Abstract
The study of biological rhythms has been widely explored in terrestrial and marine systems. Time-lapse photography can document species behaviour, avoiding observer disturbance, and record abundance and interactions. The present work aims to assess the role of the rock-boring bivalve Pholas dactylus Linnaeus, 1758 as a habitat former in the Conero Riviera, documenting the behaviour of the species associated with the common piddock and its burrows. The scan method approach was used to record two behaviours along 6 days of recording: Burrow Interaction (BI) and No Interaction (NI). A total of 34 taxa belonging to 5 phyla were identified, each one represented by one class: Gastropoda, Polychaeta, Malacostraca, Echinoidea and Teleostei. BI data were mainly related to standing on top of burrows, entering or leaving the burrows, or digging to keep it clean, with Gastropoda, Malacostraca and Teleostei displaying distinct activity patterns. The use of video monitoring enabled the analysis of species activity across diel cycles, highlighting the ecological value of the burrows created by P. dactylus and its role as an ecosystem engineer. This also provided new insights into the behavioural dynamics of benthic organisms associated with cryptic habitats.
Data availability
Data is provided within the manuscript or supplementary information files.
References
Davidson, T. M., Shanks, A. L. & Rumrill, S. S. The composition and density of fauna utilizing burrow microhabitats created by a non-native burrowing crustacean (Sphaeroma quoianum). Biol. Invasions. 12, 1403–1413 (2010).
Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).
Coleman, F. C. & Williams, S. L. Overexploiting marine ecosystem engineers: Potential consequences for biodiversity. Trends Ecol. Evol. 17, 40–44 (2002).
Pocklington, J. B., Keough, M. J., O’Hara, T. D. & Bellgrove, A. The influence of canopy cover on the ecological function of a key autogenic ecosystem engineer. Diversity 11, 79 (2019).
Cheung, P. Y., Nozawa, Y. & Miki, T. Ecosystem engineering structures facilitate ecological resilience: A coral reef model. Ecol. Res. 36, 673–685 (2021).
Giordano, B., Bramanti, L., Perrin, J., Kahramanoğulları, O. & Vielzeuf, D. Early stages of development in mediterranean red coral (Corallium rubrum): The key role of sclerites. Front Mar. Sci 10, 1052854 (2023).
Cerrano, C. et al. The role of sponge bioerosion in mediterranean coralligenous accretion. in Mediterranean Ecosystems: Structures and Processes (eds Faranda, F. M., Guglielmo, L. & Spezie, G.) 235–240 (Springer Milan, Milano, (2001).
Di Camillo, C. et al. Review of the indexes to assess the ecological quality of coralligenous reefs: Towards a unified approach. Front Mar. Sci 10, (2023).
Pinn, E. H., Thompson, R. C. & Hawkins, S. J. Piddocks (Mollusca: bivalvia: Pholadidae) increase topographical complexity and species diversity in the intertidal. Mar. Ecol. Prog Ser. 355, 173–182 (2008).
Bagur, M., Gutiérrez, J. L., Arribas, L. P. & Palomo, M. G. Vacant bivalve boreholes increase invertebrate species richness in a physically harsh, low intertidal platform. Diversity 11, 39 (2019).
Schönberg, C. H. L., Fang, J. K. H., Carreiro-Silva, M., Tribollet, A. & Wisshak, M. Bioerosion: The other ocean acidification problem. ICES J. Mar. Sci. 74, 895–925 (2017).
Davidson, T. M., Altieri, A. H., Ruiz, G. M. & Torchin, M. E. Bioerosion in a changing world: A conceptual framework. Ecol. Lett. 21, 422–438 (2018).
Tribollet, A., Grange, J. S., Parra, H., Rodolfo-Metalpa, R. & Carreiro-Silva, M. Limited carbonate dissolution by boring microflora at two volcanically acidified temperate sites: Ischia (Italy, mediterranean Sea) and Faial (Azores, NE Atlantic Ocean). Global Biogeochem. Cycles. 32, 78–91 (2018).
Bishop, M. J., Vozzo, M. L., Mayer-Pinto, M. & Dafforn, K. A. Complexity–biodiversity relationships on marine urban structures: Reintroducing habitat heterogeneity through eco-engineering. Philos. Trans. R Soc. Lond. B Biol. Sci. 377, 20210393 (2022).
Enochs, I. C. et al. Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs. Pro R Soc. B: Biol. Sci. 283, 20161742 (2016).
Fanelli, G., Piraino, S., Belmonte, G., Geraci, S. & Boero, F. Human predation along Apulian Rocky Coasts (SE Italy): Desertification caused by Lithophaga lithophaga (Mollusca) fisheries. Mar. Ecol. Prog Ser. 110, 1–8 (1994).
Guidetti, P., Fraschetti, S., Terlizzi, A. & Boero, F. Effects of desertification caused by Lithophaga lithophaga (Mollusca) fishery on Littoral fish assemblages along Rocky Coasts of southeastern Italy. Conserv. Biol. 18, 1417–1423 (2004).
Colletti, A. et al. The date mussel Lithophaga lithophaga: Biology, ecology and the multiple impacts of its illegal fishery. Sci. Total Environ. 744, 140866 (2020).
Overton, M. W., Sischo, W. M., Temple, G. D. & Moore, D. A. Using time-lapse video photography to assess dairy cattle lying behavior in a free-stall barn. J. Dairy. Sci. 85, 2407–2413 (2002).
Enrichetti, F. et al. Ecological role and phylogenetic position of a new habitat-forming species (Canalipalpata, Sabellidae) from the mediterranean mesophotic soft bottoms. Estuar. Coast Shelf Sci. 265, 107737 (2022).
Girard, F. et al. Phenology in the deep sea: Seasonal and tidal feeding rhythms in a keystone octocoral. Pro R Soc. B: Biol. Sci. 289, 20221033 (2022).
Eddy, T. D. et al. Energy flow through marine ecosystems: Confronting transfer efficiency. Trends Ecol. Evol. 36, 76–86 (2021).
Tosa, M. I. et al. The rapid rise of next-generation natural history. Front Ecol. Evol 9, (2021).
Solan, M. & Kennedy, R. Observation and quantification of in situ animal-sediment relations using time-lapse sediment profile imagery (t-SPI). Mar. Ecol. Prog Ser. 228, 179–191 (2002).
Parajka, J., Haas, P., Kirnbauer, R., Jansa, J. & Blöschl, G. Potential of time-lapse photography of snow for hydrological purposes at the small catchment scale. Hydrol. Process. 26, 3327–3337 (2012).
Link, J. S. & Watson, R. A. Global ecosystem overfishing: Clear delineation within real limits to production. Sci. Adv. 5, eaav0474 (2019).
Bañón, R., Rolán, E. & García-Tasende, M. First record of the purple dye murex Bolinus brandaris (Gastropoda: Muricidae) and a revised list of Non native molluscs from Galician waters (Spain, NE Atlantic). AI 3, 331–334 (2008).
Abidli, S., Lahbib, Y. & Menif, N. T. E. Relative growth and reproductive cycle in two populations of Bolinus brandaris (Gastropoda: Muricidae) from Northern Tunisia (Bizerta lagoon and small Gulf of Tunis). Biol 67, 751–761 (2012).
Lahbib, Y. et al. Preferential prey and attacking strategy of the purple dye murex (Bolinus brandaris) on three common bivalve species from Tunisia (Central mediterranean Sea). Mar. Biol. Res. 18, 147–159 (2022).
Seed, R. Invertebrate predators and their role in structuring coastal and estuarine populations of filter feeding bivalves. In Bivalve Filter Feeders: in Estuarine and Coastal Ecosystem Processes (ed Dame, R. F.) 149–195 (Springer, Berlin, 1993).
Domínguez, R. et al. Predation risk increases in estuarine bivalves stressed by low salinity. Mar. Biol. 168, 132 (2021).
Richter, A., Amor, M. & Durfort, M. The anatomy and ultrastructure of the gland of Leiblein of Bolinus brandaris and Coralliophila meyendorffii, two neogastropod species with different ecology and feeding strategies. In Proceedings of the SEB Annual Main Meeting, Prague, Czech Republic (2013). https://doi.org/10.13140/RG.2.1.4282.5763
Golani, D., Ben-Tuvia, A. & Galil, B. Feeding habits of the Suez Canal migrant squirrelfish, Sargocentron rubrum, in the mediterranean sea. Isr. J. Ecol. Evol. 32 (4), 194–204 (1983).
Ruffo, S. The Amphipoda of the Mediterranean. Part 4 (Musée Océanographique, 1998).
Harris, R. Copepods. In Encyclopedia of Ocean Sciences (Second Edition) (ed Steele, J. H.) 640–650 (Academic, Oxford, (2001).
Kyomo, J. Feeding patterns, habits and food storage in Pilumnus vespertilio (brachyura: xanthidae). B Mar. Sci 65, (1999).
De Grave, S. D. & Turner, J. R. Activity rhythms of the squat lobsters, Galathea squamifera and G. Strigosa (Crustacea: decapoda: Anomura) in South-West Ireland. J. Mar. Biol. Assoc. U K. 77, 273–276 (2009).
Riedel, B., Zuschin, M. & Stachowitsch, M. Tolerance of benthic macrofauna to hypoxia and anoxia in shallow coastal seas: A realistic scenario. Mar. Ecol. Prog Ser. 458, 39–52 (2012).
Kyomo, J. Reproductive behavior of the play-dead hairy Pilumnus vespertilio (Crustacea: brachyura: Pilumnidae) with respect to carapace size. Bull. Mar. Sci. 68 (1), 37–46 (2001).
Nickell, L. A. & Sayer, M. D. J. Occurrence and activity of mobile macrofauna on a Sublittoral reef: Diel and seasonal variation. J. Mar. Biol. Ass. 78, 1061–1082 (1998).
Albano, P. & Favero, F. Mimachlamys varia (Mollusca, Bivalvia) epibiontic on Galathea strigosa (Decapoda, Galatheidae) in the North Adriatic sea. Crustaceana 84, 107–115 (2011).
Mateo-Ramírez, Á., Urra, J., Rueda, J. L., Marina, P. & García Raso, J. E. Decapod assemblages associated with shallow macroalgal communities in the Northwestern Alboran sea: Microhabitat use and temporal variability. J. Sea Res. 135, 84–94 (2018).
Wirtz, P. The behaviour of the mediterranean Tripterygion species (Pisces, Blennioidei). Z. Tierpsychol. 48, 142–174 (1978).
Gonçalves, E. & Faria, C. Patterns of microhabitat utilisation in blennies. In The Biology of Blennies. (Science. Enfield, NH. 405–440 (2009).
Orlando-Bonaca, M. & Lipej, L. Ecological survey of endolithic blennies spawning in a sandstone habitat in the Gulf of Trieste. Acta Adriat. 49 (3), 233–244 (2008).
Wilson, S. K., Patzner, R. A., Gonçalves, E. J., Hastings, P. A. & Kapoor, B. G. Diversity in the diet and feeding habits of blennies. In The Biology of Blennies. 139–162. (Science, Enfield, NH (2009).
Ponti, M. & Mescalchin, P. Guida alla scoperta degli organismi marini. Associazione ‘‘Tegnue di Chioggia’’- onlus. In Meraviglie sommerse delle Tegnùe. (pp. 331–409). (Editrice La Mandragora 2008).
Zander, C. D. et al. Fishes of the North-eastern Atlantic and the Mediterranean Vol. ,3 (United Nations Educational Scientific and Cultural Organization, 1986).
Kotrschal, K. Blennies and endolithic bivalves: Differential utilization of shelter in Adriatic Blenniidae (Pisces: Teleostei). Mar. Ecol. 9, 253–269 (1988).
Madera-Santana, S., Rodríguez-García, C., Castro-Gutiérrez, J., Domínguez-Bustos, Á. R. & Cabrera-Castro, R. Discarded but not dismissed: A comprehensive study of the feeding habits of the brown comber (Serranus hepatus, (Linneaus 1758) in the Gulf of Cádiz (NE Atlantic). Fishes 8, 541 (2023).
Yapici, S., Filiz, H. & Ozkan, O. Age, growth, reproduction and feeding habits of brown comber, Serranus hepatus (L., 1758) in Eastern Aegean sea. Biharean Biol. 6 (2), 99–107 (2012).
Morigi, C. et al. Benthic foraminiferal evidence for the formation of the holocene mud-belt and bathymetrical evolution in the central Adriatic sea. Mar. Micropaleontol. 57, 25–49 (2005).
Bilecenoglu, M. Growth and feeding habits of the brown comber, serranus hepatus (Linnaeus, 1758) in Izmir Bay, Aegean sea. Acta Adriat. 50 (1), 105–110 (2009).
Kristensen, H. H. et al. The behaviour of broiler chickens in different light sources and illuminances. Appl. Anim. Behav. Sci. 103, 75–89 (2007).
Bateson, M. & Martin, P. Measuring Behaviour: an Introductory Guide (Cambridge University, 2021).
Cartoni Mancinelli, A. et al. New approaches to selecting a scan-sampling method for chicken behavioral observations and their practical implications. Sci. Rep. 13, 17177 (2023).
Grossman, G. D., De sosta, A., Freeman, M. C. & Lobόn-Cerviá, J. Microhabitat use in a mediterranean riverine fish assemblage: Fishes of the lower Matarrana. Oecologia 73, 490–500 (1987).
Casoli, E. et al. Comparative analysis of mollusc assemblages from different hard bottom habitats in the central tyrrhenian sea. Diversity 11, 74 (2019).
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26 (1), 32–143 (2001).
Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).
Anderson, M., Gorley, R. N. & Clarke, K. PERMANOVA + for Primer: Guide to Software and Statistical Methods. (Plymouth: Primer-E (2008).
Acknowledgements
The authors would like to thank Matteo Ricotti for the help during the image analysis.
Funding
This work is funded by the PRIN project “Corals and other benthic species HIdden LIfe histories. The tools of Behavioral ecology and Stable isotope analysis - CHILI”, financed by European Union – Next Generation EU, Mission 4, Component CUP I53D23003300006, ref. code 2022NRM7NX and by the PADI Foundation (grant number 74956).
Author information
Authors and Affiliations
Contributions
Study Design and Methodology, all authors; Experiment, T.M., C.C., B.C. and S.P. Data Treatment, T.M.; Interpretation, T.M., C.C., B.C. and S.P.; Original Draft Writing, T.M. and M.C.; Manuscript Review and Editing, all authors; Funding acquisition, C.C. and S.P. All authors contributed critically to the drafts and gave final approval for publication.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Marrocco, T., Coppari, M., Cerrano, C. et al. The ecological role of Pholas dactylus (Mollusca, Bivalvia) empty burrows. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38212-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-38212-4