Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Platelet-rich plasma promotes cellular recovery from nicotine-induced toxicity via autophagy modulation
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 February 2026

Platelet-rich plasma promotes cellular recovery from nicotine-induced toxicity via autophagy modulation

  • Julie Vérièpe-Salerno1,2,
  • José Antonio Cancela3,
  • Solange Vischer4,
  • Antoine Turzi4,
  • Muriel Cuendet1,2,
  • Catherine Giannopoulou3 &
  • …
  • Sarah Berndt4,5 

Scientific Reports , Article number:  (2026) Cite this article

  • 566 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cell biology
  • Diseases

Abstract

Chronic exposure to nicotine significantly exacerbates periodontitis, a prevalent inflammatory disease, by inducing cellular processes such as autophagy and inflammation in gingival fibroblasts. Current therapies often fail to fully address these cellular alterations in smokers, highlighting a need for innovative therapeutic and regenerative approaches. This study explores the therapeutic potential of Platelet-Rich Plasma (PRP), a blood-derived product, to modulate nicotine-induced biological activities in primary gingival fibroblasts, particularly in the case of periodontitis in smokers. Gingival fibroblasts were treated with increasing concentrations of nicotine, which led to senescence and autophagy. Nicotine at high concentrations triggered cellular vacuolization, and a decrease in metabolism, viability and proliferation. Concomitant cell treatment with 10% PRP reversed nicotine effects and significantly increased cell migration potential. In Caenorhabditis elegans, PRP reduced the nicotine-induced autophagic activity. A screening of the gingival fibroblast secretome revealed a modulation of autophagy-related cytokines in response to nicotine and/or PRP. The findings demonstrate that PRP could effectively inhibit nicotine-induced autophagy in gingival fibroblasts, offering insights into its possible use as a therapeutic tool for managing periodontitis in smokers. The study underscores the potential of PRP in altering disease progression by modulating key cellular processes affected by smoking.

Similar content being viewed by others

Single-cell spatial atlas of smoking-induced changes in human gingival tissues

Article Open access 01 August 2025

CDX1 improves nicotine induced cardiac fibroblasts activation and cardiomyocyte hypertrophy by alleviating autophagic flux impairment through modulation of LAPTM4B

Article Open access 22 March 2025

Inactivation of phosphodiesterase-4B gene in rat nucleus accumbens shell by CRISPR/Cas9 or positive allosteric modulation of the protein affects the motivation to chronically self-administer nicotine

Article Open access 31 January 2024

Data availability

All data generated or analyzed during this study are included in this published article. Experiments were realized in accordance with ARRIVE guidelines.

References

  1. Kinane, D. F., Stathopoulou, P. G. & Papapanou, P. N. Periodontal diseases. Nat. Rev. Dis. Prim. 3, 17038. https://doi.org/10.1038/nrdp.2017.38 (2017).

    Google Scholar 

  2. Kinane, D. F. Causation and pathogenesis of periodontal disease. Periodontology 2000(25), 8–20. https://doi.org/10.1034/j.1600-0757.2001.22250102.x (2001).

    Google Scholar 

  3. Giannopoulou, C., Geinoz, A. & Cimasoni, G. Effects of nicotine on periodontal ligament fibroblasts in vitro. J. Clin. Periodontol. 26, 49–55. https://doi.org/10.1034/j.1600-051x.1999.260109.x (1999).

    Google Scholar 

  4. Kang, S. W. et al. Effects of nicotine on apoptosis in human gingival fibroblasts. Arch. Oral Biol. 56, 1091–1097. https://doi.org/10.1016/j.archoralbio.2011.03.016 (2011).

    Google Scholar 

  5. Pabst, M. J. et al. Inhibition of neutrophil and monocyte defensive functions by nicotine. J. Periodontol. 66, 1047–1055. https://doi.org/10.1902/jop.1995.66.12.1047 (1995).

    Google Scholar 

  6. Holliday, R. S., Campbell, J. & Preshaw, P. M. Effect of nicotine on human gingival, periodontal ligament and oral epithelial cells. a systematic review of the literature. J. Dent. 86(81), 88. https://doi.org/10.1016/j.jdent.2019.05.030 (2019).

    Google Scholar 

  7. Apatzidou, D. A. The role of cigarette smoking in periodontal disease and treatment outcomes of dental implant therapy. Periodontology 2000(90), 45–61. https://doi.org/10.1111/prd.12449 (2022).

    Google Scholar 

  8. Gomez-Virgilio, L. et al. Autophagy: a key regulator of homeostasis and disease: an overview of molecular mechanisms and modulators. Cells https://doi.org/10.3390/cells11152262 (2022).

    Google Scholar 

  9. Zhang, W. et al. Platelet-Rich plasma for the treatment of tissue infection: preparation and clinical evaluation. Tissue Eng. Part B, Rev. 25(225), 236. https://doi.org/10.1089/ten.TEB.2018.0309 (2019).

    Google Scholar 

  10. Arpornmaeklong, P., Kochel, M., Depprich, R., Kubler, N. R. & Wurzler, K. K. Influence of platelet-rich plasma (PRP) on osteogenic differentiation of rat bone marrow stromal cells An in vitro study. Int. J. Oral Maxillofac. Surg. 33(60), 70. https://doi.org/10.1054/ijom.2003.0492 (2004).

    Google Scholar 

  11. Berndt, S., Turzi, A., Pittet-Cuenod, B. & Modarressi, A. Autologous Platelet-Rich Plasma (CuteCell PRP) safely boosts in vitro human fibroblast expansion. Tissue Eng. Part A 25, 1550–1563. https://doi.org/10.1089/ten.TEA.2018.0335 (2019).

    Google Scholar 

  12. Kobayashi, E. et al. Effects of platelet rich plasma (PRP) on human gingival fibroblast, osteoblast and periodontal ligament cell behaviour. BMC Oral Health 17, 91. https://doi.org/10.1186/s12903-017-0381-6 (2017).

    Google Scholar 

  13. Wang, X., Zhang, Y., Choukroun, J., Ghanaati, S. & Miron, R. J. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Platelets 29, 48–55. https://doi.org/10.1080/09537104.2017.1293807 (2018).

    Google Scholar 

  14. Xu, J., Gou, L., Zhang, P., Li, H. & Qiu, S. Platelet-rich plasma and regenerative dentistry. Aust. Dent. J. 65, 131–142. https://doi.org/10.1111/adj.12754 (2020).

    Google Scholar 

  15. Sun, J. et al. Emerging roles of platelet concentrates and platelet-derived extracellular vesicles in regenerative periodontology and implant dentistry. APL Bioeng. 6, 031503. https://doi.org/10.1063/5.0099872 (2022).

    Google Scholar 

  16. Heasman, L. et al. The effect of smoking on periodontal treatment response: a review of clinical evidence. J. Clin. Periodontol. 33, 241–253. https://doi.org/10.1111/j.1600-051X.2006.00902.x (2006).

    Google Scholar 

  17. Kinane, D. F. & Chestnutt, I. G. Smoking and periodontal disease. Crit. Rev. Oral Biol. Med. 11, 356–365. https://doi.org/10.1177/10454411000110030501 (2000).

    Google Scholar 

  18. Raulin, L. A., McPherson, J. C. 3rd., McQuade, M. J. & Hanson, B. S. The effect of nicotine on the attachment of human fibroblasts to glass and human root surfaces in vitro. J. Periodontol. 59, 318–325. https://doi.org/10.1902/jop.1988.59.5.318 (1988).

    Google Scholar 

  19. Tipton, D. A. & Dabbous, M. K. Effects of nicotine on proliferation and extracellular matrix production of human gingival fibroblasts in vitro. J. Periodontol. 66, 1056–1064. https://doi.org/10.1902/jop.1995.66.12.1056 (1995).

    Google Scholar 

  20. Colombo, G. et al. Oxidative damage in human gingival fibroblasts exposed to cigarette smoke. Free Radic. Biol. Med. 52, 1584–1596. https://doi.org/10.1016/j.freeradbiomed.2012.02.030 (2012).

    Google Scholar 

  21. Kim, B. S. et al. Effects of nicotine on proliferation and osteoblast differentiation in human alveolar bone marrow-derived mesenchymal stem cells. Life Sci. 90, 109–115. https://doi.org/10.1016/j.lfs.2011.10.019 (2012).

    Google Scholar 

  22. Chioran, D. et al. Nicotine exerts cytotoxic effects in a panel of healthy cell lines and strong irritating potential on blood vessels. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph19148881 (2022).

    Google Scholar 

  23. Benowitz, N. L., Bernert, J. T., Caraballo, R. S., Holiday, D. B. & Wang, J. Optimal serum cotinine levels for distinguishing cigarette smokers and nonsmokers within different racial/ethnic groups in the United States between 1999 and 2004. Am. J. Epidemiol. 169, 236–248. https://doi.org/10.1093/aje/kwn301 (2009).

    Google Scholar 

  24. Benowitz, N. L., Hukkanen, J. & Jacob, P. 3rd Nicotine chemistry, metabolism, kinetics and biomarkers. Handb. Exp. Pharmacol. https://doi.org/10.1007/978-3-540-69248-5_2 (2009).

    Google Scholar 

  25. Marinucci, L., Bodo, M., Balloni, S., Locci, P. & Baroni, T. Sub-toxic nicotine concentrations affect extracellular matrix and growth factor signaling gene expressions in human osteoblasts. J. Cell. Physiol. 229, 2038–2048. https://doi.org/10.1002/jcp.24661 (2014).

    Google Scholar 

  26. Caliri, A. W., Tommasi, S. & Besaratinia, A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat. Res. Rev. Mutat. Res. 787, 108365. https://doi.org/10.1016/j.mrrev.2021.108365 (2021).

    Google Scholar 

  27. Xing, R. et al. Low-dose nicotine promotes autophagy of cardiomyocytes by upregulating HO-1 expression. Biochem. Biophys. Res. Commun. 522, 1015–1021. https://doi.org/10.1016/j.bbrc.2019.11.086 (2020).

    Google Scholar 

  28. Wu, X. et al. Dual regulation of nicotine on NLRP3 inflammasome in macrophages with the involvement of lysosomal destabilization, ROS and alpha7nAChR. Inflammation 48, 61–74. https://doi.org/10.1007/s10753-024-02036-z (2025).

    Google Scholar 

  29. Rinaldi, S. et al. Oral nicotine pouches with an aftertaste? Part 2: in vitro toxicity in human gingival fibroblasts. Arch. Toxicol. 97, 2343–2356. https://doi.org/10.1007/s00204-023-03554-9 (2023).

    Google Scholar 

  30. Bielecki, T. & Dohan Ehrenfest, D. M. Platelet-rich plasma (PRP) and Platelet-Rich Fibrin (PRF): surgical adjuvants, preparations for in situ regenerative medicine and tools for tissue engineering. Curr. Pharm. Biotechnol. 13, 1121–1130. https://doi.org/10.2174/138920112800624292 (2012).

    Google Scholar 

  31. Rebimbas Guerreiro, S. et al. Platelet-Rich plasma and platelet-rich fibrin in endodontics: a scoping review. Int. J. Mol. Sci. https://doi.org/10.3390/ijms26125479 (2025).

    Google Scholar 

  32. Cho, E. B. et al. Effect of platelet-rich plasma on proliferation and migration in human dermal fibroblasts. J. Cosmet. Dermatol. 18, 1105–1112. https://doi.org/10.1111/jocd.12780 (2019).

    Google Scholar 

  33. Taylor, L. M. & Khachigian, L. M. Induction of platelet-derived growth factor B-chain expression by transforming growth factor-beta involves transactivation by Smads. J. Biol. Chem. 275, 16709–16716. https://doi.org/10.1074/jbc.275.22.16709 (2000).

    Google Scholar 

  34. Giarratana, A. O., Prendergast, C. M., Salvatore, M. M. & Capaccione, K. M. TGF-beta signaling: critical nexus of fibrogenesis and cancer. J. Transl. Med. 22, 594. https://doi.org/10.1186/s12967-024-05411-4 (2024).

    Google Scholar 

  35. Mehrabani, D., Seghatchian, J. & Acker, J. P. Platelet rich plasma in treatment of musculoskeletal pathologies. Transfus Apher. Sci. 58, 102675. https://doi.org/10.1016/j.transci.2019.102675 (2019).

    Google Scholar 

  36. Li, C. X. et al. Inhibiting autophagy promotes collagen degradation by regulating matrix metalloproteinases in pancreatic stellate cells. Life Sci. 208, 276–283. https://doi.org/10.1016/j.lfs.2018.07.049 (2018).

    Google Scholar 

  37. Gao, Y. et al. ATG5-regulated CCL2/MCP-1 production in myeloid cells selectively modulates anti-malarial CD4(+) Th1 responses. Autophagy 20, 1398–1417. https://doi.org/10.1080/15548627.2024.2319512 (2024).

    Google Scholar 

  38. Kolattukudy, P. E. & Niu, J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ. Res. 110, 174–189. https://doi.org/10.1161/CIRCRESAHA.111.243212 (2012).

    Google Scholar 

  39. Korhonen, E. et al. SQSTM1/p62 regulates the production of IL-8 and MCP-1 in IL-1beta-stimulated human retinal pigment epithelial cells. Cytokine 116, 70–77. https://doi.org/10.1016/j.cyto.2018.12.015 (2019).

    Google Scholar 

  40. An, Q., Yan, W., Zhao, Y. & Yu, K. Enhanced neutrophil autophagy and increased concentrations of IL-6, IL-8, IL-10 and MCP-1 in rheumatoid arthritis. Int Immunopharmacol 65, 119–128. https://doi.org/10.1016/j.intimp.2018.09.011 (2018).

    Google Scholar 

  41. Qin, B., Zhou, Z., He, J., Yan, C. & Ding, S. IL-6 inhibits starvation-induced autophagy via the STAT3/Bcl-2 signaling pathway. Sci. Rep. 5, 15701. https://doi.org/10.1038/srep15701 (2015).

    Google Scholar 

  42. Festa, B. P. et al. Microglial-to-neuronal CCR5 signaling regulates autophagy in neurodegeneration. Neuron 111, 2021–2037. https://doi.org/10.1016/j.neuron.2023.04.006 (2023).

    Google Scholar 

  43. Zeng, Z., Lan, T., Wei, Y. & Wei, X. CCL5/CCR5 axis in human diseases and related treatments. Genes Dis. 9, 12–27. https://doi.org/10.1016/j.gendis.2021.08.004 (2022).

    Google Scholar 

  44. Veriepe-Salerno, J. et al. 2023 MALT-1 shortens lifespan by inhibiting autophagy in the intestine of C. elegans. Autophagy Rep. 2, 2277584. https://doi.org/10.1080/27694127.2023.2277584 (2023).

    Google Scholar 

  45. Fang, Y. & Svoboda, K. K. Nicotine inhibits myofibroblast differentiation in human gingival fibroblasts. J. Cell Biochem. 95, 1108–1119. https://doi.org/10.1002/jcb.20473 (2005).

    Google Scholar 

  46. Malhotra, R., Kapoor, A., Grover, V. & Kaushal, S. Nicotine and periodontal tissues. J. Indian Soc. Periodontol. 14, 72–79. https://doi.org/10.4103/0972-124X.65442 (2010).

    Google Scholar 

  47. Giannelli, A. et al. Utilization of platelet-rich plasma in oral surgery: a systematic review of the literature. J. Clin. Med. https://doi.org/10.3390/jcm14082844 (2025).

    Google Scholar 

  48. Gomri, F., Vischer, S., Turzi, A. & Berndt, S. Swiss medical devices for autologous regenerative medicine: from innovation to clinical validation. Pharmaceutics https://doi.org/10.3390/pharmaceutics14081617 (2022).

    Google Scholar 

  49. Omondi, R. O., Bellam, R., Ojwach, S. O., Jaganyi, D. & Fatokun, A. A. Palladium(II) complexes of tridentate bis(benzazole) ligands: structural, substitution kinetics, DNA interactions and cytotoxicity studies. J. Inorg. Biochem. 210, 111156. https://doi.org/10.1016/j.jinorgbio.2020.111156 (2020).

    Google Scholar 

  50. Thome, M. P. et al. Ratiometric analysis of acridine orange staining in the study of acidic organelles and autophagy. J. Cell Sci. 129, 4622–4632. https://doi.org/10.1242/jcs.195057 (2016).

    Google Scholar 

  51. Traganos, F. & Darzynkiewicz, Z. Lysosomal proton pump activity: supravital cell staining with acridine orange differentiates leukocyte subpopulations. Methods Cell Biol. 41, 185–194. https://doi.org/10.1016/s0091-679x(08)61717-3 (1994).

    Google Scholar 

  52. T., S. in Wormbook 1-11 (2006).

  53. Berndt, S. et al. Angiogenesis Is differentially modulated by platelet-derived products. Biomedicines https://doi.org/10.3390/biomedicines9030251 (2021).

    Google Scholar 

Download references

Acknowledgements

The C. elegans strains were kindly provided by the C. elegans Genetics Center (University of Minnesota, MN, USA). A great thanks to Nicolas Liaudet, who coded the script for picture quantification on QuPath and to the Bioimaging facility of the UNIGE for their help. We thank Vanessa Fétaud Lapierre and Gaël Vieille for allowing us the use of the UFA facility and its equipment.

Author information

Authors and Affiliations

  1. School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland

    Julie Vérièpe-Salerno & Muriel Cuendet

  2. Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland

    Julie Vérièpe-Salerno & Muriel Cuendet

  3. Division of Regenerative Dental Medicine and Periodontology, Faculty of Medicine, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland

    José Antonio Cancela & Catherine Giannopoulou

  4. Regen Lab SA, 1052, Le Mont-sur-Lausanne, Switzerland

    Solange Vischer, Antoine Turzi & Sarah Berndt

  5. Faculty of Medicine, Geneva University, 1205, Geneva, Switzerland

    Sarah Berndt

Authors
  1. Julie Vérièpe-Salerno
    View author publications

    Search author on:PubMed Google Scholar

  2. José Antonio Cancela
    View author publications

    Search author on:PubMed Google Scholar

  3. Solange Vischer
    View author publications

    Search author on:PubMed Google Scholar

  4. Antoine Turzi
    View author publications

    Search author on:PubMed Google Scholar

  5. Muriel Cuendet
    View author publications

    Search author on:PubMed Google Scholar

  6. Catherine Giannopoulou
    View author publications

    Search author on:PubMed Google Scholar

  7. Sarah Berndt
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.B. and C.G. designed the study. S.B, JA.C, performed the cell experiments. J.VS. designed and performed the experiments in *C. elegans* . A.T, M.C, S.V and C.G. contributed to the final version of the manuscript.

Corresponding author

Correspondence to Sarah Berndt.

Ethics declarations

Competing interest

The authors declare the following competing interest: S.B. is head project manager, cell therapy, at Regen Lab; an employee of ouis employed by and A.T. is the CEO of Regen Lab SA. The authors receive salary from Regen Lab SA. The study received financial support, materials and reagents from Regen Lab SA. Regen Lab SA develops and commercializes products in the field related to this study and could reasonably benefit from its findings. All other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vérièpe-Salerno, J., Cancela, J.A., Vischer, S. et al. Platelet-rich plasma promotes cellular recovery from nicotine-induced toxicity via autophagy modulation. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38188-1

Download citation

  • Received: 24 October 2025

  • Accepted: 29 January 2026

  • Published: 09 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38188-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Nicotine
  • Platelet rich plasma
  • Autophagy
  • Periodontitis
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing