New. Phytol. 165, 525–538 (2005).

    Google Scholar 

  20. Whitlock, C. & Larsen, C. Charcoal as a fire proxy tracking environmental change using lake sediments in Tracking environmental change using lake sediments (eds Smol, J.P., Birks, H.J.B., Last, W.M., Bradley, R.S., Alverson, K.) 75–97 (Springer Netherlands 2002).

  21. Adolf, C., Doyon, F., Klimmek, F. & Tinner, W. Validating a continental European charcoal calibration dataset. The Holocene 28, 1642–1652 (2018).

    Google Scholar 

  22. Aleman, J. C. et al. Tracking landcover changes with sedimentary charcoal in the Afrotropics. The Holocene 23, 1853–1862 (2013).

    Google Scholar 

  23. Duffin, K. I., Gillson, L. & Willis, K. J. Testing the sensitivity of charcoal as an indicator of fire events in savanna environments: quantitative predictions of fire proximity, area and intensity. The Holocene 18, 279–291 (2008).

    Google Scholar 

  24. Leys, B., Brewer, S. C., McConaghy, S., Mueller, J. & McLauchlan, K. K. Fire history reconstruction in grassland ecosystems: amount of charcoal reflects local area burned. Environ. Res. Lett. 10, 114009 (2015).

    Google Scholar 

  25. Higuera, P. E., Peters, M. E., Brubaker, L. B. & Gavin, D. G. Understanding the origin and analysis of sediment–charcoal records with a simulation model. Q. Sci. Rev. 26, 1790–1809 (2007).

    Google Scholar 

  26. Kelly, R. F., Higuera, P. E., Barrett, C. M. & Hu, F. S. A signal- to-noise index to quantify the potential for peak detection in sediment–charcoal records. Quatern. Res. 75, 11–17 (2011).

    Google Scholar 

  27. Leys, B. A., Marlon, J. R., Umbanhowar, C. & Vannière, B. Global fire history of grassland biomes. Ecol. Evol. 8, 8831–8852 (2018).

    Google Scholar 

  28. Marlon, J. R. et al. Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons. Biogeosciences 13, 3225–3244 (2016).

    Google Scholar 

  29. Salgado-Labouriau, M. L. et al. Late Quaternary vegetational and climatic changes in Cerrado and palm swamp from central Brazil. Palaeogeogr., Palaeoclimatol. Palaeoecol. 128, 215–226 (1997).

    Google Scholar 

  30. Barberi, M., Salgado-Labouriau, M. L. & Sugio, K. Paleovegetation and paleoclimate of Vereda de Águas Emendadas, central Brazil. J. S. Am. Earth Sci. 13, 241–254 (2000).

    Google Scholar 

  31. Escobar-Torrez, K., Ledru, M. P., Cassino, R. F., Bianchini, P. R. & Yokohama, E. Long- and short-term vegetation change and inferred climate dynamics and anthropogenic activity in the central Cerrado during the Holocene. J. Quat. Sci. 39, 130–144 (2023).

    Google Scholar 

  32. Ledru, M. P., Mourguiart, P., Ceccantini, G., Turcq, B. & Sifeddine, A. Tropical climates in the game of two hemispheres revealed by abrupt climatic change. Geology 30, 275–278 (2002).

    Google Scholar 

  33. Guerra, M. D., Ledru, M. P., Xavier, S. A. S., Santos, R. A. & Araújo, F. S. Late Holocene changes in vegetation and fire within a forest refuge in the Araripe region, Northeastern Brazil. The Holocene 34, 1687–1699 (2024).

    Google Scholar 

  34. Bueno, L. & Isnardis, A. Peopling central Brazilian plateau at the onset of the Holocene: Building territorial histories. Quatern. Int. 473, 144–160 (2018).

    Google Scholar 

  35. Ledru, M. P. & Araújo, F. S. The Cerrado and restinga pathways: two ancient biotic corridors in the neotropics. Front. Biogeogr. https://doi.org/10.21425/F5FBG59398 (2023).

    Google Scholar 

  36. Bond, W. J., Midgley, G. F. & Woodward, F. I. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Glob Chang. Biol. 9, 973–982 (2003).

    Google Scholar 

  37. Daniau, A. L. et al. Predictability of biomass burning in response to climate changes. Global Biogeochem. Cycles. 26 https://doi.org/10.1029/2011GB004249 (2012).

  38. Piperno, D. Phytoliths and microscopic charcoal from leg 155: A vegetational and fire history of the Amazon basin during the last 75 Ky. Proc. Ocean. Drill. Progr. 155, 411–418 (1997).

    Google Scholar 

  39. Cassino, R. F., Ledru, M. P., Santos, R. A. & Favier, C. Vegetation and fire variability in the central Cerrados (Brazil) during the Pleistocene–Holocene transition was influenced by oscillations in the SASM boundary belt. Q. Sci. Rev. 232, 106209. https://doi.org/10.1016/j.quascirev.2020.106209 (2020).

    Google Scholar 

  40. Lombardo, U. et al. Early Holocene crop cultivation and landscape modification in Amazonia. Nature https://doi.org/10.1038/s41586-020-2162-7 (2020).

    Google Scholar 

  41. Oliveira, U. et al. Modeling fuel loads dynamics and fire spread probability in the Brazilian Cerrado. For. Ecol. Manag. 482, 118889 (2021).

    Google Scholar 

  42. Pereira, A. C., Oliveira, S. L. J., Pereira, J. M. C. & Turkman, A. Modelling fire frequency in a Cerrado savanna protected area. PLoS ONE. 9, e102380. https://doi.org/10.1371/journal.pone.0102380 (2014).

    Google Scholar 

  43. Gruhn, R. Evidence grows for early peopling of the Americas. Nature 584 (2020).

  44. Fidelis, A. F. & Zirondi, H. L. And after fire, the Cerrado flowers: A review of post-fire flowering in a tropical savanna. Flora 280, 151849. https://doi.org/10.1016/j.flora.2021.151849 (2021).

    Google Scholar 

  45. Pilon, N. A. L. et al. The diversity of post-fire regeneration strategies in the Cerrado ground layer. J. Ecol. 109, 154–166 (2021).

    Google Scholar 

  46. Oliveras, I. et al. Effects of fire regimes on herbaceous biomass and nutrient dynamics in the Brazilian savanna. Int. J. Wildland Fire. 22, 368–380 (2013).

    Google Scholar 

  47. Horák-Terra, I. et al. Late Quaternary vegetation and climate dynamics in central‐eastern Brazil: insights from a ~ 35k Cal a BP peat record in the Cerrado biome. J. Quat. Sci. 35, 664–676 (2020).

    Google Scholar 

  48. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Google Scholar 

  49. Clark, J. S. Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling. Quatern. Res. 30, 67–80 (1988).

    Google Scholar 

  50. Gavin, D. G., Hu, F. S., Lertzman, K. & Corbett, P. Weak Climatic control of stand-scale fire history during the late Holocene. Ecology 87, 1722–1732 (2006).

    Google Scholar 

  51. Peters, M. E. & Higuera, P. E. Quantifying the source area of macroscopic charcoal with a particle dispersal model. Quatern. Res. 67, 304–310 (2007).

    Google Scholar 

  52. Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S. & Brown, T. A. Vegetation mediated the impacts of post-glacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol. Monogr. 79, 201–219 (2009).

    Google Scholar 

  53. Finsinger, W. & Bonici, I. Tapas an R package to perform trend and peaks analysis. Zenodo https://doi.org/10.5281/zenodo.6344463 (2022).

    Google Scholar 

  54. Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 6, 213–217 (2013).

    Google Scholar 

  55. EPICA Community Members. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).

    Google Scholar 

  56. Capron, E. et al. Synchronising EDML and NorthGRIP ice cores using d18O of atmospheric oxygen (d18Oatm) and CH4 measurements over MIS5 (80–123 kyr). Q. Sci. Rev. 29, 222–234 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank Sandrine Canal, Sylvie Rouland and Vincent Montade (ISEM), Carlo Musco de Caires, Auriane Mousnier and Nolwenn Bourhis students of the Master “Chrono-environnement et paléoécologie” (CEPAGE) at the University of Montpellier for their assistance with the analyses.

Funding

This work is part of the “Cerrados & Fogos” program at IRD-ISEM, of the project ANR SESAME “Human paleoecology, social and cultural evolution among first settlements in Southern America” (ANR-320-C03-0005). K.E.T. benefited from a PhD position funded by the IRD ARTS program and the French Embassy in Bolivia. R.F.C. benefited from a South-North IRD grant during her stay at ISEM. The work benefited from the ‘Investissement d’Avenir’ grant managed by the Agence Nationale de la Recherche (CEBA, ref. ANR‐10‐LABX‐25‐01), and from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)/Brazil (Universal 28/2018–408393/2018-1, and Research Productivity Scholarship granted to I. Horák-Terra [process no. 302120/2022-0]), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)/Brazil (Universal 001/2022 - APQ-00458-22).

Author information

Authors and Affiliations

  1. Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier CNRS IRD, Place Eugène Bataillon, cc061, Montpellier, 34000, France

    Marie-Pierre Ledru & Katerine Escobar-Torrez

  2. Departamento de Geologia, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000, Minas Gerais, Brazil

    Raquel Franco Cassino

  3. Instituto de Ciências Agrárias, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Unaí, 38610-000, Minas Gerais, Brazil

    Ingrid Horák-Terra

  4. Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, São Paulo, Brazil

    Vânia Pivello

Authors
  1. Marie-Pierre Ledru
    View author publications

    Search author on:PubMed Google Scholar

  2. Raquel Franco Cassino
    View author publications

    Search author on:PubMed Google Scholar

  3. Katerine Escobar-Torrez
    View author publications

    Search author on:PubMed Google Scholar

  4. Ingrid Horák-Terra
    View author publications

    Search author on:PubMed Google Scholar

  5. Vânia Pivello
    View author publications

    Search author on:PubMed Google Scholar

Contributions

**MPL** Conceptualization; Data curation; Funding acquisition; Investigation; Methodology; Project administration; Resources; Visualization; Writing – original draft; Writing –review and editing**RFC** Conceptualization; Data curation; Funding acquisition; Investigation; Methodology; Visualization; Writing – original draft; Writing –reviewand editing**KET** Conceptualization; Investigation; Methodology; Visualization; Writing – original draft; Writing –review and editing**IHT** Investigation; Data curation; Funding acquisition; Writing – original draft; Writing –review & editing**VP** Investigation; Writing – original draft; Writing –review and editing.

Corresponding author

Correspondence to Marie-Pierre Ledru.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledru, MP., Franco Cassino, R., Escobar-Torrez, K. et al. 30,000 years of fire history in the Cerrado. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38119-0

Download citation

  • Received: 13 September 2025

  • Accepted: 29 January 2026

  • Published: 07 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38119-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Fire regimes
  • Pleistocene
  • Insolation
  • Tropical savanna
  • CO2
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene