Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
The ecological role of Pholas dactylus (Mollusca, Bivalvia) empty burrows
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 11 February 2026

The ecological role of Pholas dactylus (Mollusca, Bivalvia) empty burrows

  • Teo Marrocco1,
  • Martina Coppari1,2,
  • Carlo Cerrano1,3,
  • Chiara Gregorin1,4,
  • Torcuato Pulido Mantas1,2,
  • Camilla Roveta1,2,
  • Stefania Puce1 na1 &
  • …
  • Barbara Calcinai1 na1 

Scientific Reports , Article number:  (2026) Cite this article

  • 318 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Behavioural ecology
  • Biodiversity
  • Marine biology

Abstract

The study of biological rhythms has been widely explored in terrestrial and marine systems. Time-lapse photography can document species behaviour, avoiding observer disturbance, and record abundance and interactions. The present work aims to assess the role of the rock-boring bivalve Pholas dactylus Linnaeus, 1758 as a habitat former in the Conero Riviera, documenting the behaviour of the species associated with the common piddock and its burrows. The scan method approach was used to record two behaviours along 6 days of recording: Burrow Interaction (BI) and No Interaction (NI). A total of 34 taxa belonging to 5 phyla were identified, each one represented by one class: Gastropoda, Polychaeta, Malacostraca, Echinoidea and Teleostei. BI data were mainly related to standing on top of burrows, entering or leaving the burrows, or digging to keep it clean, with Gastropoda, Malacostraca and Teleostei displaying distinct activity patterns. The use of video monitoring enabled the analysis of species activity across diel cycles, highlighting the ecological value of the burrows created by P. dactylus and its role as an ecosystem engineer. This also provided new insights into the behavioural dynamics of benthic organisms associated with cryptic habitats.

Data availability

Data is provided within the manuscript or supplementary information files.

References

  1. Davidson, T. M., Shanks, A. L. & Rumrill, S. S. The composition and density of fauna utilizing burrow microhabitats created by a non-native burrowing crustacean (Sphaeroma quoianum). Biol. Invasions. 12, 1403–1413 (2010).

    Google Scholar 

  2. Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).

    Google Scholar 

  3. Coleman, F. C. & Williams, S. L. Overexploiting marine ecosystem engineers: Potential consequences for biodiversity. Trends Ecol. Evol. 17, 40–44 (2002).

    Google Scholar 

  4. Pocklington, J. B., Keough, M. J., O’Hara, T. D. & Bellgrove, A. The influence of canopy cover on the ecological function of a key autogenic ecosystem engineer. Diversity 11, 79 (2019).

    Google Scholar 

  5. Cheung, P. Y., Nozawa, Y. & Miki, T. Ecosystem engineering structures facilitate ecological resilience: A coral reef model. Ecol. Res. 36, 673–685 (2021).

    Google Scholar 

  6. Giordano, B., Bramanti, L., Perrin, J., Kahramanoğulları, O. & Vielzeuf, D. Early stages of development in mediterranean red coral (Corallium rubrum): The key role of sclerites. Front Mar. Sci 10, 1052854 (2023).

  7. Cerrano, C. et al. The role of sponge bioerosion in mediterranean coralligenous accretion. in Mediterranean Ecosystems: Structures and Processes (eds Faranda, F. M., Guglielmo, L. & Spezie, G.) 235–240 (Springer Milan, Milano, (2001).

    Google Scholar 

  8. Di Camillo, C. et al. Review of the indexes to assess the ecological quality of coralligenous reefs: Towards a unified approach. Front Mar. Sci 10, (2023).

  9. Pinn, E. H., Thompson, R. C. & Hawkins, S. J. Piddocks (Mollusca: bivalvia: Pholadidae) increase topographical complexity and species diversity in the intertidal. Mar. Ecol. Prog Ser. 355, 173–182 (2008).

    Google Scholar 

  10. Bagur, M., Gutiérrez, J. L., Arribas, L. P. & Palomo, M. G. Vacant bivalve boreholes increase invertebrate species richness in a physically harsh, low intertidal platform. Diversity 11, 39 (2019).

    Google Scholar 

  11. Schönberg, C. H. L., Fang, J. K. H., Carreiro-Silva, M., Tribollet, A. & Wisshak, M. Bioerosion: The other ocean acidification problem. ICES J. Mar. Sci. 74, 895–925 (2017).

    Google Scholar 

  12. Davidson, T. M., Altieri, A. H., Ruiz, G. M. & Torchin, M. E. Bioerosion in a changing world: A conceptual framework. Ecol. Lett. 21, 422–438 (2018).

    Google Scholar 

  13. Tribollet, A., Grange, J. S., Parra, H., Rodolfo-Metalpa, R. & Carreiro-Silva, M. Limited carbonate dissolution by boring microflora at two volcanically acidified temperate sites: Ischia (Italy, mediterranean Sea) and Faial (Azores, NE Atlantic Ocean). Global Biogeochem. Cycles. 32, 78–91 (2018).

    Google Scholar 

  14. Bishop, M. J., Vozzo, M. L., Mayer-Pinto, M. & Dafforn, K. A. Complexity–biodiversity relationships on marine urban structures: Reintroducing habitat heterogeneity through eco-engineering. Philos. Trans. R Soc. Lond. B Biol. Sci. 377, 20210393 (2022).

    Google Scholar 

  15. Enochs, I. C. et al. Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs. Pro R Soc. B: Biol. Sci. 283, 20161742 (2016).

    Google Scholar 

  16. Fanelli, G., Piraino, S., Belmonte, G., Geraci, S. & Boero, F. Human predation along Apulian Rocky Coasts (SE Italy): Desertification caused by Lithophaga lithophaga (Mollusca) fisheries. Mar. Ecol. Prog Ser. 110, 1–8 (1994).

    Google Scholar 

  17. Guidetti, P., Fraschetti, S., Terlizzi, A. & Boero, F. Effects of desertification caused by Lithophaga lithophaga (Mollusca) fishery on Littoral fish assemblages along Rocky Coasts of southeastern Italy. Conserv. Biol. 18, 1417–1423 (2004).

    Google Scholar 

  18. Colletti, A. et al. The date mussel Lithophaga lithophaga: Biology, ecology and the multiple impacts of its illegal fishery. Sci. Total Environ. 744, 140866 (2020).

    Google Scholar 

  19. Overton, M. W., Sischo, W. M., Temple, G. D. & Moore, D. A. Using time-lapse video photography to assess dairy cattle lying behavior in a free-stall barn. J. Dairy. Sci. 85, 2407–2413 (2002).

    Google Scholar 

  20. Enrichetti, F. et al. Ecological role and phylogenetic position of a new habitat-forming species (Canalipalpata, Sabellidae) from the mediterranean mesophotic soft bottoms. Estuar. Coast Shelf Sci. 265, 107737 (2022).

    Google Scholar 

  21. Girard, F. et al. Phenology in the deep sea: Seasonal and tidal feeding rhythms in a keystone octocoral. Pro R Soc. B: Biol. Sci. 289, 20221033 (2022).

    Google Scholar 

  22. Eddy, T. D. et al. Energy flow through marine ecosystems: Confronting transfer efficiency. Trends Ecol. Evol. 36, 76–86 (2021).

    Google Scholar 

  23. Tosa, M. I. et al. The rapid rise of next-generation natural history. Front Ecol. Evol 9, (2021).

  24. Solan, M. & Kennedy, R. Observation and quantification of in situ animal-sediment relations using time-lapse sediment profile imagery (t-SPI). Mar. Ecol. Prog Ser. 228, 179–191 (2002).

    Google Scholar 

  25. Parajka, J., Haas, P., Kirnbauer, R., Jansa, J. & Blöschl, G. Potential of time-lapse photography of snow for hydrological purposes at the small catchment scale. Hydrol. Process. 26, 3327–3337 (2012).

    Google Scholar 

  26. Link, J. S. & Watson, R. A. Global ecosystem overfishing: Clear delineation within real limits to production. Sci. Adv. 5, eaav0474 (2019).

    Google Scholar 

  27. Bañón, R., Rolán, E. & García-Tasende, M. First record of the purple dye murex Bolinus brandaris (Gastropoda: Muricidae) and a revised list of Non native molluscs from Galician waters (Spain, NE Atlantic). AI 3, 331–334 (2008).

    Google Scholar 

  28. Abidli, S., Lahbib, Y. & Menif, N. T. E. Relative growth and reproductive cycle in two populations of Bolinus brandaris (Gastropoda: Muricidae) from Northern Tunisia (Bizerta lagoon and small Gulf of Tunis). Biol 67, 751–761 (2012).

    Google Scholar 

  29. Lahbib, Y. et al. Preferential prey and attacking strategy of the purple dye murex (Bolinus brandaris) on three common bivalve species from Tunisia (Central mediterranean Sea). Mar. Biol. Res. 18, 147–159 (2022).

    Google Scholar 

  30. Seed, R. Invertebrate predators and their role in structuring coastal and estuarine populations of filter feeding bivalves. In Bivalve Filter Feeders: in Estuarine and Coastal Ecosystem Processes (ed Dame, R. F.) 149–195 (Springer, Berlin, 1993).

    Google Scholar 

  31. Domínguez, R. et al. Predation risk increases in estuarine bivalves stressed by low salinity. Mar. Biol. 168, 132 (2021).

    Google Scholar 

  32. Richter, A., Amor, M. & Durfort, M. The anatomy and ultrastructure of the gland of Leiblein of Bolinus brandaris and Coralliophila meyendorffii, two neogastropod species with different ecology and feeding strategies. In Proceedings of the SEB Annual Main Meeting, Prague, Czech Republic (2013). https://doi.org/10.13140/RG.2.1.4282.5763

  33. Golani, D., Ben-Tuvia, A. & Galil, B. Feeding habits of the Suez Canal migrant squirrelfish, Sargocentron rubrum, in the mediterranean sea. Isr. J. Ecol. Evol. 32 (4), 194–204 (1983).

    Google Scholar 

  34. Ruffo, S. The Amphipoda of the Mediterranean. Part 4 (Musée Océanographique, 1998).

  35. Harris, R. Copepods. In Encyclopedia of Ocean Sciences (Second Edition) (ed Steele, J. H.) 640–650 (Academic, Oxford, (2001).

    Google Scholar 

  36. Kyomo, J. Feeding patterns, habits and food storage in Pilumnus vespertilio (brachyura: xanthidae). B Mar. Sci 65, (1999).

  37. De Grave, S. D. & Turner, J. R. Activity rhythms of the squat lobsters, Galathea squamifera and G. Strigosa (Crustacea: decapoda: Anomura) in South-West Ireland. J. Mar. Biol. Assoc. U K. 77, 273–276 (2009).

    Google Scholar 

  38. Riedel, B., Zuschin, M. & Stachowitsch, M. Tolerance of benthic macrofauna to hypoxia and anoxia in shallow coastal seas: A realistic scenario. Mar. Ecol. Prog Ser. 458, 39–52 (2012).

    Google Scholar 

  39. Kyomo, J. Reproductive behavior of the play-dead hairy Pilumnus vespertilio (Crustacea: brachyura: Pilumnidae) with respect to carapace size. Bull. Mar. Sci. 68 (1), 37–46 (2001).

    Google Scholar 

  40. Nickell, L. A. & Sayer, M. D. J. Occurrence and activity of mobile macrofauna on a Sublittoral reef: Diel and seasonal variation. J. Mar. Biol. Ass. 78, 1061–1082 (1998).

    Google Scholar 

  41. Albano, P. & Favero, F. Mimachlamys varia (Mollusca, Bivalvia) epibiontic on Galathea strigosa (Decapoda, Galatheidae) in the North Adriatic sea. Crustaceana 84, 107–115 (2011).

    Google Scholar 

  42. Mateo-Ramírez, Á., Urra, J., Rueda, J. L., Marina, P. & García Raso, J. E. Decapod assemblages associated with shallow macroalgal communities in the Northwestern Alboran sea: Microhabitat use and temporal variability. J. Sea Res. 135, 84–94 (2018).

    Google Scholar 

  43. Wirtz, P. The behaviour of the mediterranean Tripterygion species (Pisces, Blennioidei). Z. Tierpsychol. 48, 142–174 (1978).

    Google Scholar 

  44. Gonçalves, E. & Faria, C. Patterns of microhabitat utilisation in blennies. In The Biology of Blennies. (Science. Enfield, NH. 405–440 (2009).

    Google Scholar 

  45. Orlando-Bonaca, M. & Lipej, L. Ecological survey of endolithic blennies spawning in a sandstone habitat in the Gulf of Trieste. Acta Adriat. 49 (3), 233–244 (2008).

    Google Scholar 

  46. Wilson, S. K., Patzner, R. A., Gonçalves, E. J., Hastings, P. A. & Kapoor, B. G. Diversity in the diet and feeding habits of blennies. In The Biology of Blennies. 139–162. (Science, Enfield, NH (2009).

    Google Scholar 

  47. Ponti, M. & Mescalchin, P. Guida alla scoperta degli organismi marini. Associazione ‘‘Tegnue di Chioggia’’- onlus. In Meraviglie sommerse delle Tegnùe. (pp. 331–409). (Editrice La Mandragora 2008).

  48. Zander, C. D. et al. Fishes of the North-eastern Atlantic and the Mediterranean Vol. ,3 (United Nations Educational Scientific and Cultural Organization, 1986).

  49. Kotrschal, K. Blennies and endolithic bivalves: Differential utilization of shelter in Adriatic Blenniidae (Pisces: Teleostei). Mar. Ecol. 9, 253–269 (1988).

    Google Scholar 

  50. Madera-Santana, S., Rodríguez-García, C., Castro-Gutiérrez, J., Domínguez-Bustos, Á. R. & Cabrera-Castro, R. Discarded but not dismissed: A comprehensive study of the feeding habits of the brown comber (Serranus hepatus, (Linneaus 1758) in the Gulf of Cádiz (NE Atlantic). Fishes 8, 541 (2023).

    Google Scholar 

  51. Yapici, S., Filiz, H. & Ozkan, O. Age, growth, reproduction and feeding habits of brown comber, Serranus hepatus (L., 1758) in Eastern Aegean sea. Biharean Biol. 6 (2), 99–107 (2012).

    Google Scholar 

  52. Morigi, C. et al. Benthic foraminiferal evidence for the formation of the holocene mud-belt and bathymetrical evolution in the central Adriatic sea. Mar. Micropaleontol. 57, 25–49 (2005).

    Google Scholar 

  53. Bilecenoglu, M. Growth and feeding habits of the brown comber, serranus hepatus (Linnaeus, 1758) in Izmir Bay, Aegean sea. Acta Adriat. 50 (1), 105–110 (2009).

    Google Scholar 

  54. Kristensen, H. H. et al. The behaviour of broiler chickens in different light sources and illuminances. Appl. Anim. Behav. Sci. 103, 75–89 (2007).

    Google Scholar 

  55. Bateson, M. & Martin, P. Measuring Behaviour: an Introductory Guide (Cambridge University, 2021).

  56. Cartoni Mancinelli, A. et al. New approaches to selecting a scan-sampling method for chicken behavioral observations and their practical implications. Sci. Rep. 13, 17177 (2023).

    Google Scholar 

  57. Grossman, G. D., De sosta, A., Freeman, M. C. & Lobόn-Cerviá, J. Microhabitat use in a mediterranean riverine fish assemblage: Fishes of the lower Matarrana. Oecologia 73, 490–500 (1987).

    Google Scholar 

  58. Casoli, E. et al. Comparative analysis of mollusc assemblages from different hard bottom habitats in the central tyrrhenian sea. Diversity 11, 74 (2019).

    Google Scholar 

  59. Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26 (1), 32–143 (2001).

    Google Scholar 

  60. Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).

    Google Scholar 

  61. Anderson, M., Gorley, R. N. & Clarke, K. PERMANOVA + for Primer: Guide to Software and Statistical Methods. (Plymouth: Primer-E (2008).

Download references

Acknowledgements

The authors would like to thank Matteo Ricotti for the help during the image analysis.

Funding

This work is funded by the PRIN project “Corals and other benthic species HIdden LIfe histories. The tools of Behavioral ecology and Stable isotope analysis - CHILI”, financed by European Union – Next Generation EU, Mission 4, Component CUP I53D23003300006, ref. code 2022NRM7NX and by the PADI Foundation (grant number 74956).

Author information

Author notes
  1. Stefania Puce and Barbara Calcinai contributed equally to this work.

Authors and Affiliations

  1. Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche s.n.c, Ancona, 60131, Italy

    Teo Marrocco, Martina Coppari, Carlo Cerrano, Chiara Gregorin, Torcuato Pulido Mantas, Camilla Roveta, Stefania Puce & Barbara Calcinai

  2. National Biodiversity Future Center (NBFC), Piazza Marina 61, Palermo, 90133, Italy

    Martina Coppari, Torcuato Pulido Mantas & Camilla Roveta

  3. Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, Napoli, 80122, Italy

    Carlo Cerrano

  4. Fano Marine Center, Viale Adriatico 1, Fano, 61032, Italy

    Chiara Gregorin

Authors
  1. Teo Marrocco
    View author publications

    Search author on:PubMed Google Scholar

  2. Martina Coppari
    View author publications

    Search author on:PubMed Google Scholar

  3. Carlo Cerrano
    View author publications

    Search author on:PubMed Google Scholar

  4. Chiara Gregorin
    View author publications

    Search author on:PubMed Google Scholar

  5. Torcuato Pulido Mantas
    View author publications

    Search author on:PubMed Google Scholar

  6. Camilla Roveta
    View author publications

    Search author on:PubMed Google Scholar

  7. Stefania Puce
    View author publications

    Search author on:PubMed Google Scholar

  8. Barbara Calcinai
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Study Design and Methodology, all authors; Experiment, T.M., C.C., B.C. and S.P. Data Treatment, T.M.; Interpretation, T.M., C.C., B.C. and S.P.; Original Draft Writing, T.M. and M.C.; Manuscript Review and Editing, all authors; Funding acquisition, C.C. and S.P. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Martina Coppari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marrocco, T., Coppari, M., Cerrano, C. et al. The ecological role of Pholas dactylus (Mollusca, Bivalvia) empty burrows. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38212-4

Download citation

  • Received: 03 June 2025

  • Accepted: 29 January 2026

  • Published: 11 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38212-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Time-lapse
  • Allogenic engineer
  • Bioerosion
  • Biodiversity
  • Habitat complexity
  • North Adriatic
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing