Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
GluN2A-mediated currents and calcium signal in human iPSC-derived neurons
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 18 February 2026

GluN2A-mediated currents and calcium signal in human iPSC-derived neurons

  • Sergio Escamilla1,2,3 na1,
  • Carlos Avilés-Granados1,2,3 na1,
  • Francisco Andrés Peralta1,
  • Ana V. Paternain1,
  • María-Ángeles Cortés-Gómez1,14,
  • Henrik Zetterberg4,5,6,7,8,9,10,11,
  • Elvira de la Peña1,3,
  • Federico Salas-Lucia12,13,
  • Javier Sáez-Valero1,2,3 &
  • …
  • Inmaculada Cuchillo-Ibáñez  ORCID: orcid.org/0000-0002-3689-55181,2,3 

Scientific Reports , Article number:  (2026) Cite this article

  • 330 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cell biology
  • Neuroscience

Abstract

Gene expression data indicate that during human brain development, neurons change the NMDA receptor (NMDAR) subunit composition to modulate their function, favouring the GluN2A subunit over GluN2B—a hallmark of neuronal maturation. However, evidence supporting this phenomenon in human iPSC-derived neurons remains elusive. Here, using two differentiation methods in parallel (BrainPhys Neuronal Medium, BPM, and Neural Maintenance Medium, NMM), we provide evidence of increased synaptic localization of NMDARs during neuronal maturation and that GluN2A subunit is crucial for the NMDA physiological function-inducing inward currents and calcium entrance at 60 days of differentiation. Calcium responses to specific agonists, particularly NMDA, were elevated in cells cultured under BPM conditions. This is likely attributable to their more mature neuronal phenotype and the RNA-seq identified upregulation of genes involved in intracellular calcium signaling proteins. Our results offer insight into how glutamate receptor subunits mature during brain development, delineating approaches to study NMDAR activity in health and disease.

Similar content being viewed by others

Common synaptic phenotypes arising from diverse mutations in the human NMDA receptor subunit GluN2A

Article Open access 28 February 2022

Targeting NMDA receptors in neuropsychiatric disorders by drug screening on human neurons derived from pluripotent stem cells

Article Open access 09 June 2022

GluN2A and GluN2B NMDA receptors use distinct allosteric routes

Article Open access 05 August 2021

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Greig, L. C., Woodworth, M. B., Galazo, M. J., Padmanabhan, H. & Macklis, J. D. Molecular logic of neocortical projection neuron specification, development and diversity. Nat. Rev. Neurosci. 14, 755–769 (2013).

    Google Scholar 

  2. Prince, G. S., Reynolds, M., Martina, V. & Sun, H. Gene-environmental regulation of the postnatal post-mitotic neuronal maturation. Trends Genet. 40, 480–494 (2024).

    Google Scholar 

  3. Wallace, J. L. & Pollen, A. A. Human neuronal maturation comes of age: Cellular mechanisms and species differences. Nat. Rev. Neurosci. 25, 7–29 (2024).

    Google Scholar 

  4. Hunt, D. L. & Castillo, P. E. Synaptic plasticity of NMDA receptors: Mechanisms and functional implications. Curr. Opin. Neurobiol. 22, 496–508 (2012).

    Google Scholar 

  5. Lee, L.-J., Lo, F.-S. & Erzurumlu, R. S. NMDA receptor-dependent regulation of axonal and dendritic branching. J. Neurosci. 25, 2304–2311 (2005).

    Google Scholar 

  6. Ikonomidou, C. et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1979(283), 70–74 (1999).

    Google Scholar 

  7. Sanz-Clemente, A., Nicoll, R. A. & Roche, K. W. Diversity in NMDA receptor composition. Neuroscientist 19, 62–75 (2013).

    Google Scholar 

  8. van der Aart, J. et al. Evaluation of the novel PET Tracer [11C]HACH242 for imaging the GluN2B NMDA receptor in non-human primates. Mol. Imaging Biol. 21, 676–685 (2019).

    Google Scholar 

  9. Paoletti, P., Bellone, C. & Zhou, Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383–400 (2013).

    Google Scholar 

  10. Sanz-Clemente, A., Nicoll, R. A. & Roche, K. W. Diversity in NMDA receptor composition: Many regulators, many consequences. Neuroscientist 19, 62–75 (2013).

    Google Scholar 

  11. Scherzer, C. R. et al. Expression of N-Methyl-D-Aspartate receptor subunit mRNAs in the human brain: Hippocampus and cortex. J. Comp. Neurol. 390, 75–90 (1998).

    Google Scholar 

  12. Kornhuber, J., Mack-Burkhardt, F. & Riederer, P. Regional distribution of [3H]MK-801 binding sites in the human brain. Brain Res. 489, 397–399 (1989).

    Google Scholar 

  13. Pegasiou, C. M. et al. Age-dependent changes in synaptic NMDA receptor composition in adult human cortical neurons. Cereb. Cortex 30, 4246–4256 (2020).

    Google Scholar 

  14. Bagasrawala, I., Memi, F., Radonjić, V. & Zecevic, N. N. N -Methyl d-aspartate receptor expression patterns in the human fetal cerebral cortex. Cereb. Cortex https://doi.org/10.1093/cercor/bhw289 (2016).

    Google Scholar 

  15. Bar-Shira, O., Maor, R. & Chechik, G. Gene expression switching of receptor subunits in human brain development. PLoS Comput. Biol. 11, 20 (2015).

    Google Scholar 

  16. Jantzie, L. L. et al. Developmental expression of N-Methyl-d-aspartate (NMDA) receptor subunits in human white and gray matter: Potential mechanism of increased vulnerability in the immature brain. Cereb. Cortex 25, 482–495 (2015).

    Google Scholar 

  17. Dumas, T. C. Developmental regulation of cognitive abilities: Modified composition of a molecular switch turns on associative learning. Prog. Neurobiol. 76, 189–211 (2005).

    Google Scholar 

  18. Harrison, P. J. & Bannerman, D. M. GRIN2A (NR2A): A gene contributing to glutamatergic involvement in schizophrenia. Mol. Psychiatry 28, 3568–3572 (2023).

    Google Scholar 

  19. Mangano, G. D. et al. De novo GRIN2A variants associated with epilepsy and autism and literature review. Epilepsy Behav. 129, 108604 (2022).

    Google Scholar 

  20. Reutlinger, C. et al. Deletions in 16p13 including GRIN2A in patients with intellectual disability, various dysmorphic features, and seizure disorders of the rolandic region. Epilepsia 51, 1870–1873 (2010).

    Google Scholar 

  21. Maltese, M. et al. Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum. Elife 7, e33331 (2018).

    Google Scholar 

  22. Sinclair, D. et al. Effects of sex and DTNBP1 (dysbindin) null gene mutation on the developmental GluN2B-GluN2A switch in the mouse cortex and hippocampus. J. Neurodev. Disord. 8, 14 (2016).

    Google Scholar 

  23. Barria, A. & Malinow, R. Subunit-specific NMDA receptor trafficking to synapses. Neuron 35, 345–353 (2002).

    Google Scholar 

  24. Flint, A. C., Maisch, U. S., Weishaupt, J. H., Kriegstein, A. R. & Monyer, H. NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J. Neurosci. 17, 2469–2476 (1997).

    Google Scholar 

  25. Sheng, M., Cummings, J., Roldan, L. A., Jan, Y. N. & Jan, L. Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144–147 (1994).

    Google Scholar 

  26. Philpot, B. D. et al. Effect of transgenic overexpression of NR2B on NMDA receptor function and synaptic plasticity in visual cortex. Neuropharmacology 41, 762–770 (2001).

    Google Scholar 

  27. Yashiro, K. & Philpot, B. D. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55, 1081–1094 (2008).

    Google Scholar 

  28. Baez, M. V., Cercato, M. C. & Jerusalinsky, D. A. NMDA receptor subunits change after synaptic plasticity induction and learning and memory acquisition. Neural Plast. 2018, 5093048 (2018).

    Google Scholar 

  29. Bellone, C. & Nicoll, R. A. Rapid bidirectional switching of synaptic NMDA receptors. Neuron 55, 779–785 (2007).

    Google Scholar 

  30. Franchini, L. et al. Linking NMDA receptor synaptic retention to synaptic plasticity and cognition. iScience 19, 927–939 (2019).

    Google Scholar 

  31. Thomas, C. G., Miller, A. J. & Westbrook, G. L. Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J. Neurophysiol. 95, 1727–1734 (2006).

    Google Scholar 

  32. Kirson, E. D. & Yaari, Y. Synaptic NMDA receptors in developing mouse hippocampal neurones: Functional properties and sensitivity to ifenprodil. J. Physiol. 497, 437–455 (1996).

    Google Scholar 

  33. Law, A. J. et al. Expression of NMDA receptor NR1, NR2A and NR2B subunit mRNAs during development of the human hippocampal formation. Eur. J. Neurosci. 18, 1197–1205 (2003).

    Google Scholar 

  34. Tovar, K. R. & Westbrook, G. L. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J. Neurosci. 19, 4180–4188 (1999).

    Google Scholar 

  35. Stocca, G. & Vicini, S. Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons. J. Physiol. 507, 13–24 (1998).

    Google Scholar 

  36. Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    Google Scholar 

  37. Satir, T. M. et al. Accelerated neuronal and synaptic maturation by BrainPhys medium increases Aβ secretion and alters Aβ peptide ratios from iPSC-derived cortical neurons. Sci. Rep. 10, 601 (2020).

    Google Scholar 

  38. Shi, Y., Kirwan, P. & Livesey, F. J. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat. Protoc. 7, 1836–1846 (2012).

    Google Scholar 

  39. Yen, Y.-P. et al. Dlk1-Dio3 locus-derived lncRNAs perpetuate postmitotic motor neuron cell fate and subtype identity. Elife 7, e38080 (2018).

    Google Scholar 

  40. Surmacz, B. et al. DLK1 promotes neurogenesis of human and mouse pluripotent stem cell-derived neural progenitors via modulating notch and BMP signalling. Stem Cell Rev. Rep. 8, 459–471 (2012).

    Google Scholar 

  41. Jensen, G. S., Leon-Palmer, N. E. & Townsend, K. L. Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism 123, 154837 (2021).

    Google Scholar 

  42. Ioannides, Y., Lokulo-Sodipe, K., Mackay, D. J. G., Davies, J. H. & Temple, I. K. Temple syndrome: Improving the recognition of an underdiagnosed chromosome 14 imprinting disorder: an analysis of 51 published cases. J. Med. Genet. 51, 495–501 (2014).

    Google Scholar 

  43. Bakrania, P. et al. Mutations in BMP4 Cause Eye, Brain, and digit developmental anomalies: Overlap between the BMP4 and hedgehog signaling pathways. Am. J. Human Genet. 82, 304–319 (2008).

    Google Scholar 

  44. Roussel-Gervais, A. et al. Genetic knockout of NTRK2 by CRISPR/Cas9 decreases neurogenesis and favors glial progenitors during differentiation of neural progenitor stem cells. Front. Cell. Neurosci. 17, 1289966 (2023).

    Google Scholar 

  45. Gomez-Skarmeta, J. L. Xiro, a Xenopus homolog of the Drosophila Iroquois complex genes, controls development at the neural plate. EMBO J. 17, 181–190 (1998).

    Google Scholar 

  46. de la Calle-Mustienes, E., Glavic, A., Modolell, J. & Gómez-Skarmeta, J. L. Xiro homeoproteins coordinate cell cycle exit and primary neuron formation by upregulating neuronal-fate repressors and downregulating the cell-cycle inhibitor XGadd45-γ. Mech. Dev. 119, 69–80 (2002).

    Google Scholar 

  47. Cheng, C. W. et al. Zebrafish homologue irx1a is required for the differentiation of serotonergic neurons. Dev. Dyn. 236, 2661–2667 (2007).

    Google Scholar 

  48. Dou, Z., Son, J. E. & Hui, C. Irx3 and Irx5 - novel regulatory factors of postnatal hypothalamic neurogenesis. Front. Neurosci. 15, 763856 (2021).

    Google Scholar 

  49. Dong, D. et al. Stable expression of FoxA1 promotes pluripotent P19 embryonal carcinoma cells to be neural Stem-Like Cells. Gene Expr. 15, 153–162 (2012).

    Google Scholar 

  50. Karalay, Ö. et al. Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc. Natl. Acad. Sci. 108, 5807–5812 (2011).

    Google Scholar 

  51. Lavado, A., Lagutin, O. V., Chow, L. M. L., Baker, S. J. & Oliver, G. Prox1 Is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biol. 8, e1000460 (2010).

    Google Scholar 

  52. Salman, M. M. et al. Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis. Brain 145, 64–75 (2022).

    Google Scholar 

  53. Hung, C.-C. et al. Astrocytic GAP43 induced by the TLR4/NF-κB/STAT3 axis attenuates astrogliosis-mediated microglial activation and neurotoxicity. J. Neurosci. 36, 2027–2043 (2016).

    Google Scholar 

  54. Liu, X., Bae, C., Gelman, B. B., Chung, J. M. & Tang, S.-J. A neuron-to-astrocyte Wnt5a signal governs astrogliosis during HIV-associated pain pathogenesis. Brain 145, 4108–4123 (2022).

    Google Scholar 

  55. Jiang, X., Knox, R., Pathipati, P. & Ferriero, D. Developmental localization of NMDA receptors, Src and MAP kinases in mouse brain. Neurosci. Lett. 503, 215–219 (2011).

    Google Scholar 

  56. Zhang, W., Ross, P. J., Ellis, J. & Salter, M. W. Targeting NMDA receptors in neuropsychiatric disorders by drug screening on human neurons derived from pluripotent stem cells. Transl. Psychiatry 12, 243 (2022).

    Google Scholar 

  57. Petralia, R. S. et al. Organization of NMDA receptors at extrasynaptic locations. Neuroscience 167, 68–87 (2010).

    Google Scholar 

  58. Gladding, C. M. & Raymond, L. A. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol. Cell. Neurosci. 48, 308–320 (2011).

    Google Scholar 

  59. Groc, L. et al. NMDA receptor surface mobility depends on NR2A-2B subunits. Proc. Natl. Acad. Sci. 103, 18769–18774 (2006).

    Google Scholar 

  60. Ivanov, A. et al. Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J. Physiol. 572, 789–798 (2006).

    Google Scholar 

  61. Tovar, K. R. & Westbrook, G. L. Mobile NMDA receptors at hippocampal synapses. Neuron 34, 255–264 (2002).

    Google Scholar 

  62. Rosenmund, C., Feltz, A. & Westbrook, G. Synaptic NMDA receptor channels have a low open probability. J. Neurosci. 15, 2788–2795 (1995).

    Google Scholar 

  63. Watkins, J. C. Pharmacology of excitatory amino acid transmitters. Adv. Biochem. Psychopharmacol. 29, 205–212 (1981).

    Google Scholar 

  64. Fischer, G. et al. Ro 25–6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. J. Pharmacol. Exp. Ther. 283, 1285–1292 (1997).

    Google Scholar 

  65. Auberson, Y. P. et al. 5-Phosphonomethylquinoxalinediones as competitive NMDA receptor antagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. Bioorg. Med. Chem. Lett. 12, 1099–1102 (2002).

    Google Scholar 

  66. Brini, M., Calì, T., Ottolini, D. & Carafoli, E. Neuronal calcium signaling: Function and dysfunction. Cell. Mol. Life Sci. 71, 2787–2814 (2014).

    Google Scholar 

  67. Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    Google Scholar 

  68. Zhu, S. et al. Mechanism of NMDA receptor inhibition and activation. Cell 165, 704–714 (2016).

    Google Scholar 

  69. Lee, H. C., Deng, Q. W. & Zhao, Y. J. The calcium signaling enzyme CD38 - a paradigm for membrane topology defining distinct protein functions. Cell Calcium 101, 102514 (2022).

    Google Scholar 

  70. Calcraft, P. J. et al. NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459, 596–600 (2009).

    Google Scholar 

  71. Sproul, A. A. et al. Characterization and molecular profiling of PSEN1 familial Alzheimer’s disease iPSC-derived neural progenitors. PLoS ONE 9, e84547 (2014).

    Google Scholar 

  72. Kondo, T. et al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12, 487–496 (2013).

    Google Scholar 

  73. Israel, M. A. et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482, 216–220 (2012).

    Google Scholar 

  74. Hedegaard, A. et al. Pro-maturational effects of human iPSC-derived cortical astrocytes upon iPSC-derived cortical neurons. Stem Cell Rep. 15, 38–51 (2020).

    Google Scholar 

  75. Klapper, S. D. et al. Astrocyte lineage cells are essential for functional neuronal differentiation and synapse maturation in human iPSC-derived neural networks. Glia 67, 1893–1909 (2019).

    Google Scholar 

  76. Jackson, T. C., Kotermanski, S. E., Jackson, E. K. & Kochanek, P. M. BrainPhys® increases neurofilament levels in CNS cultures, and facilitates investigation of axonal damage after a mechanical stretch-injury in vitro. Exp. Neurol. 300, 232–246 (2018).

    Google Scholar 

  77. Bardy, C. et al. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proc. Natl. Acad. Sci. 112, E2725 (2015).

    Google Scholar 

  78. von Bartheld, C. S., Bahney, J. & Herculano-Houzel, S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J. Comp. Neurol. 524, 3865–3895 (2016).

    Google Scholar 

  79. Shi, F., Corrales, C. E., Liberman, M. C. & Edge, A. S. B. BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium. Eur. J. Neurosci. 26, 3016–3023 (2007).

    Google Scholar 

  80. Moon, B.-S. et al. Bone morphogenetic protein 4 stimulates neuronal differentiation of neuronal stem cells through the ERK pathway. Exp. Mol. Med. 41, 116 (2009).

    Google Scholar 

  81. Voss, L., Bartos, M., Elgueta, C. & Sauer, J. F. Interneuron function and cognitive behavior are preserved upon postnatal removal of Lhx6. Sci. Rep. 12, 4923 (2022).

    Google Scholar 

  82. Kim, D. W. et al. Gene regulatory networks controlling differentiation, survival, and diversification of hypothalamic Lhx6-expressing GABAergic neurons. Commun. Biol. 4, 95 (2021).

    Google Scholar 

  83. Batista-Brito, R., MacHold, R., Klein, C. & Fishell, G. Gene expression in cortical interneuron precursors is prescient of their mature function. Cereb. Cortex 18, 2306–2317 (2008).

    Google Scholar 

  84. Pai, E. L. L. et al. Mafb and c-Maf Have prenatal compensatory and postnatal antagonistic roles in cortical interneuron fate and function. Cell Rep. 26, 1157-1173.e5 (2019).

    Google Scholar 

  85. Matta, J. A. et al. Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity. Nat. Neurosci. 16, 1032–1041 (2013).

    Google Scholar 

  86. Ruden, J. B., Dixit, M., Zepeda, J. C., Grueter, B. A. & Dugan, L. L. Robust expression of functional NMDA receptors in human induced pluripotent stem cell-derived neuronal cultures using an accelerated protocol. Front. Mol. Neurosci. 14, 777049 (2021).

    Google Scholar 

  87. Neagoe, I. et al. The GluN2B subunit represents a major functional determinant of NMDA receptors in human induced pluripotent stem cell-derived cortical neurons. Stem Cell Res. 28, 105–114 (2018).

    Google Scholar 

  88. Keefe, M. G., Steyert, M. R. & Nowakowski, T. J. Lineage-resolved atlas of the developing human cortex. Nature 647, 194–202 (2025).

    Google Scholar 

  89. Strehlow, V. et al. GRIN2A-related disorders: genotype and functional consequence predict phenotype. Brain 142, 80–92 (2019).

    Google Scholar 

  90. Verhaeghe, R., Elía-Zudaire, O., Escamilla, S., Sáez-Valero, J. & Pérez-Otaño, I. No evidence for cognitive decline or neurodegeneration in strain-matched Grin3a knockout mice. Alzheimers Dement. 19, 4264–4266 (2023).

    Google Scholar 

  91. Vyklicky, V. et al. Surface expression, function, and pharmacology of disease-associated mutations in the membrane domain of the human GluN2B subunit. Front. Mol. Neurosci. 11, 110 (2018).

    Google Scholar 

  92. Steg, L. C. et al. Novel epigenetic clock for fetal brain development predicts prenatal age for cellular stem cell models and derived neurons. Mol. Brain 14, 98 (2021).

    Google Scholar 

  93. Pasca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

    Google Scholar 

  94. Gordon, A. et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24, 331–342 (2021).

    Google Scholar 

  95. Alam El Din, D. M. et al. Human neural organoid microphysiological systems show the building blocks necessary for basic learning and memory. Commun. Biol. 8, 1237 (2025).

    Google Scholar 

  96. Harris, A. Z. & Pettit, D. L. Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices. J. Physiol. 584, 509–519 (2007).

    Google Scholar 

  97. Escamilla, S., Sáez-Valero, J. & Cuchillo-Ibáñez, I. NMDARs in Alzheimer’s disease: Between synaptic and extrasynaptic membranes. Int. J. Mol. Sci. 25, 10220 (2024).

    Google Scholar 

  98. Li, S. et al. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J. Neurosci. 31, 6627–6638 (2011).

    Google Scholar 

  99. Snyder, E. M. et al. Regulation of NMDA receptor trafficking by amyloid-β. Nat. Neurosci. 8, 1051–1058 (2005).

    Google Scholar 

  100. Tu, W. et al. DAPK1 Interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140, 222–234 (2010).

    Google Scholar 

  101. Wu, Q. J. & Tymianski, M. Targeting NMDA receptors in stroke: new hope in neuroprotection. Mol. Brain 11, 15 (2018).

    Google Scholar 

  102. Levine, M. S., Cepeda, C. & André, V. M. Location, location, location: Contrasting roles of synaptic and extrasynaptic NMDA receptors in Huntington’s disease. Neuron 65, 145–147 (2010).

    Google Scholar 

  103. Milnerwood, A. J. et al. Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron 65, 178–190 (2010).

    Google Scholar 

  104. Escamilla, S. et al. Synaptic and extrasynaptic distribution of NMDA receptors in the cortex of Alzheimer’s disease patients. Alzheimer’s Dementia 20, 8231–8245 (2024).

    Google Scholar 

  105. Parsons, M. P. & Raymond, L. A. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82, 279–293 (2014).

    Google Scholar 

  106. Yu, S. P., Jiang, M. Q., Shim, S. S., Pourkhodadad, S. & Wei, L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: Implications for preventive treatments of ischemic stroke and late-onset Alzheimer’s disease. Mol. Neurodegener. 18, 43 (2023).

    Google Scholar 

  107. Corbel, C., Hernandez, I., Wu, B. & Kosik, K. S. Developmental attenuation of N-methyl-D-aspartate receptor subunit expression by microRNAs. Neural Dev. 10, 20 (2015).

    Google Scholar 

  108. Rodenas-Ruano, A., Chávez, A. E., Cossio, M. J., Castillo, P. E. & Zukin, R. S. REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat. Neurosci. 15, 1382–1390 (2012).

    Google Scholar 

  109. Ferreira, J. S. et al. Co-agonists differentially tune GluN2B-NMDA receptor trafficking at hippocampal synapses. Elife 6, e25492 (2017).

    Google Scholar 

  110. Groc, L. et al. NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein reelin. J. Neurosci. 27, 10165–10175 (2007).

    Google Scholar 

  111. Matta, J. A., Ashby, M. C., Sanz-Clemente, A., Roche, K. W. & Isaac, J. T. R. mGluR5 and NMDA receptors drive the experience- and activity-dependent NMDA receptor NR2B to NR2A subunit switch. Neuron 70, 339–351 (2011).

    Google Scholar 

  112. Nolt, M. J. et al. EphB controls NMDA receptor function and synaptic targeting in a subunit-specific manner. J. Neurosci. 31, 5353–5364 (2011).

    Google Scholar 

  113. Rzechorzek, N. M. et al. Hypothermic preconditioning reverses tau ontogenesis in human cortical neurons and is mimicked by protein phosphatase 2A inhibition. EBioMedicine 3, 141–154 (2016).

    Google Scholar 

  114. Zhang, Y., Li, P., Feng, J. & Wu, M. Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol. Sci. 37, 1039–1047 (2016).

    Google Scholar 

  115. Lam, R. S., Töpfer, F. M., Wood, P. G., Busskamp, V. & Bamberg, E. Functional maturation of human stem cell-derived neurons in long-term cultures. PLoS ONE 12, e0169506 (2017).

    Google Scholar 

  116. Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785–798 (2013).

    Google Scholar 

  117. Nakamura, T. et al. Inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release evoked by metabotropic agonists and backpropagating action potentials in hippocampal CA1 pyramidal neurons. J. Neurosci. 20, 8365–8376 (2000).

    Google Scholar 

  118. McLeod, J. R., Shen, M., Kim, D. J. & Thayer, S. A. Neurotoxicity mediated by aberrant patterns of synaptic activity between rat hippocampal neurons in culture. J. Neurophysiol. 80, 2688–2698 (1998).

    Google Scholar 

  119. D’Andrea, T., Benedetti, M. C., Monaco, L., Rosa, A. & Fucile, S. Selective reduction of Ca2+ entry through the human nmda receptor: A quantitative study by simultaneous Ca2+ and Na+ imaging. Mol. Neurobiol. 61, 5841–5850 (2024).

    Google Scholar 

  120. Galiakberova, A. A. et al. IPSC-derived human neurons with GCaMP6s expression allow in vitro study of neurophysiological responses to neurochemicals. Neurochem. Res. 47, 952–966 (2022).

    Google Scholar 

  121. Pruunsild, P., Bengtson, C. P. & Bading, H. Networks of cultured iPSC-derived neurons reveal the human synaptic activity-regulated adaptive gene program. Cell Rep. 18, 122–135 (2017).

    Google Scholar 

  122. Hernandez, A. & Stohn, J. P. The type 3 deiodinase: Epigenetic control of brain thyroid hormone action and neurological function. Int. J. Mol. Sci. 19, 1804 (2018).

    Google Scholar 

  123. Mo, C.-F. et al. Loss of non-coding RNA expression from the DLK1-DIO3 imprinted locus correlates with reduced neural differentiation potential in human embryonic stem cell lines. Stem Cell Res. Ther. 6, 1 (2015).

    Google Scholar 

  124. Salas-Lucia, F., Escamilla, S., Bianco, A. C., Dumitrescu, A. & Refetoff, S. Impaired T3 uptake and action in MCT8-deficient cerebral organoids underlie Allan-Herndon-Dudley syndrome. JCI Insight 9, e174645 (2024).

    Google Scholar 

  125. Salas-Lucia, F. et al. Axonal T3 uptake and transport can trigger thyroid hormone signaling in the brain. Elife 12, e82683 (2023).

    Google Scholar 

  126. Salas-Lucia, F. Mapping Thyroid Hormone Action in the Human Brain. Thyroid® 34(815–826), 815 (2024).

    Google Scholar 

  127. Montalbán-Loro, R. et al. Dlk1 dosage regulates hippocampal neurogenesis and cognition. Proc. Natl. Acad. Sci. 118, e2015505118 (2021).

    Google Scholar 

  128. Ferrón, S. R. et al. Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475, 381–385 (2011).

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Juan Lerma for generously providing access to his laboratory facilities for the patch clamp experiments, for his assistance with data analysis and for his insightful contributions that greatly enriched this work.

Funding

This work was supported by grants from the Fondo de Investigaciones Sanitarias (PI22/01329, co-funded by the Fondo Europeo de Desarrollo Regional, FEDER “Investing in your future”), CIBERNED (Instituto de Salud Carlos III, Spain), the Instituto de Investigación Sanitaria y Biomédica de Alicante (Isabial), Direcció General de Ciència i Investigació, Generalitat Valenciana (CIAICO/2024/313) and “Severo Ochoa” Program for Centers of Excellence in R&D (CEX2021-001165-S). SE is supported by a PFIS fellowship from the ISC‐III. CAG is supported by a predoctoral contract. (PRE2022-104182) funded by the Agencia Estatal de Investigación (AEI) and the Ministerio de Ciencia e Innovación (MCIN) under the Plan Estatal de I + D+I 2021–2023, co-funded by the European Social Fund (FSE). FS-L is supported by University of Chicago start-up funds. AVP is supported by the Spanish Agency of Research (AEI) under the grants PID2022-136741NB-100 and by the Generalitat Valenciana through the program PROMETEO/2019/014 and CIPROM/2022/08 to Juan Lerma. EDLP and FAP are supported by grant PID2022-140961OB-100 (MCIN/AEI/https://doi.org/10.13039/501100011033), grant PROMETEO/2021/031 (Generalitat Valenciana Government) and “Severo Ochoa” Program for Centers of Excellence in R&D (CEX2021-001165-S). HZ is a Wallenberg Scholar and a Distinguished Professor at the Swedish Research Council supported by grants from the Swedish Research Council (#2023 − 00356, #2022 − 01018 and #2019–02397), the European Union’s Horizon Europe research and innovation programme under grant agreement No 101053962, and Swedish State Support for Clinical Research (#ALFGBG-71320).

Author information

Author notes
  1. Sergio Escamilla and Carlos Avilés-Granados have contributed equally to this study.

Authors and Affiliations

  1. Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550, Sant Joan d’ Alacant, Alicante, Spain

    Sergio Escamilla, Carlos Avilés-Granados, Francisco Andrés Peralta, Ana V. Paternain, María-Ángeles Cortés-Gómez, Elvira de la Peña, Javier Sáez-Valero & Inmaculada Cuchillo-Ibáñez

  2. Centro de Investigaciones Biomédicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain

    Sergio Escamilla, Carlos Avilés-Granados, Javier Sáez-Valero & Inmaculada Cuchillo-Ibáñez

  3. Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain

    Sergio Escamilla, Carlos Avilés-Granados, Elvira de la Peña, Javier Sáez-Valero & Inmaculada Cuchillo-Ibáñez

  4. Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden

    Henrik Zetterberg

  5. Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden

    Henrik Zetterberg

  6. Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA

    Henrik Zetterberg

  7. Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA

    Henrik Zetterberg

  8. Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK

    Henrik Zetterberg

  9. UK Dementia Research Institute at UCL, London, UK

    Henrik Zetterberg

  10. Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong, China

    Henrik Zetterberg

  11. Centre for Brain Research, Indian Institute of Science, Bangalore, India

    Henrik Zetterberg

  12. Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA

    Federico Salas-Lucia

  13. Neuroscience Institute, University of Chicago, Chicago, IL, USA

    Federico Salas-Lucia

  14. Unidad de Investigación, Hospital General Universitario de Elche, Fundación Para el Fomento de la Investigación Sanitaria yBiomédica de la Comunidad Valenciana (FISABIO), Elche, 03203, Spain

    María-Ángeles Cortés-Gómez

Authors
  1. Sergio Escamilla
    View author publications

    Search author on:PubMed Google Scholar

  2. Carlos Avilés-Granados
    View author publications

    Search author on:PubMed Google Scholar

  3. Francisco Andrés Peralta
    View author publications

    Search author on:PubMed Google Scholar

  4. Ana V. Paternain
    View author publications

    Search author on:PubMed Google Scholar

  5. María-Ángeles Cortés-Gómez
    View author publications

    Search author on:PubMed Google Scholar

  6. Henrik Zetterberg
    View author publications

    Search author on:PubMed Google Scholar

  7. Elvira de la Peña
    View author publications

    Search author on:PubMed Google Scholar

  8. Federico Salas-Lucia
    View author publications

    Search author on:PubMed Google Scholar

  9. Javier Sáez-Valero
    View author publications

    Search author on:PubMed Google Scholar

  10. Inmaculada Cuchillo-Ibáñez
    View author publications

    Search author on:PubMed Google Scholar

Contributions

SE and CAG performed the iPSC cultures and differentiation, FACS, ICQ, WB and RT-qPCR and prepared Figs. 1–2. HZ donates the cells and revised the manuscript. MACG participated in the design and culture of iPSC. EDLP and FAP performed the Fura-2 studies and prepared Fig. 4. AVP performed the patch-clamp studies and prepared Fig. 3 and Supp Fig. 2. FSL and SE performed the RNAseq studies and prepared Supp Fig. 1 and Supp Excells. ICI and SE wrote the main manuscript text. ICI and JSV revised it substantively. All authors reviewed the manuscript.

Corresponding author

Correspondence to Inmaculada Cuchillo-Ibáñez.

Ethics declarations

Competing of interests

HZ has served at scientific advisory boards and/or as a consultant for Abbvie, Acumen, Alector, Alzinova, ALZpath, Amylyx, Annexon, Apellis, Artery Therapeutics, AZTherapies, Cognito Therapeutics, CogRx, Denali, Eisai, Enigma, LabCorp, Merck Sharp & Dohme, Merry Life, Nervgen, Novo Nordisk, Optoceutics, Passage Bio, Pinteon Therapeutics, Prothena, Quanterix, Red Abbey Labs, reMYND, Roche, Samumed, ScandiBio Therapeutics AB, Siemens Healthineers, Triplet Therapeutics, and Wave, has given lectures sponsored by Alzecure, BioArctic, Biogen, Cellectricon, Fujirebio, LabCorp, Lilly, Novo Nordisk, Oy Medix Biochemica AB, Roche, and WebMD, is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program, and is a shareholder of MicThera (outside submitted work).

Ethical approval

The human cells (iPSCs) were a gift and the original source of the cells, the laboratory of Dr Henrik Zetterberg, confirm that there was initial ethical approval for collection of human cells, and that the donors had signed informed consent. The authors declare that they have not used AI-generated work in this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escamilla, S., Avilés-Granados, C., Peralta, F.A. et al. GluN2A-mediated currents and calcium signal in human iPSC-derived neurons. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38482-y

Download citation

  • Received: 29 September 2025

  • Accepted: 29 January 2026

  • Published: 18 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-38482-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cerebral cortex development
  • Neurodifferentiation
  • NMDAR
  • GluN2B
  • Ro 25–6981
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing